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Abstract. In this paper, we present Gauss-Sidel and successive over relax-

ation (SOR) iterative methods for finding the approximate solution system of

fuzzy Sylvester equations (SFSE), AX + XB = C, where A and B are two

m × m crisp matrices, C is an m × m fuzzy matrix and X is an m × m

unknown matrix. Finally, the proposed iterative methods are illustrated by

solving an example.
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1. Introduction

Solution of a system of linear equations plays a crucial role in almost every field of

sciences and engineering. In many applications, some of the system parameters are

represented by fuzzy numbers rather then crisp numbers. Therefore, it is important

to develop mathematical models and numerical procedures to general system of
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fuzzy linear equations (SFLE). In [2] it is considered a general model for solving a

SFLE whose coefcient matrix is crisp and its right hand side is an arbitrary fuzzy

vector. They stated some conditions for the existence of a unique fuzzy solution to

SFLE by embedding method and converting the original system to a crisp linear

system of equations. Later on many authors have studied SFLE. The numrical

methods for SFLE were proposed by Allahviranloo [14, 15]. Dehghan and Hashemi

[3] have applied several iterative methods for solving SFLE. Wang and Zheng [5]

have studied some block iterative methods to solve SFLE. It is well-known that the

Sylvester matrix equation is of the form

(1) AX +XB = C,

where A is an n × n crisp matrix, B is an m × m crisp matrix, C is an n × m

fuzzy matrix and Xis an n × m unknown matrix. This matrix equation plays an

important role in control theory, signal processing, ltering, model reduction, image

restoration, decoupling techniques for ordinary and partial differential equations,

implementation of implicit numerical methods for ordinary differential equations,

and block-diagonalization of matrices. For example, Benner [12, 13]; Datta and

Datta [4]; Hyland and Bernstein [7]; Laub et al. [1]. Standard solution methods for

Sylvester equations of the form (1) are the BartelsStewart method in [11] and the

HessenbergSchur method in [6]. The methods are based on the transforming the

coefcient matrices to Schur or Hessenberg form and then solving the corresponding

linear system of equations directly by a backward substitution process. Therefore,

these methods are classied as direct methods.

In this paper, we discuss on certain cases system of fuzzy Sylvester equations (1)

where A and B are two m×m crisp matrices, C is an m×m fuzzy matrix and X

is an m×m unknown matrix. This paper is organized as follows:

In section 2, we introduce some basic definitions and results on fuzzy numbers and

system of fuzzy Sylvester equations. In section 3, we propose the Gauss-Sidel and

SOR iterative methods for finding the approximate solution of the system of fuzzy

Sylvester equations. In section 4, we illustrate the proposed iterative methods by

solving an example. Conclusions are drawn in section 5.
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2. Preliminaries

A fuzzy number U is an ordered pair of functions (U(α), U(α)), 0 ≤ α ≤ 1, which

satisfies the following conditions:

1. U(α) is a continuous, monotonically increasing function on [0, 1].

2. U(α) is a continuous, monotonically decreasing function on [0, 1].

3. U(α) ≤ U(α) on [0, 1].

For arbitrary fuzzy numbers U = (U(α), U(α)), V = (V (α), V (α)), and a scalar k,

we define addition, subtraction and scalar multiplication by k as:

1. (U + V )(α) = (U(α) + V (α), U(α)) + V (α)),

2. (U − V )(α) = (U(α)− V (α), U(α))− V (α)),

3. (kU)(α)=

{
(kU(α), kU(α)) k ≥ 0

(kU(α), kU(α)) k < 0.

4. U = V iffU(α) = V (α), U(α) = V (α). (2)

The system of linear equations

(3) AX +XB = C,

is called system of fuzzy Sylvester equations if A = (aij) and B = (bij) are two

m × m crisp matrices and C = (cij) is an m × m fuzzy matrix. The system of

linear equations AX +XB = C is called system of fully fuzzy Sylvester equations

if A = (aij), B = (bij) and C = (cij) are m×m fuzzy matrices. A fuzzy matrix

X(α) = (xij(α)) = (xij(α), xij(α)), 1 ≤ i, j ≤ m, 0 ≤ α ≤ 1, is called the solution

of fuzzy Sylvester equations, if(
m∑

k=1

aikxkj +
m∑

k=1

xikbkj

)
(α) =

m∑
k=1

aikxkj(α) +
m∑

k=1

xikbkj(α) =

m∑
k=1

aikxkj(α) +

m∑
k=1

xikbkj(α) = cij(α),

(
m∑

k=1

aikxkj +
m∑

k=1

xikbkj

)
(α) =

m∑
k=1

aikxkj(α) +
m∑

k=1

xikbkj(α) =

(4)

m∑
k=1

aikxkj(α) +

m∑
k=1

xikbkj(α) = cij(α).
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In particular, if bkj ≥ 0, 1 ≤ k ≤ m, 1 ≤ j ≤ m and aik ≥ 0,

