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ABSTRACT. In this paper we consider the solutions of linear systems of saddle
point problems. By using the spectrum of a quadratic matrix polynomial,
we study the eigenvalues of the iterative matrix of the Hermitian and skew

Hermitian splitting method.
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1. INTRODUCTION

Let M,,(C) be the algebra of all nxn complex matrices. We consider the iterative

solution of a large sparse non-Hermitian system of linear equations
(1) Arx=b, Ae M,(C), A# A*, and z,b € C".

Based on the alternating splitting iteration [3], A = H(A) + S(A),with H(A) =
(A+ A*)/2 and S(A) = (A — A*)/2 are Hermitian and skew-Hermitian parts of A,
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respectively. Let v > 0 be a parameter. We consider the following splittings of A:
A=(yI+H(A)— (vI —S(A)) and A= (yI+S(A))— (vI— H(A)).

Here I denotes the identity matrix. The algorithm is obtained by alternating be-
tween these two splittings. Given an initial guess xg, the Hermitian and skew-

Hermitian iteration computes a sequence {xy} as follows:

) { (v + H(A)zp41 = (v = S(A))wy + b,
(V] + S(A)) a1 = (VI — H(A))ay 3 +b.
Suppose
(3) Q(A) = ApN™ + Ay AT+ A+ Ag

is a matrix polynomial, where A; € M,(C) (i = 0,1,...,m), A, # 0 and A
is a complex variable. The matrix polynomial Q()\) is called selfadjoint if all the
coefficients A; are Hermitian matrices. A complex number )\g is an eigenvalue of
Q(N) if det@Q(Mg) = 0. The spectrum of the matrix polynomial Q(\) is defined as

ol@QN)]={peC:30#£zeC", Quz=0}={peC:0ea(Q(n)}

The field of values of the matrix polynomial Q()\) is defined as

FIQ) ={n€C:30 42 €C", 2" Qu)a =0} = {u € C: 0 € FQ(u)},

where o(Q(p)) and F(Q(u)) are the spectrum and the field of values of the matrix
Q(p), respectively. For more details see [?].
For A, B € M, (C) with 0 ¢ F(B), the ratio field of values is defined as follows:

¥ Ax
z*Bx

(4) R(A,B) =1 cx e Ch x| =1}

The ratio field of values turns out to be a special case of the numerical range of a
matrix polynomial. Let Q(A\) = A — AB. Then R(A, B) = F[Q())] if and only if
0 ¢ F(B) (see [5]). In the next section by using the spectrum of a quadratic matrix
polynomial, we study the eigenvalues of the iterative matrix of the Hermitian and

skew Hermitian splitting method.
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2. THE HSS ITERATION METHODS FOR SADDLE POINT PROBLEMS

We consider the iterative solutions of a saddle-point problem of the form

J- L]

where B € M,,(C) is a Hermitian positive definite, E € M,, ,,,(C) has full column

B E

5 Az =
) ~E* 0

rank, n > m, f € C™ and g € C™. The existence and uniqueness of the solutions of
the system of linear equations (5) was guaranteed by Benzi and Golub in [2]. By
alternating splitting method, we split the matrix A into its Hermitian and skew-

Hermitian parts.

0 FE

(©) H(4) = e

, and S(A) =

0

We consider the Hermitian and Skew-Hermitian Splitting (HSS) iteration method
to solve the saddle point problem (5). Asume x¢ = (yo,20)" € C™*™ is an initial
guess. The HHS method computes a sequence {xy11 = (Ypa1,2k41)'}, k=0,1,...

by solving the linear subsystems:

. (1% 68,1+ (B8 (731 = (o8 42,1 - 1% B1) (%1 + 1)
(1o 50+ 1% BN 0 = (1% 68,1 - (B8 111+ 14,

Therefore, the HSS iteration method can be obtained as follows:

k+1 k
v 1:£(a76)[yk +g(a,6)[f17

Skt - g

(8)

where the iteration matrix L£(a, 8) of the HSS iteration method and the matrix

G(a, B) are as follows:

(9)
,C(OL, 6) = l

-1
alal, + B) (al,+ B)E

—pE” By,

alal, —B) —(al, —B)E
BE” By,

al, +B 1/a(al, + B)E
_E* 81,
By [4, Theorem 2.1], we know that the HSS iteration method (8) is uncondition-

G(a, B) =2

ally convergent i.e. p(L(a, 5)) < 1,Va, 5 > 0.
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In the following theorem, by the same notations as in [1, Lemma 3.1], we study

the spectrum of the quadratic matrix polynomial

(10)  Qas(N\) := A2(al + B) — 2\a(aBl + EE*) ' (aBI — EE*) + (ol — B).

