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Abstract. In this paper, first we discuss a local stability analysis of model was

introduced by P. J. Mumby et. al. (2007), with gM2

M+T
as the functional response

term. We conclude that the grazing intensity is the important parameter to

control the existence or extinction of the coral reef. Next, we consider this

model under the influence of the time delay as the bifurcation parameter. We

show that for small time delay, the stability type of the equilibria will not

change, however for large enough time delay, the interior equilibrium point

become unstable in contrast to the ODE case. Also for some critical grazing

intensity and the time delay, a Hopf bifurcation occur and a nontrivial periodic

orbit will appear. Further we discuss its corresponding stability switching

directions.
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1. Introduction

Coral reefs are extremely important as habitats for a range of marine species,

natural buffers to severe wave actions and sites for recreation and cultural prac-

tices. Additionally, they contribute to the national economy of countries with coral

reef ecosystems. However, the last several decades have demonstrated a decline

in resilience that has often resulted in phase shifts to a degraded coral-depleted

state with high levels of algal abundance. The deteriorating health of the world’s

coral reefs threatens global biodiversity, ecosystem function, and the livelihoods of

millions of people living in tropical coastal regions [5]. Reefs in the Caribbean are

among the most heavily affected [1, 4, 6, 7]. Declining reef health is characterized by

increases in macroalgae. P. J. Mumby et. al. ([8]) introduced a system of ordinary

differential equations to model the dynamics of the coral reef. Wang et. al. used

and analysed this system in [9]. Authors of [2] suggested an alternative formulation

to include the grazing term gM2

M+T .

The paper is mainly concerned with a model of coral reef dynamics which is given

by the following nonlinear system of ordinary differential equations:

dM
dt = aMC − gM2

M+T + γMT,

dC
dt = rTC − dC − aMC,

dT
dt = gM2

M+T − γMT − rTC + dC.

(1)

Here C, T , and M represent the cover of corals, algal turfs and macroalgae respec-

tively. Grazers are assumed not to discriminate between algal types. Algal turfs

arise when macroalgae are grazed ( gM2

M+T ) and as a result of natural coral mortality

(−dC). Corals recruit to and overgrow algal turfs at a combined rate r, constrained

by the existing cover of turfs. Corals can be overgrown by macroalgae (−aMC) but

macroalgae usually colonize dead coral by spreading vegetatively over algal turfs

(γMT ). It was assumed that a particular region of the seabed is covered entirely

by macroalgae (M), coral (C), and algal turfs (T ) so that M + C + T = 1 at any

given time. Then the fraction of algal turfs is defined by T = 1 − M − C and

consequently dT
dt = −dM

dt − dC
dt . This system is defined on the invariant region given

by 0 < M + T < 1 and C,M, T ≥ 0. Therefore, in this case, only the first two

equations of system (1) are needed. Let x(t) and y(t) denote the macroalgae (M)
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and corals (C) at any time t, respectively. Then, from the aforementioned, we can

rewrite the system (1) as
dx
dt = x[γ − γx+ (a− γ)y − gx

1−y ] := xF (x, y),

dy
dt = y[r − d− (r + a)x− ry] := yG(x, y).

(2)

The brief description of the parameter selection and parameter values can be found

in [8], in which the authors listed the parameter values as follows:

a = 0.1, d = 0.44, γ = 0.8, r = 1, 0 ≤ g.

For more detail the reader is referred to [8]. Here, it is sufficient to consider the

following assumptions

(3) 0 < a < d < γ < r, 0 ≤ g.

Considering the biological background, we only care about the dynamics of system

(2) in the closed first quadrant R2
+.

In this paper, first, we study the global stability of the ODE model (2) about the

steady states. Then, we construct the DDE model and take the grazing intensity

and the time delay as the parameters of interest and study the local stability of

equilibria.