1 ≤ i ≤ m, 1 ≤ k ≤ m, we easily get(
m∑

k=1

aikxkj +
m∑

k=1

xikbkj

)
(α) =

m∑
k=1

aikxkj(α) +
m∑

k=1

xikbkj(α) =

m∑
k=1

aikxkj(α) +
m∑

k=1

xik(α)bkj = cij(α),

(
m∑

k=1

aikxkj +
m∑

k=1

xikbkj

)
(α) =

m∑
k=1

aikxkj(α) +
m∑

k=1

xikbkj(α) =

(5)

m∑
k=1

aikxkj(α) +

m∑
k=1

xik(α)bkj = cij(α).

Consider the ij-th equation of the system (3):

(6)
m∑

k=1

aik(xkj , xkj) +
m∑

k=1

(xik, xik)bkj = (cij , cij), 1 ≤ i, j ≤ m.

From (6) we have two m2 ×m2 crisp linear systems for all 1 ≤ i, j ≤ m that there

can be extended to an 2m2 × 2m2 crisp linear system as follows:

(7) SZ + ZT = Y,

Where

(8)

(
S1 S2

S2 S1

)(
X X

X X

)
+

(
X X

X X

)(
T1 T2

T2 T1

)
=

(
C C

C C

)
.

Thus system of fuzzy linear equations (3) is extended to a system of crisp linear

equations (8) where A = S1 + S2, S1 ≥ 0, S2 ≤ 0 and B = T1 + T2, T1,≥ 0, T2 ≤ 0.

System of equations (8) can be written as follows:

(9)

{
S1X + S2X +XT1 +XT2 = C,

S2X + S1X +XT2 +XT1 = C.
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If A = S1−S2, S1 ≥ 0, S2 ≥ 0 and B = T1−T2, T1 ≥ 0, T2 ≥ 0, system of equations

(8) become:

(10)

{
S1X − S2X +XT1 −XT2 = C,

−S2X + S1X +XT1 −XT2 = C.

The matrices A = (aij) and B = (bij), 1 ≤ i, j ≤ m, in system of equations (3) are

both positive definite iff the matrices S and T in system of equations (7) are both

positive definite.

Proof. see [9]. □

The matrices A = (aij) and B = (bij), 1 ≤ i, j ≤ m, with aii > 0 and bii > 0 as

in system of equations (3) are both strictly diagonally dominant iff the matrices S

and T in system of equations (7) are both strictly diagonally dominant.

Proof. see [14]. □

3. The Gauss-Sidel and SOR iterative methods

In this section, we use the Gauss-Sidel and SOR iterative methods to solve system

of equations (3). First we present the Gauss-Sidel iterative method.

Without loss of generality, suppose that in system of equations (8), sii > 0 and

tii > 0 for all 1 ≤ i ≤ 2m. Let S = L+D + U where

D =

(
D1 0

0 D1

)
, L =

(
L1 0

S2 L1

)
, U =

(
U1 S2

0 U1

)
,

and also T = L′ +D′ + U ′ where

D′ =

(
D′

1 0

0 D′
1

)
, L′ =

(
L′
1 0

T2 L′
1

)
, U ′ =

(
U ′
1 T2

0 U ′
1

)
,

(D1)ii = sii > 0, 1 ≤ i ≤ m and (D′
1)ii = tii > 0, 1 ≤ i ≤ m and suppose

S1 = L1 +D1 + U1 and T1 = L′
1 +D′

1 + U ′
1. In the Gauss-Sidel method, from the

structure of SZ + ZT = Y we have(
D1 + L1 0

0 D1 + L1

)(
X X

X X

)
+

(
U1 S2

S2 U1

)(
X X

X X

)
+
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(11)

(
X X

X X

)(
D′

1 + L′
1 0

0 D′
1 + L′

1

)
+

(
X X

X X

)(
U ′
1 T2

T2 U ′
1

)
=

(
C C

C C

)
.

then

(12)

{
(D1 + L1)X +X(D′

1 + L′
1) = C − U1X − S2X −XU ′

1 −XT2,

(D1 + L1)X +X(D′
1 + L′

1) = C − U1X − S2X −XT2 −XU ′
1.