Theorem 2.1. Let B € M,(C) be a Hermitian positive definite matriz, E €
M, (C) has full column rank, n > m and let «,8 > 0 be given iteration pa-
rameters. Then, 0[Qqu (N N{z € C: |z| = 1} = {1}, where the quadratic matriz
polynomial Qq 5(N) is as in (10).

Proof. Let Ao = €% € 0[Qap(N)], 0 € [0,27). It is enough to show that
Q.. 5(€?) is singular if and only if # = 0. We have Q, g(e?) = e®[e?(al +
B) — 2a(aBI + EE*)"YaBI — EE*) + e " (al — B)] = 2¢¥[aCos(9)I — a(aBI +
EE*)"YaBI — EE*) +iSin(0)B]. If § € (0,7) U (7, 27), then S (e7"Qq 5(e?)) =
Sin(#)B is positive definite or negative definite. Therefore, if § € (0,7) or 6 €
(m,27), then Q, s(e') is nonsingular. It is enough to consider 6 € {0, 7}(i.e.\g =
+1). Qap(£l) = (al + B) £ 2a(apl + EE*) Y (afl — EE*) + (al — B) =
2o (I £ (aBI + EE*)"Y(apl — EE™)) . It is readily seen that (a8I+EE*) "' (a1 —

EFE*) is unitarily similar to the nxn diagonal matrix D = diag (zglﬁi e gg;z: ) ,

where p1,..., 1, are the non-negative eigenvalues of EE*. Hence Q. (1) and

Q,.3(—1) are unitarily similar to the nxn diagonal matrices diag (Cf;‘fﬁl e Cf;‘fgﬂ) ,
2 2

and diag (ngojrﬁl e a‘;ﬁfﬂ) , respectively. Since n > m we obtain that u, = 0 and

hence Q, (1) is singular and Q, s(—1) is nonsingular. Therefore, ¥ € 0[Q, 5(N)]
if and only if & = 0. This completes the proof. a

The field of values of the matrix polynomial Q, s(A) is as follows:
FlQus(N] = {7 €C:0€ F(Qup()} = {1 €C:30 £z €T, 2" Qy (1) = 0},

Let x € C™ be a unit vector. Define n := z*Bx and ji := Va*EE*x. Then
(11)

2 _ 52\ 2 2
F[Qu5(\)] C ain Z§+g2 + \/<Zg+52) +5 1) [ € F(EE"), n€ F(B) %,
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where F(B) = [Nmin, Mmax] and F(EE*) = @2, i2..)- If n > m, then fip;, = 0.

min»

By the same notations as in [1], we have

_ ZoN 2
_ o [af—p? aff — 2 n?
. — + —_ ——1]1.
90(05767777M) OK+7] OZB‘F[LQ \/(015+ﬂ2 +Oé2
By Lemma [4, Theorem 2.1], we know that o(L(«, 8)) C D,Va, > 0, where
D = {z € C:|z|] < 1}. Also, by Theorem 2.1, we obtain that Q, 5(1) is a singular

matrix, i.e. 1 € 0[Qq g(N)].

By using [1] and Theorem 2.1, we are revising [1, Lemma 3.1] as follows:

Theorem 2.2. Consider the saddle-point problem (5). Let B € M,,(C) be Hermit-
ian positive definite, E € My, 1, (C) has full column rank, n > m and let o, 8 > 0 be

given the iteration parameters. Then

olLasN)] = 0[QasMIN\{1} € F[Qa s\ {1},
(i) F[Qap(N] € {pla, Bim,p) :n € F(B),u € F(E"E)} U{p(a, B;n,0) :n € F(B)}.

Moreover, if the matrices B and EE* are commute with each other, then

(i11) o[La,s(N)] € {p(e, B;n,7) :n € 0(B),y € o(E*E)}U{p(e, B;n,0) : ) € o(B)}.

Proof. By the same method as in [1, Lemma 3.1] and Theorem?2.1, the part (i)
holds. We know that o ((aBI + EE*)"'(aBI — EE*)) C R((apl — EE*), (apI + EE")),
where R(A, B) be as in (4). Since (afI + EE*) is positive definite, we obtain that
the ratio field of values R ((afI — EE*), (afI + EE*)) is convex, for more details

see [5]. Hence

F ((aBI + EE*) Y (aBl — EE*)) = Conv (o((aBl + EE*)"'(apI — EE")))

N

R((aBI — EE"),(afI + EE™)).
Easy computation shows that

F[Qa (W] E{wla, B;m,7) : n € 0(B),y € o(E"E)} U{p(a, §;n,0) : 1 € o(B)}.

This completes the proof.
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