2. Stability analysis

In this section, first we give a qualitative analysis of system (2). From the

standpoint of biology, we are only interested in the dynamics of model (2) in the

closed first quadrant R2
+. Thus, we consider the biologically meaningful initial

condition x(0) = x0 > 0 and y(0) = y0 > 0. We define

Ω = {(x, y) ∈ R2
+ : 0 ≤ x+ y ≤ 1}.

The vector field defined by system (2) is locally Lipschitz continuous in Ω, which

guarantees the existence and uniqueness of solutions of system (2). To show that

all orbits starting from Ω will remain in Ω, we state the following lemma.

Lemma 1. The set Ω ⊆ R2
+ is positively invariant for the system (2), and this

system has no periodic solutions in Ω.



12 HANIYEH FATTAHPOUR AND HAMID R. Z. ZANGENEH

Proof. On the boundary ∂Ω, if x = 0, then dx
dt = 0, so the positive y-axis is

invariant; likewise if y = 0, then dy
dt = 0, so the positive x-axis is invariant . In the

following, we want to show that orbits starting from Ω cannot escape Ω from the

upper boundary {(x, y) ∈ R2
+ : x+ y = 1} (system is not defined at x = 0, y = 1).

Let ξ := x+ y. Then on the upper boundary, we have

dξ

dt
=

dx

dt
+

dy

dt
= −dy − gx < 0.

Hence, all orbits starting from Ω will stay in Ω for all time and Ω is positively

invariant. The vector field defined by system (2) is C1, so the classical Dulacs

criterion can be applied. Choose B(x, y) = 1
xy . It is easy to verify

div(B(xF, yG)) =
∂

∂x
(
1

y
F )+

∂

∂y
(
1

x
G) =

1

y
Fx+

1

x
Gy =

1

y
(−γ− g

1− y
)+

1

x
(−r) < 0.

Therefore, by the Dulacs criterion, the dynamical system (2) has no closed orbits

wholly contained in Ω. Also there is no periodic orbit that partly contained in

Ω. Assume otherwise and let Γ be a periodic orbit intersecting Ω. Any periodic

orbit intersecting the line x + y = 1, will intersect at least at two points where

the direction of the vector field about these two points are opposite to each other.

But the direction of the vector field on the line x + y = 1 is inward. Also these

periodic orbit can not intersect x-axis or y-axis, since these two lines are invariant.

Therefore any periodic orbit that intersect Ω can not intersect its boundary. The

proof of the lemma is completed. □

In the following, we analyze the stability of the equilibria.

Equating the derivatives on the left hand sides to zero and solving the resulting

algebraic equations we can find the nullclines of system (2) and possible equilibrium.

The x-nullcline of system(2) is x = 0 and F (x, y) = 0, which F (x, y) = 0 implies

y =: f(x) =
1

2(γ − a)
[(2γ − a− γx)−

√
(γx− a)2 + 4gx(γ − a)].

If g > 0, then the curve y = f(x) is a monotone decreasing function and contained in

the first quadrant, starts from the point A = (0, 1), ends at the point B = ( γ
g+γ , 0).

Therefore, the x-nullcline is the positive y-axis and a monotone decreasing smooth

curve connecting the starting point A and the ending point B.

The y-nullcline of system (2) is y = 0 and G(x, y) = 0, which G(x, y) = 0 implies

y =: g(x) = −(1 +
a

r
)x+ (1− d

r
).
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The curve y = g(x) contained in the first quadrant, starts from the point C =

(0, 1 − d
r ), ends at the point D = ( r−d

r+a , 0). Under the assumption (3), 0 < yC < 1

and 0 < xD < 1, and g(x) is monotone decreasing function. Hence, the y-nullcline is

the positive x-axis and a monotone decreasing smooth curve connecting the starting

point C and the ending point D.

