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Abstract. In this paper, using the best proximity theorems for an extension

of Brosowski’s theorem. We obtain other results on farthest points. Finally, we

define the concept of ε- farthest points. We shall prove interesting relationship

between the ε-best approximation and the ε-farthest points in normed linear

spaces (X, ‖.‖). If z ∈ W is a ε-farthest point from an x ∈ X, then z is also a

ε-best approximation in W .
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1. Introduction

Let A be a non-empty subset of a normed linear space (X, ‖.‖). For x ∈ X, if

there exists a point x0 ∈ A such that d(x,A) = inf{‖x − y‖ : y ∈ A} = ‖x − x0‖.
The point x0 is called a best approximation point of A from x. We denote the set
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of best approximation points (nearest point) Of x in A by PA(x). We can find some

results about best approximation points in (see [11]).

Let A be non-empty subset of a normed linear space (X, ‖.‖). Consider a map

T : A∪B → A∪B such that T (A) ⊆ B and T (B) ⊆ A (T is cyclic map). For x ∈ X,

we say that the point x is a best proximity point of map T , if ‖x− Tx‖ = d(A,B),

and we denote the set of all best proximity points of T by PT (A,B). That is,

PT (A,B) = {x ∈ A ∪B : ‖x− Tx‖ = d(A,B)}.

Best proximity points also evolves as a generalization of the concept of fixed point

of mappings, because if A∩B 6= φ, every best proximity point is a fixed point of T

(see [8]).

The problem of characterizing remotal points is an interesting problem, though

it is much more difficult than the proximinality one. Further, it has its applications

in approximation theory and geometry of Banach spaces.

Let A be non-empty bounded subset of normed linear space (X, ‖.‖). For x ∈ X,

if there exists a point x0 ∈ A such that δ(x,A) = sup{‖x− y‖ : y ∈ A} = ‖x−x0‖.
The point x0 is called a farthest point of A from x. We denote the set of farthest

points of x in A by FA(x). We can find some results about farthest points in (see

[1, 3-7, 9-13]).

Let X be a normed linear space, A,B be non-empty bounded subsets of X and

T : A ∪B → A ∪B is a cyclic map. The point x ∈ A ∪B is called a remotal point

for T, if ‖x− Tx‖ = δ(A,B) = supx∈B δ(x,A).

The set of every remotal points for T denoted by FT (A,B). (see [1])

FT (A,B) = {x ∈ A ∪B : ‖x− Tx‖ = δ(A,B)}.

Let A and B be nonempty subsets of a metric space X and T : A ∪B → A ∪B
a map such that T (A) ⊆ B, T (B) ⊆ A. Put

P εT (A,B) = {x ∈ A ∪B : d(x, Tx) ≤ d(A,B) + ε for some ε > 0}.

We say that the x ∈ A ∪ B is an approximate best proximity point for T if

P εT (A,B) 6= ∅. (see [12])

Let A and B be non-empty bounded subsets of a metric space X and T : A∪B →
A∪B be a cyclic map. The point x ∈ A∪B is an approximate remotal point for T,
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if d(x, Tx) ≥ δ(A,B)− ε, for some ε > 0. We will denote the set of all approximate

remotal pair (A,B) by (see [1])

F εT (A,B) = {x ∈ A ∪B : d(x, Tx) ≥ δ(A,B)− ε for some ε > 0}.

In the following we shall present a list of known lemmas which are needed in the

proof of the main results. The following Lemma is Brosowski’s Theorem.

Lemma 1.1. [2] Let X be a Banach space and T : X → X a non expansive mapping

with a fixed point x̄ ∈ X. Let C be a nonempty subset of X such that T (C) ⊆ C.

Also PC(x̄) is a nonempty compact convex subset of C. Then T has a fixed point

in PC(x̄).

Lemma 1.2. [8] Let A and B be nonempty closed subsets of a complete metric space

X. Suppose that the mapping T : A ∪ B → A ∪ B satisfy T (A) ⊆ B, T (B) ⊆ A,

and

d(Tx, Ty) ≤ αd(x, y) + β[d(x, Tx) + d(y, Ty)] + γd(A,B),

for all x, y ∈ A ∪ B, where α, γ, β ≥ 0, α + 2β + γ ≤ 1. If A (or B) is boundedly

compact, then there exists a x ∈ A ∪B with d(x, Tx) = d(A,B).

