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Abstract. There are different ways to code the geodesic flows on surfaces

with negative curvature. Such code spaces give a useful tool to verify the

dynamical properties of geodesic flows. Here we consider special subspaces of

geodesic flows on Hecke surface whose arithmetic codings varies on a set with

infinite alphabet. Then we will compare the topological complexity of them by

computing their topological entropies.
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1. Introduction

Let H = {z : z = x+ iy, y > 0} be the upper half plane with hyperbolic metric.

By this metric, the geodesics on H are semicircles and lines perpendicular to the

x-axis. Let TH be the unit tangent bundle of H and u ∈ TH be the unit vector

tangent to a geodesic γ. The geodesic flow φt is a homeomorphism which moves u

along the geodesic at a hyperbolic distance t.
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We denote by Gα = ⟨z + α, −1
z ⟩, α = 2 cos π

q and q ≥ 3, the Hecke triangle

group. This group is a discrete subgroup of PSL(2, R). The quotient of H by

Gα is called the Hecke triangle surface and we will denote it by Hα. So, H is the

universal covering of Hα. To any geodesic on Hα, infinitely many geodesics on H
are associated.

To investigate the dynamical properties of geodesic flows on Hα, we lift them

to H. To each oriented geodesic γ = (w, u) ∈ H, one can correspond a point

(w, u) in wu-plane. This means any geodesic in Hα is related to infinitely many

points in the wu-plane. To obtain a one to one relation, we consider the action

of Gα on the wu-plane. This gives different types of fundamental domains called

Tα ⊂ {(w, u) : |w| ≥ 1, |u| ≤ 1}.
Let Tα(z) = z + α and S(z) = −1

z . For any Tα, let Sα = S(Tα) and Tk =

{(w, u) ∈ Tα : T−k
α (w, u) ∈ Sα}. Define

(1)

TR(w, u) =

{
T−k
α (w, u) = (T−k

α (w), T−k
α (u)) = (w − kα, u− kα), on Tk

S(w, u) = (S(w), S(u)) =
(−1

w , −1
u

)
, on Sα.

In [2], it is proved that there are 6 types of fundamental domains which are rect-

angular. These regions are due to the α = 1,
√
2, 2

√
3

3 and 2, but here, we will not

consider the case α = 2
√
3

3 since it does not produce a Hecke group. Three types

of these regions are associated to α = 1. So to distinguish them, we use the let-

ters G, A and H which are abbreviations for the names Gauss, Artin and Hurwitz

respectively.

To any geodesic γ = (w, u) we correspond a bi-infinite sequence of nonzero inte-

gers. To do this let (w, u) ∈ Tn0 ⊂ Tα. Then by (1), ST−k(w, u) ∈ Tn1 . Continu-

ing this procedure, we obtain a sequence n0, n1, n2, · · · of nonzero integers. Also,

S(w, u) ∈ Tn−1 ⊆ Tα, ST
n1S(w, u) ∈ Tn−2 and so on. For c ∈ {G,A,H,

√
2, 2}

and γ ∈ Tc, the geodesic γ has the code [γ]c = [· · · , n−2, n−1, n0, n1, · · · ] so that

(2) n0αc −
1

n1αc − 1

. . .

and n−1αc −
1

n−2αc − 1

. . .

converge to w and 1
u respectively.

Now for each c ∈ {G,A,H,
√
2, 2}, we can specify the set of all bi-infinite se-

quences denoted by Σc. Each of these sets can be characterized by a set of alpha-

bets Ac showing which integers can be seen in the sequences and the set Fc which
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determines the forbidden blocks in sequences of Σc. For c ∈ {G,A,H,
√
2, 2}, theses

sets are specified as follows [1].

• AG = Z \ {0,±1} and FG = {[n, m], nm < 0},
• AA = Z \ {0} and FA = {[n, m], nm > 0},
• AH = Z \ {0,±1} and FH = {[2, m], [−2, n], m < 0, n > 0},
• A√

2 = Z \ {0} and F√
2 = {[1, m], [−1, n], m < 0, n > 0},

• AE = Z \ {0} and FE = ∅,

2. Topological entropy

In this section we want to determine the entropy of the geodesic flows corre-

sponding to the sets Σc, {G,A,H,
√
2, 2}. For all of the cases, the alphabet is an

infinite set. There are not much routines to compute the topological entropy of

geodesic flows. In [1], authors developed a formula to find the topological entropy

of special flows. We denote the special flows by φt
f,Σ where Σ is the set of bi-infinite

sequences and f is the height function defined on Σ. Now let σ be the shift map on

Σ. Then for y ∈ Σ and t ∈ R, the special flow is defined as φt
f,Σ(y, s) = (y, s+ t)

through the condition that (y, f(y)) = (σ(y), 0). In the following theorem we prove

that the topological entropy of the special flow and the geodesic flow are related.