The elements of X(k+1)(α) = (X(k+1)(α), X
(k+1)

(α)), 0 ≤ α ≤ 1 are

x
(k+1)
ij (α) =

1

sii + tjj

[
cij(α)−

i−1∑
l=1

silx
(k+1)
lj (α)−

m∑
l=i+1

silx
(k)
lj (α)−

m∑
l=1

si,m+lx
(k)
lj (α)

−
j−1∑
l=1

x
(k)
il (α)tlj −

m∑
l=j+1

x
(k+1)
il (α)tlj −

m∑
l=1

x
(k)
il (α)tl,m+j

]
,

x
(k+1)
ij (α) =

1

sii + tjj

[
cij(α)−

i−1∑
l=1

silx
(k+1)
lj (α)−

m∑
l=i+1

silx
(k)
lj (α)−

m∑
l=1

si,m+lx
(k)
lj (α)

−
j−1∑
l=1

x
(k)
il (α)tlj −

m∑
l=j+1

x
(k+1)
il (α)tlj −

m∑
l=1

x
(k)
il (α)tl,m+j

]
,

(13) k = 0, 1, . . . , 1 ≤ i, j ≤ m.

The stopping criterion with tolerance ε > 0 is

||X(k+1) −X
(k)||

||X(k+1)||
< ε,

||X(k+1) −X(k)||
||X(k+1)||

< ε, k = 0, 1, . . . .

However , the rate of convergence of the Gauss-Sidel iteration can, in certain cases,

be improved by introducing a parameter ω, known as the relaxation parameter. The

following modified Gauss-Sidel iteration is known as the successive over relaxation

iteration or, in short, SOR iteration, if ω > 1.

Now we present the SOR iterative method.

Consider system of equations (13), we have

x
(k+1)
ij (α) = x

(k)
ij (α)−x

(k)
ij (α)+

1

sii + tjj

[
cij(α)−

i−1∑
l=1

silx
(k+1)
lj (α)−

m∑
l=i+1

silx
(k)
lj (α)−

m∑
l=1

si,m+lx
(k)
lj (α)−

j−1∑
l=1

x
(k)
il (α)tlj −

m∑
l=j+1

x
(k+1)
il (α)tlj −

m∑
l=1

x
(k)
il (α)tl,m+j

]
.
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then

x
(k+1)
ij (α) = x

(k)
ij (α) +

1

sii + tjj

[
cij(α)−

i−1∑
l=1

silx
(k+1)
lj (α)−

m∑
l=i

silx
(k)
lj (α)−

(14)
m∑
l=1

si,m+lx
(k)
lj (α)−

j∑
l=1

x
(k)
il (α)tlj −

m∑
l=j+1

x
(k+1)
il (α)tlj −

m∑
l=1

x
(k)
il (α)tl,m+j

]
.

With efficiency ω, system of equations (14) can be written as:

x
(k+1)
ij (α) = x

(k)
ij (α) +

ω

sii + tjj

[
cij(α)−

i−1∑
l=1

silx
(k+1)
lj (α)−

m∑
l=i

silx
(k)
lj (α)−

m∑
l=1

si,m+lx
(k)
lj (α)−

j∑
l=1

x
(k)
il (α)tlj −

m∑
l=j+1

x
(k+1)
il (α)tlj −

m∑
l=1

x
(k)
il (α)tl,m+j

]
.

(15) 1 ≤ i, j ≤ m, 0 ≤ α ≤ 1, k = 0, 1, . . . .

Thus we write as:

x
(k+1)
ij (α) =

ω

sii + tjj

[
cij(α)−

i−1∑
l=1

silx
(k+1)
lj (α)−

m∑
l=i+1

silx
(k)
lj (α)−

m∑
l=1

si,m+lx
(k)
lj (α)

(16) −
j−1∑
l=1

x
(k)
il (α)tlj −

m∑
l=j+1

x
(k+1)
il (α)tlj −

m∑
l=1

x
(k)
il (α)tl,m+j

]
+ (1− ω)x

(k)
ij .