Lemma 1.3. [1] Let A and B be nonempty bounded subsets of a complete metric

space X. Suppose that the mapping T : A ∪ B → A ∪ B satisfy T (A) ⊆ B,

T (B) ⊆ A, and

d(Tx, Ty) ≥ αd(x, y) + β[d(x, Tx) + d(y, Ty)] + γd(A,B),

for all x, y ∈ A ∪ B, where α, β ≥ 0, γ > 0, α + 2β < 1 , α + 2β + γ ≥ 1. If A (or

B) is boundedly compact, then there exists x ∈ A ∪B with d(x, Tx) = δ(A,B).

Lemma 1.4. [12] Let A and B be nonempty closed subsets of a complete metric

space X. Suppose that the mapping T : A ∪ B → A ∪ B satisfy T (A) ⊆ B,

T (B) ⊆ A, and

d(Tx, Ty) ≤ αd(x, y) + β[d(x, Tx) + d(y, Ty)] + γd(A,B)

for all x, y ∈ A∪B, where α, β, γ ≥ 0, α+ 2β+ γ ≤ 1. Then T has an approximate

best proximity point.
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Lemma 1.5. [1] Let A and B be non-empty bounded subsets of a complete metric

space X. Suppose that the map T : A ∪B → A ∪B is a cyclic map and

d(Tx, Ty) ≥ αd(x, y) + β[d(x, Tx) + d(y, Ty)] + γδ(A,B),

for all x, y ∈ A ∪B, where α, β ≥ 0, γ > 0, α+ 2β < 1 and α+ 2β + γ ≥ 1. Then

T has an approximate remotal point.

Lemma 1.6. [1] Let A and B be non-empty bounded subsets of a metric space X.

Suppose that the continuous cyclic mapping T : A ∪B → A ∪B satisfy T (A) ⊆ B,

T (B) ⊆ A, and

d(Tx, Ty) ≥ αd(x, y) + β[d(x, Tx) + d(y, Ty)] + γδ(A,B),

for all x, y ∈ A ∪ B, where α, β ≥ 0, γ > 0, α + 2β < 1 and α + 2β + γ ≥ 1. For

x0 is an arbitrary point in A, define xn+1 = Txn for each n ≥ 1. If {x2n} has a

convergent subsequence in A, then there exists x ∈ A ∪B with d(x, Tx) = δ(A,B).

2. Best proximity points and best approximation points

In this section, we expression conditions where union the set of best proximity

points for a map and the set of best approximation points of a set is non-empty.

Also we will extend Brosowski’s Theorem.

Theorem 2.1. Let (X, ‖.‖) be a Banach space and A and B be non-empty subsets

of X. Suppose that the continuous cyclic mapping T : A ∪B → A ∪B is satisfy

‖Tx− Ty‖ ≤ β[‖x− Tx‖+ ‖y − Ty‖] + γd(A,B) (2.1)

for all x, y ∈ A ∪ B, where 0 < β ≤ 1
2 , 2β + γ ≤ 1. Let C be a subset of A such

that T (C) ⊆ C. Also, there exists a x0 ∈ PT (A,B) ∩ A, PC(x0) and PT (A,B) are

nonempty boundedly compact subset of C. Then PT (A,B)
⋃
PC(Tx0) 6= ∅.

Proof. First, we show that T : (PC(Tx0) ∩ PT (A,B)) ∪ PT (A,B) → (PC(Tx0) ∩
PT (A,B)) ∪ PT (A,B).

case 1: Suppose y ∈ PT (A,B). Then ‖Ty−T (Ty)‖ ≤ β[‖y−Ty‖+ ‖Ty−T 2y‖] +
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γd(A,B). Therefore

d(A,B) ≤ ‖Ty − T 2y‖

≤ β + γ

1− β
d(A,B)

≤ d(A,B).

Therefore d(A,B) = ‖Ty − T 2y‖. implying that Ty ∈ PT (A,B).

case 2: If y ∈ PC(Tx0) ∩ PT (A,B), since Ty ∈ C and ‖Ty − Tx0‖ ≥ d(Tx0, C).

Therefore

d(Tx0, C) ≤ ‖Ty − Tx0‖

≤ β[‖x0 − Tx0‖+ ‖y − Ty‖] + γd(A,B)

= β[d(A,B) + d(A,B)] + γd(A,B)

≤ (2β + γ)d(A,B)

≤ d(A,B)

≤ d(Tx0, C),

implying that Ty ∈ PC(Tx0).