From the above discussions, we recognize that the possible steady states of system

(2) are

O = (0, 0), the extinction equilibrium which always exists;

C = (0, r−d
r ), the coral only state;

B = ( γ
g+γ , 0), the macroalgae only state; and

E∗ = (x∗, y∗), the interior equilibrium (the coexistence state).

Firstly, x∗ and y∗ are the positive solutions of

F (x, y) = γ − γx+ (a− γ)y − gx

1− y
= 0,

G(x, y) = r − d− (r + a)x− ry = 0.(4)

Eliminating x, we get

(γa− ar − a2)y2 + (ar + a2 − 2γa− γd+ gr)y + γa+ γd− g(r − d) = 0,

which is an equation for the variable y. Let

H(y) := (γa− ar − a2)y2 + (ar + a2 − 2γa− γd+ gr)y + γ(a+ d)− g(r − d).

Then

H(0) = (r − d)(
γ(a+ d)

r − d
− g) = (r − d)(g0 − g),

H(1) = gd,

where g0 := γ(a+d)
r−d . From the assumption (3), we know thatH(1) is always positive.

If 0 < g < g0, then H(0) > 0, H(1) > 0. Thus the above algebraic equations have

no solutions whose y-coordinate belongs to the interval [0, 1], which implies that

the original system has no internal equilibrium in this case. However, if g0 < g,

H(0) < 0, H(1) > 0, then the above algebraic equations have a unique solution



14 HANIYEH FATTAHPOUR AND HAMID R. Z. ZANGENEH

x ’ = x (0.8 − 0.8 x + (0.1 − 0.8) y − (0.5 x)/(1 − y))
y ’ = y (1 − 0.44 − (1 + 0.1) x − y)                   
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Figure 1. The figure shows equilibrium covers of macroalgae(x) and corals(y)

and trajectories over time. The grazing intensity g = 0.5 < g0. In this case,

there is no internal equilibrium in Ω, macroalgal bloom is the only stable node,

and coral is an unstable saddle.

(x∗, y∗), where y∗ ∈ (0, 1), and
x∗ := r−d−ry∗

r+a ,

y∗ :=
(ar+a2−2aγ−γd+gr)−

√
(ar+a2−2aγ−γd+gr)2−4(γa−ar−a2)(γ(a+d)−g(r−d))

2(ar+a2−γa) .

Hence E∗ = (x∗, y∗) is a unique internal equilibrium for the system (2).

Let us now consider the stability analysis of the deterministic differential Eq. (2).

For this we linearize system (2) about its equilibria. We find that the Jacobian

matrix of (2) is

J(x,y) =

(
F (x, y) + xFx(x, y) xFy(x, y)

yGx(x, y) G(x, y) + yGy(x, y)

)
,

where F and G are given in (4) and Fx, Fy, Gx and Gy are their partial derivatives

with respect to x and y.

At the equilibrium point O = (0, 0), the Jacobian matrix is

J(0,0) =

(
γ 0

0 r − d

)
.

The eigenvalues are λ1 = γ and λ2 = (r − d), which are positive under assumption

(3). Then the boundary equilibrium point O is an unstable node.

The Jacobian matrix at C = (0, r−d
r ) is

JC =

(
γ + (a−γ)(r−d)

r 0

−(r + a)( r−d
r ) −(r − d)

)
.
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x ’ = x (0.8 − 0.8 x + (0.1 − 0.8) y − (1.5 x)/(1 − y))
y ’ = y (1 − 0.44 − (1 + 0.1) x − y)                   
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Figure 2. The figure shows equilibrium covers of macroalgae(x) and corals(y)

and trajectories over time. The grazing intensity g = 1.5 > g0. In this case, there

is stable internal equilibrium in Ω. Macroalgal bloom and coral bloom are both

unstable saddle.

The eigenvalues are λ1 = γ + (a−γ)(r−d)
r and λ2 = −(r − d), which are positive

and negative respectively (under assumption (3)). Thus this equilibrium point is

an unstable saddle.

