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Abstract. In this paper we consider the solutions of linear systems of saddle

point problems. By using the spectrum of a quadratic matrix polynomial,

we study the eigenvalues of the iterative matrix of the Hermitian and skew

Hermitian splitting method.
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1. Introduction

Let Mn(C) be the algebra of all n×n complex matrices. We consider the iterative

solution of a large sparse non-Hermitian system of linear equations

(1) Ax = b, A ∈ Mn(C), A ̸= A∗, and x, b ∈ Cn.

Based on the alternating splitting iteration [3], A = H(A) + S(A),with H(A) =

(A+A∗)/2 and S(A) = (A−A∗)/2 are Hermitian and skew-Hermitian parts of A,
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respectively. Let γ > 0 be a parameter. We consider the following splittings of A:

A = (γI +H(A))− (γI − S(A)) and A = (γI + S(A))− (γI −H(A)).

Here I denotes the identity matrix. The algorithm is obtained by alternating be-

tween these two splittings. Given an initial guess x0, the Hermitian and skew-

Hermitian iteration computes a sequence {xk} as follows:

(2)

{
(γI +H(A))xk+ 1

2
= (γI − S(A))xk + b,

(γI + S(A))xk+1 = (γI −H(A))xk+ 1
2
+ b.

Suppose

(3) Q(λ) = Amλm +Am−1λ
m−1 + · · ·+A1λ+A0

is a matrix polynomial, where Ai ∈ Mn(C) (i = 0, 1, . . . ,m), Am ̸= 0 and λ

is a complex variable. The matrix polynomial Q(λ) is called selfadjoint if all the

coefficients Ai are Hermitian matrices. A complex number λ0 is an eigenvalue of

Q(λ) if detQ(λ0) = 0. The spectrum of the matrix polynomial Q(λ) is defined as

σ[Q(λ)] = {µ ∈ C : ∃ 0 ̸= x ∈ Cn, Q(µ)x = 0} = {µ ∈ C : 0 ∈ σ(Q(µ))}.

The field of values of the matrix polynomial Q(λ) is defined as

F [Q(λ)] = {µ ∈ C : ∃ 0 ̸= x ∈ Cn, x∗Q(µ)x = 0} = {µ ∈ C : 0 ∈ F (Q(µ))},

where σ(Q(µ)) and F (Q(µ)) are the spectrum and the field of values of the matrix

Q(µ), respectively. For more details see [?].

For A,B ∈ Mn(C) with 0 /∈ F (B), the ratio field of values is defined as follows:

(4) R(A,B) = {x
∗Ax

x∗Bx
: x ∈ Cn, ∥x∥ = 1}.

The ratio field of values turns out to be a special case of the numerical range of a

matrix polynomial. Let Q(λ) = A − λB. Then R(A,B) = F [Q(λ)] if and only if

0 /∈ F (B) (see [5]). In the next section by using the spectrum of a quadratic matrix

polynomial, we study the eigenvalues of the iterative matrix of the Hermitian and

skew Hermitian splitting method.
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2. The HSS Iteration Methods for Saddle Point Problems

We consider the iterative solutions of a saddle-point problem of the form

(5) Ax =

[
B E

−E∗ 0

][
y

z

]
=

[
f

g

]
= b,

where B ∈ Mn(C) is a Hermitian positive definite, E ∈ Mn,m(C) has full column

rank, n ≥ m, f ∈ Cn and g ∈ Cm. The existence and uniqueness of the solutions of

the system of linear equations (5) was guaranteed by Benzi and Golub in [2]. By

alternating splitting method, we split the matrix A into its Hermitian and skew-

Hermitian parts.

(6) H(A) =

[
B 0

0 0

]
, and S(A) =

[
0 E

−E∗ 0

]
.

We consider the Hermitian and Skew-Hermitian Splitting (HSS) iteration method

to solve the saddle point problem (5). Asume x0 = (y0, z0)
t ∈ Cm+n is an initial

guess. The HHS method computes a sequence {xk+1 = (yk+1, zk+1)
t}, k = 0, 1, . . .

by solving the linear subsystems:

(7)


(
[ αIn 0

0 βIm
] + [B 0

0 0 ]
)
[ y

k+1
2

zk+1
2

] =
(
[ αIn 0

0 βIm
]− [ 0 E

−E∗ 0 ]
)
[ y

k

zk ] + [ fg ],(
[ αIn 0

0 βIm
] + [ 0 E

−E∗ 0 ]
)
[ y

k+1

zk+1 ] =
(
[ αIn 0

0 βIm
]− [B 0

0 0 ]
)
[ y

k+1
2

zk+1
2

] + [ fg ].

Therefore, the HSS iteration method can be obtained as follows:

(8)

[
yk+1

zk+1

]
= L(α, β)

[
yk

zk

]
+ G(α, β)

[
f

g

]
,

where the iteration matrix L(α, β) of the HSS iteration method and the matrix

G(α, β) are as follows:

(9)

L(α, β) =

[
α(αIn +B) (αIn +B)E

−βE∗ β2Im

]−1 [
α(αIn −B) −(αIn −B)E

βE∗ β2Im

]
,

G(α, β) = 2

[
αIn +B 1/α(αIn +B)E

−E∗ βIm

]−1

.

By [4, Theorem 2.1], we know that the HSS iteration method (8) is uncondition-

ally convergent i.e. ρ(L(α, β)) < 1, ∀α, β > 0.
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In the following theorem, by the same notations as in [1, Lemma 3.1], we study

the spectrum of the quadratic matrix polynomial

(10) Qα,β(λ) := λ2(αI +B)− 2λα(αβI + EE∗)−1(αβI − EE∗) + (αI −B).