We set A = PC(Tx0) ∩ PT (A,B) and B = PT (A,B). From Lemma 1.2, there exits

a z ∈ PC(Tx0) ∩ PT (A,B)
⋃
PT (A,B). Therefore z ∈ PC(Tx0)

⋃
PT (A,B)

The following Theorem is a extension of Brosowki’s Theorem.

Theorem 2.2. Let (X, ‖.‖) be a Banach space and T : X → X satisfy

‖Tx− Ty‖ ≤ α‖x− y‖+ β‖x− Tx‖,

for all x, y ∈ X, where α, β ≥ 0, α + β ≤ 1. Let C be a subset of X such that

T (C) ⊆ C. Assume T has a fixed point x0 ∈ X for T and PC(x0) is a nonempty

boundedly compact subset of C. Then T has a fixed point in PC(x0).
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Proof. First, we show that T : PC(x0)→ PC(x0). Suppose y ∈ PC(x0). Then

‖x0 − Ty‖ = ‖Tx0 − Ty‖

≤ α‖x0 − y‖+ β‖x0 − Tx0‖

≤ ‖x0 − y‖

≤ d(x0, C).

Therefore Ty ∈ PC(x0). We set A = B = PC(x0), From Lemma 1.2, there exists

z ∈ PC(x0) such that d(z, Tz) = d(A,B) = 0. That is Tz = z.

3. Remotal Points and farthest points

In this section, we find conditions where union the set of remotal points and the

set of farthest points is non-empty.

Theorem 3.1. Let (X, ‖.‖) be a Banach space and A and B be non-empty bounded

subsets of X. Suppose that the continuous cyclic mapping T : A ∪ B → A ∪ B is

satisfy

‖Tx− Ty‖ ≥ β[‖x− Tx‖+ ‖y − Ty‖] + γδ(A,B),

for all x, y ∈ A ∪ B, where 0 < β < 1
2 , γ > 0 and 2β + γ ≥ 1. Let C be a

bounded subset of A such that T (C) ⊆ C. Also, there exists a x0 ∈ FT (A,B) ∩
A, FT (A,B) and FC(Tx0) are nonempty boundedly compact subset of C. Then

FT (A,B)
⋃
FC(Tx0) 6= ∅.

Proof. First, we show that T : (FC(Tx0) ∩ FT (A,B)) ∪ FT (A,B)→ (FC(Tx0) ∩
FT (A,B)) ∪ FT (A,B).

case 1: Suppose y ∈ FT (A,B). Then ‖Ty−T (Ty)‖ ≥ β[‖y−Ty‖+ ‖Ty−T 2y‖] +

γδ(A,B) Therefore

δ(A,B) ≥ ‖Ty − T 2y‖

≥ β + γ

1− β
δ(A,B)

≥ δ(A,B).

Therefore δ(A,B) = ‖Ty − T 2y‖. implying that Ty ∈ FT (A,B).

case 2: If y ∈ FC(Tx0) ∩ FT (A,B), then Ty ∈ C and ‖Ty − Tx0‖ ≤ δ(Tx0, C).
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Therefore Ty ∈ FC(Tx0).

δ(Tx0, C) ≥ ‖Ty − Tx0‖

≥ β[‖x0 − Tx0‖+ ‖y − Ty‖] + γδ(A,B)

= β[δ(A,B) + δ(A,B)] + γδ(A,B)

= (2β + γ)δ(A,B)

= δ(A,B)

≥ δ(Tx0, C),

therefore ‖Tx0 − Ty‖ = δ(Tx0, C). That is Ty ∈ FC(Tx0). We set A = FC(Tx0)∩
FT (A,B) and B = PT (A,B). From Lemma 1.2, there exits z ∈ (FC(Tx0) ∩
FT (A,B))

⋃
PT (A,B). Therefore z ∈ FC(Tx0)

⋃
PT (A,B)

Theorem 3.2. Let (X, ‖.‖) be a Banach space and A and B be non-empty bounded

subsets of X. Suppose that the continuous cyclic mapping T : A ∪ B → A ∪ B is

satisfy

‖Tx− Ty‖ ≥ β[‖x− Tx‖+ ‖y − Ty‖] + γδ(A,B),

for all x, y ∈ A ∪ B, where 0 < β < 1
2 , γ > 0 and 2β + γ ≥ 1. Let C be a bounded

subset of A such that T (C) ⊆ C. Also, there exists a x0 ∈ FT (A,B) ∩ A, define

xn+1 = Txn for each n ≥ 1. If {x2n} has a convergent subsequence in FT (A,B)∩A.

Then FT (A,B)
⋃
FC(Tx0) 6= ∅.