At the boundary equilibrium point B = ( γ
g+γ , 0) the Jacobian matrix has the form

JB =

(
−γ γ

γ+g (a− γ − gγ
γ+g )

0 r − d− γ(r+a)
γ+g

)
.

The eigenvalues are λ1 = −γ and λ2 = r − d − γ(r+a)
γ+g = (r−d)

(g+γ) (g − g0). We know

that under assumption (3), λ1 < 0. Let g0 := γ(r+a)
r−d −γ = γ(a+d)

r−d . Note that under

assumption (3), 0 < g0. If 0 < g < g0, λ2 < 0 and B = ( γ
g+γ , 0) is a stable node

(Figure (1)). However, if g0 < g, then λ2 > 0, and B is an unstable saddle (Figure

(2)). It can be easily seen when g = g0 (λ2 = 0) a transcritical bifurcation occurs

(Figure (3)).

Next we study the stability of interior equilibrium point E∗ = (x∗, y∗). First of

all, notice that for g0 < g this interior equilibrium point exist. Now we analyze the

stability of E∗. At this point, the Jacobian matrix takes the form

JE∗ =

(
F + x∗Fx x∗Fy

y∗Gx G+ y∗Gy

)
=

(
x∗Fx x∗Fy

y∗Gx y∗Gy

)

=

(
x∗(−γ − g

1−y∗ ) x∗((a− γ)− gx∗

(1−y∗)2 )

−(r + a)y∗ −ry∗

)
.
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x ’ = x (0.8 − 0.8 x + (0.1 − 0.8) y − (0.77143 x)/(1 − y))
y ’ = y (1 − 0.44 − (1 + 0.1) x − y)                       
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Figure 3. The figure shows equilibrium covers of macroalgae(x) and corals(y)

and trajectories over time. The grazing intensity g = 0.77143 = g0. Here, there

is no internal equilibrium in Ω, coral bloom is unstable saddle, and at equilibrium

B transcritical bifurcation occurs.

Obviously

Tr = λ1 + λ2 = −ry∗ − x∗(γ +
g

1− y∗
) < 0,

Det = λ1.λ2 = r(γ +
g

1− y∗
)y∗x∗ + (r + a)y∗x∗((a− γ)− gx∗

(1− y∗)2
) > 0.

Hence λ1 and λ2 have negative real parts. Also according to Lemma (1), in this

case (for g0 < g), the system (2) in Ω has no limit cycles, and E∗ is an asymptotically

stable node.

Therefore, we can summarize the above results as follows:

Theorem 1. If 0 < g < g0, system (2) has no internal equilibrium point in Ω but

has three boundary equilibria O,C and B, which are unstable node, unstable saddle,

and stable node, respectively.

If g = g0, system (2) has no internal equilibrium point in Ω but has three boundary

equilibria O,C and B, which are unstable node, unstable saddle, and unstable saddle-

node (transcritical bifurcation occurs), respectively.

If g0 < g, system (2) has the unique internal equilibrium point E∗, which is the

stable node in Ω and three boundary equilibria O,C and B, which are unstable node,

unstable saddle, and unstable saddle, respectively.
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3. Mathematical analysis of the DDE model

It has been suggested by [8] that the inherent time delay has significant impact on

dynamics of coral-algae interactions. Here we construct the following delay model

by using the fact that it takes some time for algal turfs to arise after macroalgae

are grazed by parrotfish:

dM
dt = aMC − gM2(t−τ)

M(t−τ)+T (t−τ) + γMT,

dC
dt = rTC − dC − aMC,

dT
dt = gM2(t−τ)

M(t−τ)+T (t−τ) − γMT − rTC + dC

(5)

which still satisfies the assumptions of model (1). According to those assumptions,

M + C + T = 1, and therefore the system (5) can be written as follow:
dM
dt = aMC − gM2(t−τ)

1−C(t−τ) + γM(1−M − C),

dC
dt = r(1−M − C)C − dC − aMC.

