PRECOMPACT TOPOLOGICAL GENERALIZED GROUPS

M. R. AHMADI ZAND*, S. ROSTAMI DEPARTMENT OF MATHEMATICS, YAZD UNIVERSITY, YAZD, IRAN E-MAILS: MAHMADI@YAZD.AC.IR, SALIMEHROSTAMI66@YAHOO.COM

(Received: 20 January 2017, Accepted: 1 February 2017)

ABSTRACT. In this paper, we introduce and study the notion of precompact topological generalized groups and some new results are given.

AMS Classification: 22A15, 22A20.

Keywords: Generalized group, precompact topological generalized group, paratopological generalized group.

1. Introduction

Generalized groups or completely simple semigroups [3, 11] are an interesting generalization of groups. We recall that ([11]) a generalized group is a non-empty set G admitting an operation called multiplication, which satisfies the following conditions:

- (1) (xy)z = x(yz) for all $x, y, z \in G$.
- (2) For each $x \in G$ there exists a unique element $z \in G$ such that zx = xz = x (we denote z by e(x)).
- (3) For each $x \in G$ there exists an element $y \in G$ such that xy = yx = e(x).

It is well known that each x in G has a unique inverse in G. The inverse of x is denoted by x^{-1} [11]. Moreover, for a given $x \in G$, e(e(x)) = e(x), $(x^{-1})^{-1} = x$ and $e(x^{-1}) = e(x)$.

Definition 1.1. ([9]) If G and H are two generalized groups, then a map $f: G \to H$ is called a homomorphism if f(ab) = f(a)f(b) for all $a, b \in G$.

Theorem 1.2. ([9]) Let $f: G \to H$ be a homomorphism where G and H are two generalized groups. Then:

^{*} CORRESPONDING AUTHOR

SPECIAL ISSUE FOR SELECTED PAPERS OF CONFERENCE ON DYNALMICAL SYSTEMS AND GEOMETRIC THEORIES, 11-12 DECEMBER 2016, MAHANI MATHEMATICAL RESEARCH CENTER, SHAHID BAHONAR UNIVERSITY OF KERMAN JOURNAL OF MAHANI MATHEMATICAL RESEARCH CENTER VOL. 5. NUMBERS 1-2 (2016) 27-32.

[©]MAHANI MATHEMATICAL RESEARCH CENTER

- (1) f(e(a)) = e(f(a)),(2) $f(a^{-1}) = (f(a))^{-1}$
- for all $a \in G$.

Definition 1.3. ([10, 14]) If G is a generalized group and e(xy) = e(x)e(y) for all $x, y \in G$, then G is called a normal generalized group.

Recall that a nonempty subset H of a generalized group G is called a generalized subgroup if it is a generalized group under the operation of G [9]. We also recall that a paratopological generalized group is a generalized group G with a Hausdorff topology on G such that the generalized group operation $m: G \times G \to G$ defined by $(x,y) \mapsto x \cdot y$ is a continuous mapping [17]. A paratopological generalized group with continuous inversion is called a topological generalized group [12]. Moreover, if $a \in G$ then $G_{e(a)} = \{g \in G \mid e(g) = e(a)\}$ with the operations of G is a topological group, and G is disjoint union of such topological groups $(G = \dot{\cup}_{e(a) \in e(G)} G_{e(a)})$ [14].

Theorem 1.4. ([9]) Let H be a non-empty subset of a generalized group G. Then, H is a generalized subgroup of G if and only if $ab \in H$ and $a^{-1} \in H$ for all $a, b \in H$.

2. Main results

In this section, some properties of paratopological generalized groups are investigated.

As shown in [14], if T is a topological generalized group which is normal, then the mapping $e: T \to T$ defined by $t \to e(t)$ is a continuous map, see also [8]. Recall that a family $\{A_s\}_{s \in S}$ of subsets of a topological space X is called *locally finite* if for every point $x \in X$ there exists a neighbourhood U of X such that the set $\{s \in S: U \cap A_s \neq \emptyset\}$ is finite. We refer to [5, 6, 13, 14, 16] for more theorems and more details about topological generalized groups and topological spaces. A resource about the importance of topological groups is [4].