Theorem 2.1. The topological entropy of geodesic flows with the code set Σc equals

the topological entropy of special flow φt
f,Σc

constructed on Σc with height function

f(y) = 2 ln |w(y)|. In here, y ∈ Σc and w(y) is as in (2).

For a set Σ, let A and F be its alphabet and forbidden sets respectively. Let

V +
v = {v′ ∈ A : vv′ ̸∈ F}. Define an equivalent relation on A as v ∼ρ v′ if and only

if V +
v = V +

v′ . Let P be the associated partition. For an arbitrary z ∈ A, let P{z}

be the nonempty intersection of elements of P with {{z},A − {z}}. Denote the

elements of P{z} by V0 = {z}, V1, · · · and Vm. For x ∈ [0, 1], v ∈ Vi and v′ ∈ Vj ,

set

(3) αi(x) = αij(x) =

{
Σv∈Vix

f(v) if vv′ ̸∈ F
0 otherwise.

Let τ = nini+1 · · ·ni+k be a finite block of a sequence in Σ. Define Skf(τ) = f(ni)+

f(ni+1) + · · ·+ f(ni+k). Set C(z) be the collection of all blocks τ = nini+1 · · ·ni+k
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with ni = ni+k = z and nj ̸= z for i+ 1 ≤ j ≤ i+ k − 1. Now for x ∈ [0, 1), let

ϕΣc,f,z(x) = Στ∈C(z)x
Skf(τ).

Denote by r(F ) and r(ϕΣ,f,z) the radius of convergence of F (x) = Σv∈A and ϕΣ,f,z

respectively. Using the arguments in [1] and [4], we can prove that

Theorem 2.2. For each c ∈ {G,A,H,
√
2, 2}, there exists series Ac

i (x) which are

the solutions of the equations

(4) Ac
i (x) = αc

i0(x) + αc
i0(x)A

c
1(x) + · · ·+ αc

m0(x)A
c
m(x)

so that

φΣc,f,z(x) = αc
00(x) + αc

01(x)A
c
1(x) + αc

02(x)A
c
2(x) + ...+ αc

0m(x)Ac
m(x).

Now we can obtain the topological entropy of special flow using the following

Theorems.

Theorem 2.3. [1] The topological entropy of φt
Σc,f

equals − ln(x̂f ) where x̂f is

either the unique solution of φΣc,f,z(x) = 1 or x̂f = r(ϕΣc,f,z).

In the next theorem, using the Theorems 2.1, 2.2 and 2.3, we can find the esti-

mates for the topological entropy of the geodesic flows with code space Σc. This

gives a good tool to compare the complexity of these subsystems.

Theorem 2.4. For c ∈ {G,A,H,
√
2, 2}, let Σc and φt

Σ,ℓ be as before. The topolog-

ical entropy hc(φ
t) of the geodesic flow on Hα with the code space Σc is as follows.

• For c = G, 0.863992 < hG(φ
t) < 0.864655

• For c = A, 0.06661 < hA(φ
t) < 0.06667

• For c = H, 0.90835 < hH(φt) < 1

• For c =
√
2, 0.58035 < h√

2(φ
t) < 0.63747

• For c = 2, h2(φ
t) = 1.

Sketch of proof. For all cases, the height function f(y) equals 2 ln |w(y)| where
y ∈ Σc.

case 1: . Let c = G. Then AG = Z \ {0,±1}, FG = {[n, m], nm < 0},
P2 = {V0 = {2}, V1 = {3, 4, · · · }, V2 = {−2,−3, · · · }}. Since the system for

positive and negative integers are disjoint, the entropy of the whole system is

the maximum entropy of the subsystems. But both subsystems are exactly
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the same. Therefore we only compute the entropy for the subsystem with

positive integers. So, P2 = {V0, V1}. According to the set FG, for any

y ∈ ΣG and ϵ ∈ (0, 1), we have

(1− ϵ)n0 < |w(y)| =

∣∣∣∣∣∣∣n0 −
1

n1 − 1

. . .

∣∣∣∣∣∣∣ < n0 + 1 < (1 + ϵ)n0.