(6)

Let M := x, and C := y, then we can rewrite the system (6) as


dx
dt = x[γ − γx+ (a− γ)y]− gx2(t−τ)

1−y(t−τ) := H1(x, y, x(t− τ), y(t− τ)),

dy
dt = y[(r − d)− (r + a)x− ry] := H2(x, y, x(t− τ), y(t− τ)).

(7)

The equilibrium of the system (7) are O = (0, 0), C = (0, r−d
r ), B = ( γ

g+γ , 0), and

E∗ = (x∗, y∗) (if g0 < g). The linearized system of the above system (7) is(
dx
dt
dy
dt

)
= A1

(
x(t)

y(t)

)
+A2

(
x(t− τ)

y(t− τ)

)
,

where

A1 =

(
∂H1

∂x
∂H1

∂y
∂H2

∂x
∂H2

∂y

)
=

(
γ − 2γx+ (a− γ)y (a− γ)x

−(r + a)y (r − d)− 2ry − (r + a)x

)
,

A2 =

(
∂H1

∂x(t−τ)
∂H1

∂y(t−τ)

∂H2

∂x(t−τ)
∂H2

∂y(t−τ)

)
=

(−2gx(t)
1−y(t) − gx2(t)

(1−y(t))2

0 0

)
.
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Now we analyze the stability of these equilibria respectively. At the equilibrium

O = (0, 0) and C = (0, r−d
r ), A2 is

A2 =

(
0 0

0 0

)
.

We know the characteristic equation is given by det(λI −A1 −A2e
−λτ ) = 0. How-

ever, in these cases A2 = [0]2×2. Hence the delay has no effect on the system and

results hold as before. Therefore, for any τ ≥ 0, the equilibrium O and C are un-

stable node and a saddle, respectively.

But at the equilibrium B = ( γ
g+γ , 0), A1 and A2 take the form

A1 =

(
γ − 2γ( γ

γ+g ) (a− γ)( γ
γ+g )

0 r − d− (r + a)( γ
γ+g )

)
, A2 =

(
−2g( γ

γ+g ) −g( γ
γ+g )

2

0 0

)
.

Then the characteristic equation is given by

det(λI −A1 −A2e
−λτ )

=

∣∣∣∣∣λ− γ + 2γ( γ
γ+g ) + 2g( γ

γ+g )e
−λτ −(a− γ)( γ

γ+g ) + g( γ
γ+g )

2e−λτ

0 λ− (r − d) + (r + a) ( γ
γ+g )

∣∣∣∣∣
=(λ− γ + 2γ(

γ

γ + g
) + 2g(

γ

γ + g
)e−λτ )(λ− (r − d) + (r + a)(

γ

γ + g
)) = 0.

Then one eigenvalue is

λ2 = − (r − d)

γ + g
(g0 − g),

and the other eigenvalues satisfy

(8) λ = γ − 2γ(
γ

γ + g
)− 2g(

γ

γ + g
)e−λτ .

Recall that for τ = 0, the eigenvalues are λ1 = −γ and λ2 = − (r−d)
γ+g (g0 − g), for

which λ1 is negative. But sign of λ2 depends on g. If 0 < g < g0, λ2 < 0,then B

is a stable node; if g0 < g, λ2 > 0, thus B is an unstable saddle. It can easily be

seen when g = g0 (λ2 = 0) a transcritical bifurcation occurs and B is an unstable

saddle-node.

For τ > 0, we look for pure imaginary eigenvalue of (8) and we assume that λ(τ) =

α(τ)+ iω(τ) is a root of Eq. (8) satisfying α(τ∗) = 0, λ(τ∗) = iω(τ∗) = iω for some
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τ∗ > 0. Then

iω = γ − 2γ(
γ

γ + g
)− 2g(

γ

γ + g
)e−iωτ∗

=
−γ(γ − g)

γ + g
− (

2gγ

γ + g
)(cosωτ∗ − i sinωτ∗)

=
−γ(γ − g + 2g cosωτ∗)

γ + g
+ i

2gγ

γ + g
sinωτ∗.