The elements of X(k+1)(α) = (X(k+1)(α), X
(k+1)

(α)) are

x
(k+1)
ij (α) =

ω

sii + tjj

[
cij(α)−

i−1∑
l=1

silx
(k+1)
lj (α)−

m∑
l=i+1

silx
(k)
lj (α)−

m∑
l=1

si,m+lx
(k)
lj (α)

−
j−1∑
l=1

x
(k)
il (α)tlj −

m∑
l=j+1

x
(k+1)
il (α)tlj −

m∑
l=1

x
(k)
il (α)tl,m+j

]
+ (1− ω)x

(k)
ij ,

x
(k+1)
ij (α) =

ω

sii + tjj

[
cij(α)−

i−1∑
l=1

silx
(k+1)
lj (α)−

m∑
l=i+1

silx
(k)
lj (α)−

m∑
l=1

si,m+lx
(k)
lj (α)

−
j−1∑
l=1

x
(k)
il (α)tlj −

m∑
l=j+1

x
(k+1)
il (α)tlj −

m∑
l=1

x
(k)
il (α)tl,m+j

]
+ (1− ω)x

(k)
ij ,

(17) 1 ≤ i, j ≤ m, 1 ≤ α ≤ m, k = 0, 1, . . . .
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The stopping criterion with tolerance ε > 0 is

||X(k+1) −X
(k)||

||X(k+1)||
< ε,

||X(k+1) −X(k)||
||X(k+1)||

< ε, k = 0, 1, . . . .

4. Numerical examples

In this section we illustrate the methods in Section 3 by solving one example. Con-

sider the system of fuzzy Sylvester equations AX +XB = C where

A =

(
1 −1

1 3

)
, B =

(
1 0

−1 2

)
, C =

(
(0, 1, 2) (1, 2, 3)

(1, 2, 3) (0, 1, 2)

)
.

We extend the A matrix to the S matrix and the B matrix to the T matrix. As

follow:

S =


1 0 0 −1

1 3 0 0

0 −1 1 0

0 0 1 3

 , T =


1 0 0 0

0 2 −1 0

0 0 1 0

−1 0 0 2

 .

The exact solution is given by

x11 = (0.6935 + 0.2857α, 1.2649− 0.2857α),

x12 = (0.4018 + 0.2857α, 0.9732− 0.2857α),

x21 = (0.1280 + 0.1429α, 0.4137− 0.1429α),

x22 = (−0.0804 + 0.1429α, 0.2054− 0.1429α).

By the Gauss-Sidel method the approximate solution with 4 iterates and ε = 10−2

is

x11 = (0.6946 + 0.2849α, 1.2645− 0.2849α),

x12 = (0.4018 + 0.2857α, 0.9732− 0.2857α),

x21 = (0.1277 + 0.1431α, 0.4138− 0.1431α),

x22 = (−0.0804 + 0.1429α, 0.2054− 0.1429α).

And the SOR method the approximate solution with 8 iterates and ε = 10−2 is

x11 = (0.6863 + 0.2895α, 1.2653− 0.2895α),

x12 = (0.4011 + 0.2855α, 0.9720− 0.2855α),

x21 = (0.1368 + 0.1412α, 0.4193− 0.1412α),

x22 = (−0.0788 + 0.1427α, 0.2067− 0.1427α).
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The exact and approximate solutions are brought α = 0, α = 0.5, α = 1 with

ε = 10−2 in the following tables.

α = 0.0 Exact solution Gauss-Sidel method SOR method

(x11, x11) (0.6935, 1.2649) (0.6946, 1.2645) (0.6863, 1.2653)

(x12, x12) (0.4018, 0.9732) (0.4018, 0.9732) (0.4011, 0.9720)

(x21, x21) (0.1280, 0.4137) (0.1277, 0.4138) (0.1368, 0.4193)

(x22, x22) (−0.0804, 0.2054) (−0.0804, 0.2054) (−0.0788, 0.2067)

α = 0.5 Exact solution Gauss-Sidel method SOR method

(x11, x11) (0.8364, 1.1221) (0.8370, 1.1221) (0.8311, 1.1206)

(x12, x12) (0.5446, 0.8303) (0.5446, 0.8303) (0.5438, 0.8293)

(x21, x21) (0.1995, 0.3423) (0.1993, 0.3423) (0.2074, 0.3487)

(x22, x22) (−0.0089, 0.1340) (−0.0089, 0.1340) (−0.0074, 0.1354)

α = 1.0 Exact solution Gauss-Sidel method SOR method

(x11, x11) (0.9792, 0.9792) (0.9795, 0.9796) (0.9758, 0.9758)

(x12, x12) (0.6875, 0.6875) (0.6875, 0.6875) (0.6866, 6866)

(x21, x21) (0.2709, 0.2709) (0.2708, 2708) (0.2780, 0.2781)

(x22, x22) (0.0625, 0.0625) (0.0625, 0.0625) (0.0639, 0.0640)

5. Conclusion

In this paper, we apply Gauss-Sidel and SOR iterative methods for finding the

approximate solution of a system of fuzzy Sylvester equations of the form AX +

XB = C, where A and B are two m × m crisp matrices, C is an m × m fuzzy

matrix and X is an m× m unknown matrix.
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