So, for any y ∈ ΣG, 2 ln(1 − ϵ)n0 < f(y) < 2 ln(1 + ϵ)n0. First we let

f(y) = 2 ln(1− ϵ)n0 and then we let f(y) = 2 ln(1 + ϵ)n0.

Due to the Forbidden blocks set FG, and (3), we have α0(x) = α00(x) =

α01(x) = xf(2) and α1(x) = α10(x) = α11(x) =
∑

v∈V1
xf(v). Using the

Riemann Zeta function ζ(p) =
∑∞

n=1 n
−p, we get

α1(x) =
∞∑

n=3

xf(n) =
∞∑

n=3

x2 ln(1−ϵ)n =
∞∑

n=3

((1− ϵ)n)2 ln x = (1− ϵ)2 ln x
∞∑

n=3

n2 ln x.

Therefore, A1(x) =
α1(x)

1−α1(x)
and ϕΣG,f,z(x) = xf(2)

(
1 + α1(x)

1−α1(x)

)
by The-

orem 2.2. Using Theorem 2.3, the topological entropy of geodesic flow de-

noted by hG(φ
t) equals− ln(x̂f ) where x̂f the unique solution of ϕΣG,f,z(x) =

1. By a similar procedure for f(y) = 2 ln(1+ ϵ)n0 and for ϵ = 0.001, we get

0.863992 < hG(φ
t) < 0.864655.

case 2: . Let c = A. Then AA = Z \ {0}, FA = {[n, m], nm > 0},
Pz = {V0 = {1}, V1 = {2, 3, · · · }, V2 = {−1,−2,−3, · · · }}. Here, α0(x) =

α02(x) = xf(1), α1(x) = α12(x) =
∑

v∈V1
xf(v), α2(x) = α20(x) = α21(x) =∑

v∈V1
xf(v) and α00(x) = α01(x) = α10(x) = α11(x) = α22(x) = 0. By a

calculation similar to Case 1, we have

(1− ϵ)n0 < |w(y)| < n0 + 1 < (1 + ϵ)n0,

A1(x) = α1(x)α2(x)
1−α1(x)α2(x)

, A2(x) = α2(x)
1−α1(x)α2(x)

and ϕΣA,f,z(x) = xf(1)A2(x).

In this case for ϵ = 0.001, we get

0.06661 < hA(φ
t) < 0.06667.

case 3: . Let c = H. Thus AH = Z \ {0, ±1}, FH = {[2, m], [−2, n], n <

0,m > 0} and P2 = {V0 = {2}, V1 = {3, 4, · · · }, V2 = {−2}, V3 = {−3,−4, , · · · }}.
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Here, 5
6n0 < |w(y)| < 1.25n0 by Theorem 2.2. The series Ai(x) and

ϕΣA,f,z(x) satisfy
A1 = α1(1 +A1 +A2 +A3)

A2 = α2(1 +A1)

A3 = α3(1 +A1 +A2 +A3)

and ϕΣA,f,z(x) = xf(2)(A2 +A3). Now again by Theorem 2.3,

0.90835 < hH(φt) < 1.

case 4: . For c =
√
2, A√

2 = Z \ {0}, F√
2 = {[1, m], [−1, n], m < 0, n > 0}

and P1 = {V0 = {1}, V1 = {2, 3, · · · }, V0 = {−1}, V3 = {−2,−3, · · · }}.
According to F√

2, α0(x) = α02(x) = α03(x) = xf(1), α1(x) = α10(x) =

α11(x) = α12(x) = α13(x) =
∑

v∈V1
xf(v), α2(x) = α20(x) = α21(x) =

xf(1), α3(x) = α30(x) = α31(x) = α32(x) = α33(x) =
∑

v∈V1
xf(v) and

α00(x) = α01(x) = α22(x) = α23(x) = 0.

2

√
2

4
=

√
2n0 −

1√
2
< |w(y)| =

∣∣∣∣∣∣∣n0 −
1

n1 − 1

. . .

∣∣∣∣∣∣∣ < n0

√
2 +

1√
2
<

5
√
2

4
n0.

By Theorem 2.2,
A1 = α1(A1 +A2 +A3)

A2 = α2(1 +A1)

A3 = α3(1 +A1 +A2 +A3).

Also, ϕΣ√
2,f,z

(x) = xf(1)(A2 +A3). Hence,

0.58035 < h√
2(φ

t) < 0.63747.

case 5: . According to a theorem of S. Katok, the topological entropy of

the set of all geodesic flows on the quotient of H by a geometrically finite

Fuchsian group of the first kind is equal to 1 [3].

2
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