Therefore, separating the real and imaginary parts implies that{
−γ(γ−g+2g cosωτ∗)

γ+g = 0,

ω − 2gγ
γ+g sinωτ

∗ = 0.

Thus by sin2 ωτ∗ + cos2 ωτ∗ = 1, we obtain

ω2 =
γ2

γ + g
(3g − γ).

Thus, if 0 < g ≤ γ
3 , Eq. (8) has no purely imaginary roots. Also, under assumption

(3), 0 is not a root of Eq. (8). If g0 < γ
3 , then when 0 < g < g0 < γ

3 , Eq. (8) has

no purely imaginary roots, and all roots have negative real parts for all time delays

τ ≥ 0 [3], and the equilibrium B is stable. If 0 < g < γ
3 < g0, Eq. (8) has no purely

imaginary roots, and all roots have negative real parts for all time delays τ ≥ 0 [3],

and the equilibrium B is stable; but, if γ
3 < g < g0, when

τ = τj =
1

ω
{arccos(g − γ

2g
) + 2πj}, j = 0, 1, 2, ...

equation (8) has a pair of purely imaginary roots λ = ±iω, where

(9) ω = γ

√
3g − γ

γ + g
.

The quantity of interest is the sign of the derivative of Reλ with respect to τ at the

points where λ is purely imaginary. From Eq. (8), we have

(
dλ

dτ
)−1 =

(γ + g)eλτ

2gγλ
− τ

λ
.

The real part of (dλdτ )
−1 when λ = ±iω is

α1(λ) := Re(
dλ

dτ
)−1|λ=±iω =

dRe τ

dλ
|λ=±iω =

(γ + g)2

4g2γ2
> 0,

which implies that (dReλ(τ)
dτ )|τ=τj is positive for j = 0, 1, 2, ....

Therefore if γ
3 < g < g0, when 0 < τ < τ0, all eigenvalues of the characteristic

equation at the equilibrium B have negative real parts, and the equilibrium B is
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stable; when τ = τ0, the characteristic equation (8) has a pair of purely imaginary

roots and α1(λ) is positive; when τ0 < τ < τ1, there exists a pair of eigenvalues

whose real parts are positive, and other eigenvalues have negative real parts, the

equilibrium B is unstable, and so on. With the continued increase of the time

delay τ , once τ = τj for every j, there exists a pair of purely imaginary roots; when

τj < τ < τj+1, the linearized equation at the equilibrium B has j+1 pair eigenvalues

with positive real parts, others have negative real parts, and the equilibrium point

B is unstable.

Now we suppose g = g0. If τ = 0, the equilibrium B is an unstable saddle-node;

if τ > 0, λ2 = 0, and other eigenvalues also satisfy Eq. (8). If g = g0 ≤ γ
3 , for

all τ > 0 the roots of Eq. (8) have negative real parts, thus the eigenvalues of the

characteristic equation at the equilibrium B have negative real parts, except for

zero root; if g = g0 > γ
3 , when τ = τj (for j = 0, 1, 2, ...), equation (8) has a pair

of purely imaginary roots and α1(λ) is positive, similarly when τj < τ < τj+1, the

characteristic equation at the equilibrium B has j+1 pair eigenvalues with positive

real parts and zero root, others with negative real parts.

If g0 < g, for all τ ≥ 0, λ2 > 0, and the equilibrium B is unstable. If γ
3 < g0, when

τ = τj (for j = 0, 1, 2, ...), Eq. (8) has a pair of purely imaginary roots and α1(λ)

is positive, and when τj < τ < τj+1, there exist a positive eigenvalue (λ2 > 0),

j + 1 pair eigenvalues with positive real parts, the others with negative real parts.