Proof. With apply lemma 1.6 is similar to theorem 3.1.

4. Approximate remotal points and approximate best proximity points

In this section in first define ε-set of farthest points. We expression conditions

where union the set of ε-best proximity points for a map and the set of approximate

best proximity points of a set is non-empty. Also we find conditions where union

the set of approximate remotal points and the set of ε-farthest points is non-empty
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Let (X, ‖.‖) be a normed linear space and C be a non-empty bounded subset of

X. For ε > 0 and x ∈ X, we set

FC,ε(x) = {x0 ∈ C : ‖x− x0‖ ≥ δ(x,C)− ε}.

Also, we can find the definition of the set of ε-best approximation in [11] as following

definition

PC,ε(x) = {x0 ∈ C : ‖x− x0‖ ≤ d(x,C) + ε}.

Theorem 4.1. Let A and B be non-empty subsets of a Banach space X. Suppose

that the map T : A ∪B → A ∪B is a cyclic map and

‖Tx− Ty‖ ≤ β[‖x− Tx‖+ ‖y − Ty‖] + γd(A,B),

for all x, y ∈ A ∪ B, where γ > 0, β ≥ 0, 2β + γ ≤ 1 and ε > 0. Sup-

pose x0 ∈ P εT (A,B) ∩ A, C is a non-empty bounded subset of A, PC,ε(Tx0) and

P aT (A,B) are non-empty boundedly compact subset of X. Then the exists z ∈
P εT (A,B)

⋃
PC,ε(Tx0).

Proof. We show that T : P εT (A,B) ∪ PC,ε(Tx0) ∩ P εT (A,B) → P εT (A,B) ∪
PC,ε(Tx0) ∩ P εT (A,B).

Case 1. Suppose y ∈ P εT (A,B), then ‖Ty − T 2y‖ ≤ β[‖y − Ty‖ + ‖Ty − T 2y‖] +

γd(A,B). Therefore

‖Ty − T 2y‖ ≤ β + γ

1− β
[d(A,B) + ε]

≤ d(A,B) + ε,

it follows that Ty ∈ P εT (A,B).

Case 2. If y ∈ PC,ε(Tx0) ∩ P εT (A,B), therefore

‖Ty − Tx0‖ ≤ β[‖x0 − Tx0‖+ ‖y − Ty‖] + γd(A,B)

≤ β[d(A,B) + ε+ d(A,B) + ε] + γ(d(A,B) + ε)

= (2β + γ)(d(A,B) + ε)

= d(A,B) + ε

≤ d(Tx0, C) + ε,

implying that Ty ∈ PC,ε(Tx0).

We set A = PC,ε(Tx0)∩P εT (A,B) and B = PT (A,B). From Lemma 1.2, there exits
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z ∈ PC,ε(Tx0) ∩ P εT (A,B)
⋃
PT (A,B). Therefore z ∈ PC,ε(Tx0)

⋃
P εT (A,B)

Theorem 4.2. Let A and B be non-empty bounded subsets of a Banach space X.

Suppose that the map T : A ∪B → A ∪B is a cyclic map and

‖Tx− Ty‖ ≥ β[‖x− Tx‖+ ‖y − Ty‖] + γδ(A,B),

for all x, y ∈ A ∪ B, where γ > 0, 0 < β < 1
2 and 2β + γ ≥ 1 and ε >

0.Suppose x0 ∈ F εT (A,B) ∩ A, C is a non-empty bounded subset of A, FC,ε(Tx0)

and F εT (A,B) are non-empty boundedly compact subset of C. Then the exists

z ∈ F εT (A,B)
⋃
FC,ε(Tx0).

Proof. First we show that T : FC,ε(Tx0) ∩ P εT (A,B)
⋃
F εT (A,B) → FC,ε(Tx0) ∩

P εT (A,B)
⋃
F εT (A,B)

case 1. Suppose y ∈ F εT (A,B), then ‖Ty − T 2y‖ ≥ β[‖y − Ty‖ + ‖Ty − T 2y‖] +

γδ(A,B). Therefore

‖Ty − T 2y‖ ≥ β + γ

1− β
[δ(A,B)− ε]

≤ δ(A,B)− ε,

it follows that Ty ∈ F εT (A,B).

case 2. Suppose y ∈ FC,ε(Tx0) ∩ F εT (A,B), then

‖Ty − Tx0‖ ≥ β[‖x0 − Tx0‖+ ‖y − Ty‖] + γδ(A,B)

≥ β[δ(A,B)− ε+ δ(A,B)− ε] + γ(δ(A,B)− ε)

= (δ(A,B)− ε)(2β + γ)

= δ(A,B)− ε

≥ δ(Tx0, C)− ε.