Theorem 2.1. [2] Let G be a paratopological generalized group such that the family $\mathcal{F} = \{G_{e(a)}\}_{a \in G}$ is locally finite. Then every $G_{e(a)}$ is closed and open in G. In particular, G can be represented as the sum of the family \mathcal{F} of topological spaces, i.e., $G = \bigoplus_{a \in G} G_{e(a)}$.

Proposition 2.2. Let G and H be two topological generalized groups such that the family $\mathcal{F} = \{G_{e(a)}\}_{a \in G}$ is locally finite. If $f: G \to H$ is a homomorphism such that f is continuous at e(a) for all $a \in G$, then f is continuous.

Proof. Let $a \in G$ be given, then $G_{e(a)}$ is closed and open in G by Theorem 2.1 and $f|G_{e(a)}:G_{e(a)} \to G_{e(f(a))}$ is a group homomorphism by Theorem 1.2. Since $G_{e(a)}$ is a topological group and $f|G_{e(a)}$ is continuous at e(a) by hypothesis, $f|G_{e(a)}$ is a continuous function [4]. Thus, f is continuous since the family \mathcal{F} is a locally finite [5].

Proposition 2.3. Let G be a generalized group and a topological space with continuous inversion such that the family $\mathcal{F} = \{G_{e(a)}\}_{a \in G}$ is locally finite and the function

 $e: G \to G$ is continuous. If the generalized group operation $m: G \times G \to G$ defined by $(x,y) \mapsto xy$ is a continuous mapping, then the following conditions are equivalent.

- (1) G is a T_0 -space,
- (2) G is a T_1 -space,
- (3) G is a T_2 -space, i.e., G is a topological generalized group,
- (4) G is a T_3 -space,
- (5) G is a completely regular space.

Proof. $(5) \Rightarrow (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$ are immediate. Let us check that (1) implies (5). We note that every $G_{e(a)}$ is closed in G since the function e is continuous. If $a_0 \in G$, then $\bigcup_{a_0 \neq a \in G} G_{e(a)}$ is closed since the family \mathcal{F} is locally finite and so $G_{e(a_0)} = G \setminus \bigcup_{a_0 \neq a \in G} G_{e(a)}$ is open. Thus, G is the direct sum of the family \mathcal{F} , i.e., $G = \bigoplus_{a \in G} G_{e(a)}$. The topological group $G_{e(a)}$ is T_0 for every $a \in G$ since G is a T_0 -space. Thus, $G_{e(a)}$ is completely regular [7] and so [5], Theorem 2.2.7] implies that G is completely regular.

Definition 2.4. ([4]) A left topological group G is called precompact if, for every open neighbourhood V of the neutral element in G, there exists a finite subset A of G such that AV = G (similarly, A right topological group G is called precompact if, for every open neighborhood V of the neutral element in G, there exists a finite subset B of G such that VB = G).

Definition 2.5. A topological generalized group G is called precompact if G_a is a precompact topological group for all $a \in G$ and $card \ e(G) < \infty$.

A subset B of a topological generalized group G is called precompact in G if B intersects only finitely many G_a 's and $B \cap G_a$ is a precompact subset of G_a for any $a \in e(G)$.

Proposition 2.6. If f is a continuous homomorphism of a precompact topological generalized group G onto a topological generalized group H, then the generalized group H is also precompact.

Proof. To prove, we must show that the following two conditions are satisfied for topological generalized group H.

- (1) $card\ e(H) < \infty$,
- (2) H_h is a precompact topological group for all $h \in e(H)$.

Since that f is homomorphism, we have $f(G_a) \subseteq H_{f(a)}$ for every $a \in e(G)$. On the other hand, f is onto. Therefore, $H_h = \bigcup_{x \in f^{-1}(h)} f(G_x)$ for any $h \in e(H)$. Hence, $card\ e(H) \le card\ e(G) < \infty$. This proves condition (1).