If g0 ≤ γ
3 , wheng0 < g ≤ γ

3 , Eq. (8) has no purely imaginary roots, and thus

all roots of this equation have negative real parts, therefore the eigenvalues of the

linearized equation at the equilibrium B have negative real parts, except for λ2,

which is positive. If g0 ≤ γ
3 < g, then Eq. (8) has a pair of purely imaginary roots

(when τ = τj), and when τj < τ < τj+1, there exist a positive eigenvalue, j + 1

pair eigenvalues with positive real parts, and the others with negative real parts.

Therefore the system (7) is unstable around equilibrium B.

Summarizing the above discussions, we arrive at the following theorem.

Theorem 2. If g0 ≤ γ
3 , then when 0 < g < g0, the equilibrium B is stable for all

τ ≥ 0; if g0 < g, for all τ ≥ 0, the equilibrium B is unstable.

If g0 > γ
3 , when 0 < g ≤ γ

3 , the equilibrium B is stable for all time delays τ ≥ 0;

when γ
3 < g < g0 and 0 < τ < τ0, the equilibrium B is stable; when τ > τ0, B is

unstable; if g0 < g, the equilibrium B is unstable for all τ ≥ 0.
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Remark 1. Notice that if B was an internal equilibrium, when τ = τj, Hopf

bifurcation will appear and a nontrivial periodic solution around the equilibrium

B will arise; however, we are not clear that system (7) has a nontrivial periodic

solution around the equilibrium B or not. Also, if g = g0 and τ = 0, transcritical

bifurcation occures; if g = g0 and τ > 0, 0 is a simple eigenvalue of Eq. (8), which

is a critical case, and the stability of this equilibrium depends on high order terms

of system (7).

We shall now investigate the dynamics of the delay system (7) around the internal

equilibrium E∗ = (x∗, y∗), which exists for g0 < g, and when τ = 0, E∗ is stable.

For τ > 0, at E∗, A1, A2 are

A1 =

(
γ − 2γx∗ + (a− γ)y∗ (a− γ)x∗

−(r + a)y∗ r − d− 2ry∗ − (r + a)x∗

)
,

A2 =

(
−2gx∗

1−y∗
−gx∗2

(1−y∗)2

0 0

)
.

From the linearized system, we obtain the characteristic equation

det(λI −A1 −A2e
−λτ ) =∣∣∣∣∣λ− γ + 2γx∗ − (a− γ)y∗ + 2gx∗

1−y∗ e
−λτ −(a− γ)x∗ + gx∗2

(1−y∗)2 e
−λτ

(r + a)y∗ λ+ ry∗

∣∣∣∣∣ =
λ2 + aλ+ bλe−λτ + c+ de−λτ = 0(10)

where

a := ry∗ − γ + 2γx∗ − (a− γ)y∗,

b :=
2gx∗

1− y∗
,

c := y∗[(r + a)(a− γ)x∗ − γr + 2γrx∗ − r(a− γ)y∗],

d :=
2grx∗y∗

1− y∗
− g(r + a)y∗x∗2

(1− y∗)2
.

For τ = 0, the characteristic equation (10) becomes

λ2 + (a+ b)λ+ (c+ d) = 0.

Since, in the absence of time delay, the system is locally asymptotically stable, then

we can say (a+ b) > 0 and (c+ d) > 0. On the other hand, under assumption (3),



22 HANIYEH FATTAHPOUR AND HAMID R. Z. ZANGENEH

c < 0, then we have d > 0, d > −c > 0 and d2 > c2 (or d2 − c2 > 0).

Now for τ ̸= 0, if λ = iω is a root of equation (10), then we have

− ω2 + aiω + biωe−iωτ∗
+ c+ de−iωτ∗

= 0.

