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Abstract. In this article, a mathematical model describing the growth or

terminating myelogenous leukemia blood cancer’s cells against naive T-cell

and effective T-cell population of body, presented by fractional differential

equations. We use this model to analyze the stability of the dynamics, which

occur in the local interaction of effector-immune cell and tumor cells. We

will also investigate the optimal control of combined chemo-immunotherapy.

We claim that our fractional differential equations model is superior to its

ordinary differential equations counterpart in facilitating understanding of the

natural immune interactions to tumor and of the detrimental side effects which

chemotherapy may have on a patient’s immune system.
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1. Introduction

Chronic myelogenous leukemia (CML) is a kind of blood cancer and occurs in

adults about 15 percent [1]. The age average for blood cancer patients ranges be-

tween 45-55 years old. The occurrence rate is one or three among per 100,000

individuals [1]. In this field, researchers such as Fokas [2] and Adimy [3] have pre-

sented CML models in 1991 and 2005, respectively. A mathematical model has also

presented by Afenya and Bentil in 1998 [4] for blood cancer. Recently, the models

used for analyzing the cancer reaction against drug therapy could assist physicians

in cancer treatment. Therefore, using optimized control methods, which minimized

damages to body, the drug dose can be optimized. In this article, the ordinary

differential equations (ODE) which presented by Moore and Li for brain blood can-

cer [5] is re-derived by using fractional order equations (FDE). We expect that our

FDE model will be superior to its ODE counterpart in facilitating understanding

of the natural immune interactions to tumor and of the detrimental side effects

which chemotherapy may have on a patient’s immune system. Therefore, in this

article, at first we will introduce a FDE model to present the interaction between

naive T cells, effectors T cells, and CML cancer cells in cancer dormancy and then

we will discuss about the dynamic behavior of the first system and determine the

stability type of the various feasible fixed points. For drug optimality, as similar

to the targeted therapy (such as imatinib) and broad cytotoxic therapy (such as

cytarabine) methods used by Moore and Li [5], we implement the processors in our

FDE model. To find the solutions of this FDE system, we discretize the system

by using Grunwald-Letnikov discretization method [6, 7], then the results will be

obtain by software tools such as MATLABTM . As is said, we expect more accurate

results in solving FDE systems in comparison with the results by classical ODE

counterpart.

2. PRELIMINARIES

In this section, the ODE presented by Moore and Li for brain blood cancer

(CML) [5] is explained by using FDE. Therefore, we consider the following system

with three cells populations along with a chemotherapy treatment describing the
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growth, death and interactions of each cells;

Dα
t Tn = sn − u2(t)dnTn − knTn

(
C

C + η

)
,

Dα
t Te = αnknTn

(
C

C + η

)
+ αeTe

(
C

C + η

)
− u2(t)deTe − γeCTe,(1)

Dα
t C = (1− u1(t))rcCln

(
Cmax

C

)
− u2(t)dcC − γcCTe.

In this system Tn(0), Te(0) and C (0) are known initial values and time dependent

drug efficacies which incorporated by u1(t) and u2(t). All of the parameter values

in the above equations are assumed to be positive. The structure of the equations

guarantees non negative solutions for the state variables, Tn(t), Te(t) and C (t).

The effect of the targeted drug represents by the control function u1 (t), which

shows the production of cancer cells. We assume this drug affects only cancer cells

and not the other cells, so u1 (t) appears only in the first equation. The u2 (t)

term uses to incorporate treatment by a broad chemotherapy, such as cytarabine

or hydroxyurea or a combination of such drugs, which is cytotoxic to all three-cell

populations. The negative terms in the above equations represent losses from the

cell populations while the positive terms are source terms for the cell populations

[8]. In our model with controls, we let C(t) denote the cancer cell population,

Tn(t) the naive T cell population and Te(t) the effector T cell population at time

t. In the first equation of system (1), the populations of naive T -Cell cells are

generated with a constant factor sn, while the cells death is proportional to –dnTn

and Michaelis-Menten term kn

(
C

C+η

)
. In the two equation of this system, the

effective cells are constructed by using Michaelis-Menten term, while the cells death

is proportional to −deTe and−γeCTe. In the three equation, the populations of

C cells are generated with rcln
(
Cmax

C

)
. While the cells death is proportional to

−dcC and −γcTe. The lower case parameters (sn, αn, etc.) in the above equations

are all constants, as is Cmax. Definitions for these parameters appear in Table 1.

Setting u1 (t) ≡ 0 and u2 (t) ≡ 1 in the above equations would give the same model

described for the dynamics of the disease without treatment [5]. Therefore, we can
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present our model in the form of FDE as follows.

Dα
t Tn = sn − dnTn − knTn

(
C

C + η

)
,

Dα
t Te = αnknTn

(
C

C + η

)
+ αeTe

(
C

C + η

)
− deTe − γeCTe,(2)

Dα
t C = rcCln

(
Cmax

C

)
− dcC − γcCTe.

Firstly, we find the fixed points for system (2) and then their stability should be

analyzed. Here, we use the same values for the parameters as in [5] and is appear

in Table 1. To determine the dynamical behavior of the cell populations near the

Table 1. Parameter Estimated Values for Patient A and B.