To prove (2), let U be an open neighbourhood of $h \in e(H)$ in H_h and $x \in f^{-1}(h) \in e(G)$. Therefore, $f^{-1}(U)$ is an open neighbourhood of x in G and it follows that, $f^{-1}(U) \cap G_x$ is an open neighbourhood of x in the precompact topological group G_x . So, there exists a finite set $A_x \subseteq G_x$ such that $G_x = (f^{-1}(U) \cap G_x)A_x$. Since

 $x \in f^{-1}(h)$ is arbitrary, we have

$$H_{h} = \bigcup_{x \in f^{-1}(h)} f(G_{x}) = \bigcup_{x \in f^{-1}(h)} f((f^{-1}(U) \cap G_{x}) A_{x})$$

$$\subseteq \bigcup_{x \in f^{-1}(h)} (U \cap f(G_{x})) f(A_{x})$$

$$\subseteq \bigcup_{x \in f^{-1}(h)} (U \cap H_{h}) f(A_{x})$$

$$= \bigcup_{x \in f^{-1}(h)} U f(A_{x})$$

$$= U \bigcup_{x \in f^{-1}(h)} f(A_{x})$$

Since e(G) is finite, then $\bigcup_{x \in f^{-1}(h)} f(A_x)$ is finite too. Now, we define $A = \bigcup_{x \in f^{-1}(h)} f(A_x)$ that is a finite set in H_h . therefore H_h is a precompact topological group and H is a precompact topological generalized group.

Definition 2.7. Let G be a topological generalized group. Then, an open neighbourhood U of G is called an e-neighbourhood of G if $e(G) \subseteq U$.

Proposition 2.8. Let B be a subset of a topological generalized group G and S be dense in B such that card $e(S) < \infty$. Then $S_a = S \cap G_a$ is dense in $B_a = B \cap G_a$ for every $a \in e(G)$.

Proof. Since e(S) is a finite set, S intersects a finite numbers of G_a 's. So, we can choose $\{G_{a_1}, G_{a_2}, \dots, G_{a_n}\}$, as a subset of G_a 's such that $S \subseteq \bigcup_{i=1}^n G_{a_i}$. Now it follows that,

$$B = \overline{S} = \overline{S \cap (\cup_{i=1}^n G_{a_i})} = \overline{\cup_{i=1}^n (S \cap G_{a_i})} = \cup_{i=1}^n \overline{(S \cap G_{a_i})} \subseteq \cup_{i=1}^n \overline{G_{a_i}}$$
$$= \cup_{i=1}^n G_{a_i}.$$

Therefore,

$$\bigcup_{i=1}^{n} B_{i} = \bigcup_{i=1}^{n} (B \cap G_{i}) = B \cap (\bigcup_{i=1}^{n} G_{a_{i}}) = B \cap G = B = \overline{S} = \overline{S} \cap (\bigcup_{i=1}^{n} G_{a_{i}})$$
$$= \overline{\bigcup_{i=1}^{n} S_{i}} = \bigcup_{i=1}^{n} \overline{S_{i}}.$$

Moreover, $\overline{S_i} \subseteq \overline{B_i}$ and B_i 's are closed and disjoint sets in B for every $i \in \{1, 2, \dots, n\}$. Hence $\overline{S_i} = B_i$ and we can conclude that S_i is dense in B_i . Now it is clear that S_a is dense in B_a for every $a \in e(G)$.

Proposition 2.9. Let B be a precompact subset of a topological generalized group G and S be dense in B. Then, for any e-neighbourhood U of G, there exists a finite set $K \subseteq S$ such that $B \subseteq KU$ and $B \subseteq UK$.

Proof. For every $a \in e(G)$, suppose that $B_a = B \cap G_a$. According to the definition of a precompact subset of G, B_a is a precompact subset of the topological group G_a and B intersects only finitely many G_a 's. On the other hand if $S_a = S \cap G_a$, then S_a is dense in B_a by Proposition 2.8. Now, let U be an e-neighbourhood of G and $U_a = U \cap G_a$, then U_a is a non-empty open neighbourhood of a in G_a . Therefore we can apply Lemma 3.7.3 in ([4]) to find a finite set $F_a \subseteq S_a$ such that $B_a \subseteq F_a U_a \subset F_a U$ and $B_a \subseteq U_a F_a \subseteq U F_a$. Since the number of G_a 's that intersects G_a is finite we have $G_a \subseteq U_a \in e(G)$ and $G_a \subseteq U_a \in e(G)$

Proposition 2.10. Every generalized subgroup H of a precompact topological generalized group G is a precompact topological generalized group.

