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Abstract. In this paper at first, a history of mathematical models is given.
Next, some basic information about random variables, stochastic processes
and Markov chains is introduced. As follows, the entropy for a discrete time

Markov process is mentioned. After that, the entropy for SIS stochastic models
is computed, and it is proved that an epidemic will be disappeared after a long
time.

AMS Classification: 92D30, 60G20, 94A17, 37A50 .
Keywords: Epidemic Model, Entropy, Markov chain, Stochastic process.

1. Introduction

The first mathematical epidemic model was introduced by Bernouli in 1760. The
basic continuous epidemic model was studied by Kermak and Mckendrick in 1927
[2, 8]. In next years many deterministic models for different infectious diseases were
established [2, 8]. The aim was to investigate the dynamical behavior of the model
and determine how many infected will get if the epidemic takes off [2].
However, deterministic models are not applicable for studying a community with a
small number of susceptible or infected individuals. In this case, it is better to use
stochastic epidemic models [5, 6, 3].
In this paper, we consider SIS stochastic epidemic model. In this model, susceptible
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individuals (S) can get infected (I) and after a while, an infected individual recovers
and becomes susceptible immediately. We assume that the birth, death, immigra-
tion or emigration rate during the study period are equal, i.e. the population is
closed. Moreover, we consider there is no vertical transmission of the disease, that
is the disease is not passed from the mother to her offspring.
One of the most important characterizations that one can attach to a random vari-
able and a stochastic process is its entropy. The entropy was appeared in physics
in 1865. It was extended in information theory as the measure of the uncertainty
in a random variable.
In recent years, the entropy has been developed for random transformations [4, 7].
The entropy of stochastic epidemic models was introduced in [1]. In this paper, we
compute the entropy of SIS DTMC model which is mentioned in [5].
In the next section, random processes and homogeneous Markov chains are reviewed.
And some of their properties is investigated. In section 3, the entropy of a discrete
random variable and its meaning in the discrete time stochastic processes has been
investigated. In section 4, SIS stochastic model is introduced and the entropy of
the model is computed. In the last section, by using numerical simulation provided
in an example, it is shown that entropy changes with β change.

2. Basic notions

Let (Ω, β, µ) be a probability space and (S,A) be a measurable space which
is called the state space. An S−valued random variable is a measurable function
from Ω to S. An S−valued stochastic process is a collection of S−valued random
variables on Ω, indexed by a totally ordered set T . t ∈ T shows time. That is
a stochastic process X is a collection {Xt : t ∈ T}, where Xt is an S− valued
random variable on Ω.
A stochastic process called continuous time if T = R or T = [0,∞), and discrete
time if T = Z or T = N. It is called a one-sided stochastic process if T = N [4].
In this paper, since the population is constant, the stochastic process is discrete
time and finite state, where S = {0, 1, 2, ..., N} and N is the population size. The
joint probability of the discrete random variables X0, X1, ..., Xn is defined as fol-
lows:
µ({ω ∈ Ω : X0(ω) = x0, ..., Xn(ω) = xn}) = Prob{X0 = x0, X1 = x1, ..., Xn =
xn} = P (x0, x1, ..., xn).

Definition 2.1. A stochastic process X = {Xn}n∈N0 is called a Markov process or
Markov chain if Prob{Xn = xn | Xn−1 = xn−1, ..., X0 = x0} = Prob{Xn = xn |
Xn−1 = xn−1}, n ≥ 1, where x0, x1, ..., xn ∈ S = {0, 1, 2, ..., N}.

The probability mass function associated with the random variable Xn which is
denoted by {pi(n)}Ni=0, where

pi(n) = Prob{Xn = i}.

Definition 2.2. The one-step transition probability or only the transition probabil-
ity is noted as pji(n), is defined as pji(n) = Prob{Xn+1 = j | Xn = i}.
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If the transition probabilities pji(n) in a Markov chain do not depend on time
n, then the Markov process X is called time homogeneous or homogeneous.
Let X = {Xn}n∈N0 be a homogeneous Markov chain, the matrix P = (pji) is called
the transition matrix of X.

Definition 2.3. Let X = {Xn}n∈N0 be a homogeneous Markov chain, the n-step

transition probability which is denoted by p
(n)
ji , is defined by

(2.1) p
(n)
ji = Prob{Xn = j | X0 = i}.

The n-step transition matrix is denoted as P (n) = (p
(n)
ji ), P (0) := In and P (1) = P .

Based on the the Chapman-Kolmogorov equation [4], P (n) = P (n−s)P (s). Since
P (1) = P then P (n) = Pn, for all n ∈ N.
Let p(n) denotes the vector of probability mass function associated with Xn, that

is p(n) = (p0(n), ..., pN (N))T , and
∑N

i=0 pi(n) = 1, then the vector of probability
associated with Xn+1 can be founded by multiplying the transition matrix P by
p(n), that is

(2.2) p(n+ 1) = Pp(n).

In general, p(n) = Pnp(0), so we have p(Xn = i) = pi(n) =
∑N

j=0 p
(n)
ij pj(0).

3. The entropy of a discrete random variable

Definition 3.1. Let X be a random variable with probability space (Ω, β, µ) and
finite state S. The entropy of X is defined by

(3.1) H(X) = −
∑
x∈S

p(x)logp(x),

where p(x) = µ({ω ∈ Ω : X(ω) = x}).

Let X,Y be two random variables on a probability space (Ω, β, µ) and state
space S. The joint entropy of X and Y is defined as

(3.2) H(X,Y ) = −
∑
x∈S1

∑
y∈S2

p(x, y)logp(x, y),

where p(x, y) = Prob(X = x, Y = y).
The conditional entropy of Y given X is defined as follows,

(3.3) H(Y | X) = −
∑
x∈S1

∑
y∈S2

p(x, y)logp(y | x).