Parameters sn dn de dc kn η αn αe Cmax rc γe γc

Patient A 0.29 0/35 0.40 0.012 0.066 140 0.39 0.65 160000 0.011 0.79 0.058

Patient B 0.071 0/05 0.012 0.68 0.063 43 0.56 0.53 190000 0.23 0.0077 0.047

fixed points, we need to determine the linearization of system (2). This linearization

yields

(3)

DF =
−1− (1.26)

(
C

C+6.622

)
0

−(8.3437)Tn

(C+6.622)2

0.9418
(

C
C+6.622

)
10.6

(
C

C+6.622

)
− 0.24− C

(6.2365)Tn

(C+6.622)2
− (70.19)Te

(C+6.622)2
−Te

0 −γcC (4.6) ln
(
29260
C

)
− 18.2− Te

 .

Substituting fixed point P1= (1, 0, 0) in this matrix, we get

DF (P1) =


−1 0 −0.19027

0 −0.24 0.1422

0 0 −18.2

 .

By easy calculation, the eigenvalues of this Jacobian matrix will be found as λ1 =

−1, λ2 = −0.24 and λ3 = −18.2. It is clear that λ1, λ2 and λ3 all have neg-

ative (real) sign. Therefore, P1 is a stable point. For the second fixed point

P2= (Tn, Te, C) (if exists), we may use a similar analysis.

Now, to solve FDE system (1), at first we discretize this equations. Among the

several discretization methods which are available for the fractional derivative Dα
t ,
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we use the one that have generated by Grunwald-Letnikov [6, 7]. In this method

Dα
t x(t) is approximated by

(4) Dα
t x(t)=lim

l→0

1

lα

[ tl ]∑
j=0

(−1)
j

(
α

j

)
x (t−jl) ,

where, l is the step size and [t ] is the integer part of t. Using this method for system

(1), Dα
t x(t) is replaced by

∑[ tnl ]
j=0 c

α
j x(tn−j), where tn = nl and cαj is Grunwald-

Letnikov coefficients defined by

cαj =l−α(−1)
j

(
α

j

)
, j = 0, 1, 2, ....

We may calculate cαj with the following recursive formula:

(5) cαj =

(
1−1+α

j

)
cαj−1 j = 0, 1, 2,. . . cα0=lα

Now, Using (5), system (1) can be discretize as follows:

(Tn)n=
sn −

∑n
j=1 c

α
j (Tn)n−j

c0+dnu2(t) + kn

(
Cn

Cn+η

) ,
(Te)n=

αnkn(Tn)n

(
Cn

Cn+η

)
−
∑n

j=1 c
α
j (Te)n−j

c0 + deu2(t) + γeCn − αe

(
Cn

Cn+η

) ,(6)

(C)n=
−
∑n

j=1 c
α
j Cn−j

c0−(1− u1(t))rcln
(

Cmax

Cn

)
+ dcu2(t) + γc(Te)n

.

We solve this system with some values of Tn, Te and C. Here, to be consistence

with other results in [8], we start with Tn = 1510, Te = 10 and C= 10000. The re-

sults are depicted in Figures 1 and 2 for different values of fractional derivative 0.90 <

α ≤ 1. In these figures, the results are in complete agreement with those found by

using the classical systems of ODE counterparts [8]. Figures 2 and 4 compares the

behavior of CML cell population after solving for without Treatment, one control

(u1) and for two controls (u1 and u2), for patients A and B, respectively. How-

ever, the CML cell population plot for 0.90 < α ≤ 1 is shown in Figure 1 and 2

for α = 1, 0.95. It is expected that the results of Figures 1 and 2 will be more

consistent for α = 0.95 with drug therapy nature. We claim that these results are

in more agreements with the nature of the chemotherapy treatment. From these

reults the amount of the medicine that has been used in each period of time (each
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1 days) is completely visible at the starting iterations, and shows a suitable pattern

that is converges to zero in entire therapy period (250 days).

Figure 1. resultsC of numerical solution of system (1) for positive

initial values given by the text with fractional derivative α = 1 (left

hand), α = 0.95 (right hand) for patients A.

Figure 2. resultsC of numerical solution of system (1) for positive

initial values given by the text with fractional derivative α = 1 (left

hand), α = 0.95 (right hand) for patients B.



GRÜNWALD-LETNIKOV SCHEME — JMMRC VOL. 5, NUMBERS 1-2 (2016) 57

References

[1] S. Faderl, M. Talpaz, Z. Estrov, S. O’Brien, R. Kurzrock, H. Kantarjian, The biology of chronic

myeloid leukemia, N. Engl. J. Med. 341(3) (1999) 164.

[2] A.S. Fokas, J.B. Keller, B.D. Clarkson, Mathematical model of granulocytopoesis and chronic

myelogenous leukemia, Cancer Res. 51 (1991) 2084.

[3] M. Adimy, F. Crauste, S. Ruan, A mathematical study of the hematopoiesis process with

applications to chronic myelogenous leukemia, SIAM J. Appl. Math. 65(4) (2005) 1328.

[4] E.K. Afenya, D. Bentil, Some perspectives on modeling leukemia, Math. Biosci. 150 (1998)

113.

[5] H. Moore, N.K. Li, A mathematical model of chronic myelogenous leukemia (CML) and T cell

interaction, J. Theor. Biol. 227 (2004) 513.

[6] I. Podlubny, Fractional differential equations, New York: Academic Press, (1999).

[7] K.B. Oldham, J. Spanier, The fractional calculus, New York: Academic Press, (1974).

[8] H. Moore, S. Nanda, S. Lenhart, Optimal control of treatment in a mathematical model of

chronic myelogenous leukemia, Math. Biosci. 210 (2007) 143–156.