Theorem 2.1. Let B ∈ Mn(C) be a Hermitian positive definite matrix, E ∈
Mn,m(C) has full column rank, n ≥ m and let α, β > 0 be given iteration pa-

rameters. Then, σ[Qα,β(λ)] ∩ {z ∈ C : |z| = 1} = {1}, where the quadratic matrix

polynomial Qα,β(λ) is as in (10).

Proof. Let λ0 = eiθ ∈ σ[Qα,β(λ)], θ ∈ [0, 2π). It is enough to show that

Qα,β(e
iθ) is singular if and only if θ = 0. We have Qα,β(e

iθ) = eiθ[eiθ(αI +

B)− 2α(αβI + EE∗)−1(αβI − EE∗) + e−iθ(αI − B)] = 2eiθ[αCos(θ)I − α(αβI +

EE∗)−1(αβI − EE∗) + iSin(θ)B]. If θ ∈ (0, π) ∪ (π, 2π), then ℑ
(
e−iθQα,β(e

iθ)
)
=

Sin(θ)B is positive definite or negative definite. Therefore, if θ ∈ (0, π) or θ ∈
(π, 2π), then Qα,β(e

iθ) is nonsingular. It is enough to consider θ ∈ {0, π}(i.e.λ0 =

±1). Qα,β(±1) = (αI + B) ± 2α(αβI + EE∗)−1(αβI − EE∗) + (αI − B) =

2α
(
I ± (αβI + EE∗)−1(αβI − EE∗)

)
. It is readily seen that (αβI+EE∗)−1(αβI−

EE∗) is unitarily similar to the n×n diagonal matrixD = diag
(

αβ−µ1

αβ+µ1
, . . . , αβ−µn

αβ+µn

)
,

where µ1, . . . , µn are the non-negative eigenvalues of EE∗. Hence Qα,β(1) and

Qα,β(−1) are unitarily similar to the n×n diagonal matrices diag
(

4αµ1

αβ+µ1
, . . . , 4αµn

αβ+µn

)
,

and diag
(

4α2β
αβ+µ1

, . . . , 4α2β
αβ+µn

)
, respectively. Since n > m we obtain that µn = 0 and

hence Qα,β(1) is singular and Qα,β(−1) is nonsingular. Therefore, eiθ ∈ σ[Qα,β(λ)]

if and only if θ = 0. This completes the proof. 2

The field of values of the matrix polynomial Qα,β(λ) is as follows:

F [Qα,β(λ)] = {γ ∈ C : 0 ∈ F (Qα,β(γ))} = {γ ∈ C : ∃ 0 ̸= x ∈ Cn, x∗Qα,β(γ)x = 0}.

Let x ∈ Cn be a unit vector. Define η := x∗Bx and µ̃ :=
√
x∗EE∗x. Then

(11)

F [Qα,β(λ)] ⊆

 α

α+ η

αβ − µ̃2

αβ + µ̃2
±

√(
αβ − µ̃2

αβ + µ̃2

)2

+
η2

α2
− 1

 : µ̃2 ∈ F (EE∗), η ∈ F (B)

 ,
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where F (B) = [ηmin, ηmax] and F (EE∗) = [µ̃2
min, µ̃

2
max]. If n > m, then µ̃min = 0.

By the same notations as in [1], we have

φ(α, β; η, µ̃) =
α

α+ η

αβ − µ̃2

αβ + µ̃2
±

√(
αβ − µ̃2

αβ + µ̃2

)2

+
η2

α2
− 1

 .

By Lemma [4, Theorem 2.1], we know that σ(L(α, β)) ⊆ D, ∀α, β > 0, where

D = {z ∈ C : |z| < 1}. Also, by Theorem 2.1, we obtain that Qα,β(1) is a singular

matrix, i.e. 1 ∈ σ[Qα,β(λ)].

By using [1] and Theorem 2.1, we are revising [1, Lemma 3.1] as follows:

Theorem 2.2. Consider the saddle-point problem (5). Let B ∈ Mn(C) be Hermit-

ian positive definite, E ∈ Mn,m(C) has full column rank, n ≥ m and let α, β > 0 be

given the iteration parameters. Then

σ[Lα,β(λ)] = σ[Qα,β(λ)] \ {1} ⊆ F [Qα,β(λ)] \ {1},

(ii) F [Qα,β(λ)] ⊆ {φ(α, β; η, µ) : η ∈ F (B), µ ∈ F (E∗E)} ∪ {φ(α, β; η, 0) : η ∈ F (B)}.

Moreover, if the matrices B and EE∗ are commute with each other, then

(iii) σ[Lα,β(λ)] ⊆ {φ(α, β; η, γ) : η ∈ σ(B), γ ∈ σ(E∗E)}∪{φ(α, β; η, 0) : η ∈ σ(B)}.

Proof. By the same method as in [1, Lemma 3.1] and Theorem2.1, the part (i)

holds. We know that σ
(
(αβI + EE∗)−1(αβI − EE∗)

)
⊆ R ((αβI − EE∗), (αβI + EE∗)),

where R(A,B) be as in (4). Since (αβI +EE∗) is positive definite, we obtain that

the ratio field of values R ((αβI − EE∗), (αβI + EE∗)) is convex, for more details

see [5]. Hence

F
(
(αβI + EE∗)−1(αβI − EE∗)

)
= Conv

(
σ((αβI + EE∗)−1(αβI − EE∗))

)
⊆ R ((αβI − EE∗), (αβI + EE∗)) .

Easy computation shows that

F [Qα,β(λ)] ⊆ {φ(α, β; η, γ) : η ∈ σ(B), γ ∈ σ(E∗E)} ∪ {φ(α, β; η, 0) : η ∈ σ(B)}.

This completes the proof.
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