Therefore Ty ∈ FC,ε(Tx0). We set A = FC,ε(Tx0) ∩ F εT (A,B) and B = F εT (A,B),

From Lemma 1.5, there exits z ∈ FC,ε(Tx0) ∩ F εT (A,B)
⋃
F εT (A,B). Therefore

z ∈ FC,ε(Tx0)
⋃
F εT (A,B)

5. ε-Best Approximation Points and ε-Farthest Points

We have the following interesting relationship between the ε-best approximation

and the ε-farthest points in normed linear spaces (X, ‖.‖). If z ∈ W is a ε-farthest
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point from an x ∈ X , then z is also a ε-best approximation in W . Indeed, z is a

ε-best approximation in W from any point which is on the line connecting x and z

lies on the opposite side of z to x. So, if there exists no ε-best approximation in W ,

then there exists no ε-farthest point in W . This is shown by the following Theorem.

Definition 5.1. [11] Suppose X be a normed linear space, x, y ∈ X and ε > 0. We

denote x⊥εy, if and only if ‖x‖ ≤ ‖x+ αy‖+ ε for every scalar α ∈ C,

also suppose W is a subspace of X. We define

W⊥ε = {x ∈ X : x⊥εω for every ω ∈W},

we say ε-complemented orthogonal set to W .

If (X, ‖.‖) is a normed linear space, x ∈ X, r ∈ R and ε > 0. We put

B[x, r + ε] = {z ∈ X : ‖x− z‖ ≤ r + ε},

and

Bc[x, r + ε] = {z ∈ X : ‖x− z‖ ≥ r + ε}.

We shall denote by [x, y] the line segment joining the points x and y i.e., [x, y] =

{z ∈ X : ‖x−z‖+‖z−y‖ = ‖x−y‖}. The set [x, y >= {z ∈ X : ‖x−y‖+‖y−z‖ =

‖x − z‖} denotes a half ray starting from x and passing through y i.e., it is union

of the segments [x, z] where [x, y] ⊆ [x, z].

Theorem 5.2. Let W be a nonempty bounded closed subset of a externally normed

space (X, ‖.‖) and ε > 0. If z ∈ FW,ε(x), then z ∈ PW,ε(x′) for every x′ ∈ [x, z >

−[x, z].

Proof. Suppose z ∈ FW,ε(x), then for every y ∈W

‖z − x‖ ≥ δ(x,W )− ε

≥ ‖x− y‖ − ε.

Suppose x′ ∈ [x, z > −[x, z] be arbitrary. For every y ∈W

‖x′ − z‖ = ‖x′ − x‖ − ‖x− z‖

≤ ‖x′ − y‖+ ‖y − x‖ − ‖x− y‖+ ε

= ‖x′ − y‖+ ε.

Therefore ‖x′ − z‖ ≤ d(x′,W ) + ε. That is z ∈ PW,ε(x′) .
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Theorem 5.3. If W is a bounded subset of a normed linear space (X, ‖.‖), g0 ∈
FW,ε(x0) for x0 ∈ X and ε > 0 , then g0 ∈ FW,ε(xλ), where xλ ∈ [g0, x0 >.

Proof. Consider g0 ∈ FW,ε(x0), for every g ∈W

‖xλ − g0‖ = ‖xλ − x0‖+ ‖x0 − g0‖

≥ ‖xλ − x0‖+ ‖x0 − g‖

≥ ‖xλ − g‖.

Therefore g0 ∈ FW (xλ).

Theorem 5.4. Suppose (X, ‖.‖) is a normed linear space, W is a non-empty subset

of X, x ∈ X and ε > 0. If {rn} is a sequence and convergent to d(x,W ) and

rn > d(x,W ). Then

PW,ε(x) =

∞⋂
n=1

B[x, rn + ε] ∩W.

and

PW,ε(x) = B[x, d(x, d(x,W ) + ε] ∩W.

Proof. Suppose z ∈ PW,ε(x), then ‖x−z‖ ≤ d(z,W )+ε. Therefore ‖x−z‖ ≤ rn+ε,

that is z ∈ B[x, rn+ε]∩W . If z ∈
⋂∞
n=1B[x, rn+ε]∩W , then ‖x−z‖ ≤ rn+ε, since

rn → d(x,W ) as n→∞. We have ‖x− z‖ ≤ d(x,W ) + ε. Therefore z ∈ PW,ε(x).