Separating real and imaginary parts, we get

c− ω2 + d cos(ωτ∗) + bω sin(ωτ∗) = 0,

aω + bω cos(ωτ∗)− d sin(ωτ∗) = 0.(11)

From (11), we obtain the fourth-order equation for ω as

(12) ω4 + ω2(a2 − b2 − 2c) + c2 − d2 = 0.

The roots are

(13) ω2
± =

1

2
(b2 − a2 + 2c)± {1

4
(b2 − a2 + 2c)2 − (c2 − d2)} 1

2 .

From (13) and d2 − c2 > 0, we see that there is a unique positive solution ω+ for

equation (12). Substituting ω+ into (11) and solving for τ , we get

(14) τ = τn =
1

ω+

{
arccos(

d(ω2
+ − c)− baω2

+

d2 + b2ω2
+

)

}
+

2nπ

ω+
, n = 0, 1, 2, ....

Differentiating equation (10) with respect to τ , we obtain

dλ

dτ
[2λ+ a+ be−λτ − bλτe−λτ − dτe−λτ ] = λ(d+ bλ)e−λτ ,

therefore we have

(
dλ

dτ
)−1 =

(2λ+ a)eλτ + b

λ(d+ bλ)
− τ

λ
.

By using eλτ = −(d+bλ)
λ2+aλ+c , we can obtain

α2(λ) := sign

{
d(Reλ)

dτ

}
τ=τn

= sign

{
Re(

dλ

dτ
)−1

}
λ=iω

= sign

{
Re[

−(2λ+ a)

λ(λ2 + aλ+ c)
]λ=iω +Re[

b

λ(d+ bλ)
]λ=iω

}
= sign

{
a2 − 2(c− ω2)

a2ω2 + (ω2 − c)2
− b2

b2ω2 + d2

}
= sign

{
a2 − b2 − 2c+ 2ω2

}
,

which is positive. Therefore, we can say that, when τ crosses τn (τ = τn) for every

n, the characteristic equation (10) has a pair of purely imaginary roots ±iω+, and
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α2(λ) is positive, then the Hopf bifurcation occurs, and a nontrivial periodic solu-

tion appears; when τn < τ < τn+1, the characteristic equation (10) has n + 1 pair

of eigenvalues with positive real parts, the others with negative real parts. There-

fore, the equilibrium E∗ becomes unstable at the smallest value of τ for which an

imaginary root exists and remains so as τ is increased.

Theorem 3. If a + b > 0, c + d > 0 and d2 − c2 > 0, then the equilibrium E∗ is

asymptotically stable for τ < τ0 and unstable for τ > τ0. Further, as τ increases

through τ0, (x
∗, y∗) bifurcates into small amplitude periodic solutions, where τ0 = τn.

Example 1. Now fix the following parameters:

(15) a = 0.1, d = 0.44, g = 1.5, γ = 0.8, r = 1,

then we have the uniqe interior equilibrium E∗ = (0.16818, 0.37500). As mentioned

in section 2, we conclude that the equilibrium E∗ is stable. Now, we consider the

system (7). By direct computation, we obtain τ0 = 1.86828. In other words, if

τ < τ0, E
∗ is stable; if τ = τ0, the Hopf bifurcation occures, and if τ > τ0, E

∗ is

unstable. This is shown in Figure (4).

4. Discussion and Conclusion

Based on the model (1) and by considering assumptions in [8], we have obtained

the system (2). The dynamics of the model (2) are investigated. The sufficient

conditions are given to ensure that the positive equilibrium is locally asymptotically

stable. In addition, also we have considered the effect of time delay on the stability

of different equilibria and existence of periodic orbits and Hopf bifurcations from the

internal equilibria. Also some numerical simulations are carried out for illustrating

the analytic results.
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Figure 4. Figures are system (7), with initial condition (0.1, 0.3) and with time

delay τ = 1.75, τ = 1.87 and τ = 1.92, respectively, around the interior equilibrium

E∗.
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