Proof. Since card $e(H) \leq card \ e(G) < \infty$, it suffices to check that H_h is a precompact topological group for every $h \in e(H)$. We know that H_h is a subgroup of the precompact topological group G_h , then we can apply Proposition 3.7.4 in [4] to say that H_h is a precompact topological group. Therefore, H is a precompact topological generalized group.

Proposition 2.11. If a set B in a topological generalized group G contains a dense precompact subset, then B is also precompact in G. Hence, the closure of a precompact subset of G is precompact in G.

Proof. Let S be a dense precompact subset in B. For each $a \in e(G)$, define B_a and S_a by $B \cap G_a$ and $S \cap G_a$, repectively. S intersects only finitely many G_a 's since S is a precompact subset in B. So S_a is dense in B_a by Proposition 2.8. Now, apply Proposition 3.7.5 in ([4]) to deduce that B_a is precompact in G_a . Moreover, similar to the proof of Proposition 2.8 we have B intersects only finitely many G_a 's. Therefore, we can say that B is precompact in G.

Corollary 2.12. If a topological generalized group G contains a dense precompact generalized subgroup, then G is also precompact.

References

- S.A. Ahmadi, Generalized Topological Groups and Genetic Recombination, Journal of Dynamical Systems and Geometric Theories, Vol. 11 (2013), 51-58.
- [2] M.R. Ahmadi Zand, S. Rostami, Some Topological Aspects of Generalized Groups and Pseudonorms on Them, submitted.
- [3] J. Araujo, J. Konieczny, Molaei's generalized groups are completely simple semigroups, Buletinul Institului Polithnic Din Iasi, Vol. 52 (2004), 1-5.
- [4] A. Arhangel'skii, M. Tkachenko, *Topological Groups and Related Structures*, Paris, France: Atlantis Press, (2008).
- [5] R. Engelking, General Topology, PWN, Polish Scientific Publ., Warszawa (1977).
- [6] L. Gillman, M. Jerison, Rings of Continuous Function, Springer-Verlag, Berlin (1976).
- [7] E. Hewitt, K.A. Ross, Abstract Harmonic Analysis, Springer- Verlag, Berlin- Heidelberg- New York, Vol. 1 (1963).
- [8] H. Maleki, M.R. Molaei, T-spaces, Turk. J. Math., Vol. 39 (2015), 851-863.
- [9] M.R. Mehrabi, M.R. Molaei, A. Oloomi, Generalized Subgroups and Homomorphisms, Arab Journal of Mathematical Sciences, Vol. 6, Number 2 (2000), 1-7.
- [10] M.R. Molaei, Generalized Actions, In: Proceedings of the First International Conference on Geometry, Integrability, and Quantization. Sofia, Bulgaria: Coral Press Scientific Publishing (1999), 175-180.
- [11] M.R. Molaei, Generalized Groups, Buletinul Institului Polithnic Din Iasi, Vol. 65 (1999), 21-24.
- [12] M.R. Molaei, Topological Generalized Groups, International Journal of Pure and Applied Mathematics, Vol. 9 (2000), 1055-1060.
- [13] M.R. Molaei, Top Spaces, J Interdiscip Math, Vol. 7 (2004), 173-181.
- [14] M.R. Molaei, Mathematical Structures Based on Completely Simple Semigroups, Palm Harbor, FL, USA: Hadronic Press, (2005).
- [15] M.R. Molaei, Complete Semi-dynamical Systems, Journal of Dynamical Systems and Geometric Theories, Vol. 3 (2005), 95-107.
- [16] M.R. Molaei, A. Tahmoresi, Connected Topological Generalized Groups, General Mathematics, Vol. 12, Number 1 (2004), 13-22.

[17] G.R. Rezaei, J. Jamalzadeh, *The Continuity of Inversion in Topological Generalized Group*, General Mathematics, Vol. 20, Number 1 (2012), 69-73.