Also, by definition it is clear that PW,ε(x) = B[x, d(x, d(x,W ) + ε] ∩W .

Theorem 5.5. Suppose (X, ‖.‖) is a normed linear space, W is a non-empty subset

of X, ω0 ∈ W and ε > 0. There exits a sequence {rn}n≥1 such that rn > d(z,W )

and

P−1W,ε(ω0) ⊆
∞⋂
n=1

B[ω0, rn + ε].

Proof. We know that z ∈ P−1W,ε(ω0), then ‖z − ω0‖ ≤ d(z,W ) + ε. We set rn =

d(z,W ) + 1
n for every n ≥ 1. Then z ∈ B[ω0, rn + ε] for every n ≥ 1.

Theorem 5.6. Suppose (X, ‖.‖) is a normed linear space, W is a non-empty

bounded subset of X, x ∈ X and ε > 0. Then

FW,ε(x) = Bc[x, ρ(x,W )− ε] ∩W.

For x ∈ X and ω0 ∈W , if ω0 ∈ FW (x), then

F−1W (ω0) ⊆ Bc[ω0, ρ(x,W )− ε].
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Proof. It is clear by definition.

If W be a remotal set of normed linear space (X, ‖.‖). We can define the map

ψW,ε : X → 2W , by ψW,ε(x) = FW,ε(x).

Let X and Y be metric spaces. A set valued map f : X → 2Y is called u.s.c. if

and only if the set

{x ∈ X| f(x) ∩N 6= ∅},

is closed for each subset N of Y .

Lemma 5.7. Let (X, ‖.‖) be a normed linear space, W is bounded subset of X and

ε > 0. Then ψW,ε is u.s.c if and only if for each closed subset N of W , the subset⋃
y∈N
{x ∈ X| y ∈ ψW,ε(x)},

is closed.

Proof. It is clear, by definition.

Theorem 5.8. If W is a subspace of the normed linear space (X, ‖.‖), then ψW,ε

is u.s.c. if and only if for each closed subset N of W , N + ψ−1W,ε(0) is closed.

Proof. It is enough, we prove that

N + ψ−1W,ε(0) =
⋃
y∈N
{x ∈ X| y ∈ ψW,ε(x)}.

z ∈ N + ψ−1W,ε(0) ⇔ z = u+ y, for some u ∈ F−1W,ε(x), y ∈ N

⇔ ‖z − y‖ ≥ ρ(z − y,W )− ε, y ∈ N

⇔ ‖z − y‖ ≥ ρ(z,W )− ε, y ∈ N, W is subspace

⇔ y ∈ N, y ∈ FW,ε(z)

⇔ y ∈ N, z ∈ {x ∈ X : y ∈ FW,ε(x)

⇔ z ∈
⋃
y∈N
{x ∈ X| y ∈ ψW,ε(x)}.

Theorem 5.9. Let (X, ‖.‖) be a normed linear space, W is subspace of X, ω0 ∈W
and ε > 0. Then

X = W + P−1W,ε(ω0).
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Proof. If x ∈ X, the set PW,ε(x) 6= ∅, therefore there exists a y ∈ W such that

y ∈ PW,ε(x). Then x−y+ω0 ∈ P−1W,ε(ω0). We set u = x−y+ω0, then x = y−ω0+u.

Therefore X = W + F−1W,ε(ω0).

Theorem 5.10. Let (X, ‖.‖) be a normed linear space, W is a bounded subset of

X and ε > 0. Then

X = W + F−1W,ε(0).

Proof. If x ∈ X, the set FW,ε(x) 6= ∅, therefore there exists a y ∈ W such that

y ∈ FW,ε(x). Then u = x−y ∈ F−1W,ε(0). Therefore x = y+u, and X = W+F−1W,ε(0).

Theorem 5.11. If W is a linear subspace of a normed linear space X. Then

P−1W,ε(0) = W⊥ε , therefore for ω0 ∈W , we have P−1W,ε(ω0) = ω0 +W⊥ε .

Proof. It is clear that P−1W,ε(ω0) = ω0 + P−1W,ε(0). We must prove P−1W,ε(0) = W⊥ε .

x ∈ P−1W,ε(0) ⇔ ‖x‖ ≤ d(x,W ) + ε

⇔ ‖x‖ ≤ ‖x+ αy‖+ ε ∀y ∈W

⇔ x ∈W⊥ε .
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