Where p(y | x) = p(x,y)
p(x) . It’s clear that H(X,Y ) = H(X) +H(Y | X) [4, 7].

The (joint) entropy of the random variable vector Xn−1
0 = {X0, ..., Xn−1} is defined

by

H(X0, X1, ..., Xn−1) = −
∑

x0,x1,...,xn−1∈S

p(x0, x1, ..., xn−1)logp(x0, x1, ..., xn−1),
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where

p(x0, x1, ..., xn−1) = prob(X0 = x0, ..., Xn−1 = xn−1).

Theorem 3.2. Let the random variables X0, ..., Xn−1 be given, then
i)p(X0, ..., Xn−1) = Πn−1

i=0 p(Xi | Xi−1, ..., X0).

ii)H(X0, ..., Xn−1) =
∑n−1

i=0 H(Xi | Xi−1, ..., X0), where
p(X0 | X−1) := p(X0) and H(X0 | X−1) := H(X0).
iii) If the stochastic process is a homogeneous Markov process, then
H(Xi|Xi−1, ..., X0) = H(Xi|Xi−1).
iv) If the stochastic process is a homogeneous process, then
H(X0, X1, ..., Xn) = H(X0) +H(X1|X0) + ...+H(Xn|Xn−1).

Proof. See [4, 1]. □

3.1. The entropy of a discrete time stochastic process.

Definition 3.3. The entropy of a stochastic process X = {Xn}∞n=0 on a probability
space (Ω, β, µ) with finite state S is defined by

(3.4) h(X) = limn−→∞
1

n
H(X0, ..., Xn−1),

provided that the limit exists [4].

The term h(X0, ..., Xn−1) =
1
nH(X0, ..., Xn−1) is called the entropy of order n

of X. h(Xn−1
0 ) = h(X0, ..., Xn−1) is the average uncertainty about n consecutive

outcomes of the random experiment modeled by X. On the other hand, if X =
{Xn}∞n=0 is a discrete- time stochastic process, then after n-time intervals ∆t there
are n random variables as outcomes. h(Xn−1

0 ) measures the average uncertainty
and determines how close this model is to reality. The more h(Xn−1

0 ) is smaller,
the more our model (X = {Xn}∞n=0) is closer to the real.
As follows we introduce SIS DTMC (discrete time Markov chain) epidemic model
and compute its entropy.

4. SIS DTMC, epidemic model

Let S(t) and I(t) be discrete random variables for the number of susceptible and
infected individuals at time t, respectively. Let t ∈ {0,∆t, 2∆t, ...} and N be the
population size which is constant. S(t), I(t) ∈ {0, 1, ..., N} and S(t) + I(t) = N ,so
S(t) = N−I(t) [5, 2]. The stochastic process {I(t)}∞t=0 has an associated probability
function

(4.1) pi(t) = prob{I(t) = i},

for i = 0, 1, ..., N and t = 0,∆t, 2∆t, ..., that
∑N

i=0 pi(t) = 1.
Let p(t) = (p0(t), ..., pN (t))T denotes the probability vector associated with I(t).
For t = n∆t, I(t) and pi(n∆t) are denoted by In and pi(n), respectively.

Lemma 4.1. The sequence I = {In}∞n=0 is a Markov chain.



ENTROPY FOR DTMC SIS EPIDEMIC MODEL — JMMRC VOL. 5, NUMBERS 1-2 (2016) 63

Proof. We know that In is the random variable of infected individuals at time
t = n∆t. Since the number of infected people at time t = (n+ 1)∆t only dependes
on the number of infected people at time t = n∆t. So it is clear that Prob(In+1 |
In, In−1, ..., I0) = Prob(In+1 | In) so I = {In}∞n=1 is a Markov chain. □

The probability of a transition from state In = i to state In+1 = j, i −→ j, at
time ∆t, is denoted as

pji(n,∆t) = Prob{In+1 = j | In = i}.
The transition probability does not depend on n, so the process is time homoge-
neous. The time step ∆t is chosen sufficiently small such that the number of infected
individuals changes by at most one during the interval ∆t, on the other hand either
there is at most a new infection, a birth, a death, or a recovery during the time
interval ∆t.
The probability of a new infection, i → i+1, is βi(N−i)∆t, where β is the infection
transition rate and the probability of a death or a recovery, i → i− 1, is (b+ γ)i∆t,
where b and γ are death and recovery rates, respectively. Moreover, ∆t is chosen
sufficiently small such that βi(N − i)∆t+(b+ γ)i∆t < 1 for all 0 ≤ i ≤ N . Finally,
the probability of no change in states is 1− [βi(N − i)∆t+ (b+ γ)i∆t]. So we have

pji(∆t) =


βi(N − i)∆t j = i+ 1

(b+ γ)i∆t j = i− 1

1− [βi(N − i)∆t+ (b+ γ)i∆t] j = i

0 otherwise.

We set b(i) = βi(N − i) and d(i) = (b+ γ)i. It is clear that

(4.2) pi(n+ 1) = pi−1b(i− 1)∆t+ pi+1(n)d(i+ 1)∆t+ pi(n)[1− b(i)− d(i)]∆t.

Denote the transition matrix as P (∆t). It is a (N + 1) × (N + 1) matrix which is
given by

P (∆t) =



1 d(1)∆t 0 . . . 0 0
0 A1 d(2)∆t 0 . . . 0
0 b(1)∆t A2 0 . . . 0
0 0 b(2)∆t . . . 0 0
. . . . . . . .
. . . . . . . .
0 0 . . . . d(N − 1)∆t 0
0 0 . . . . AN−1 d(N)∆t
0 0 . . . . b(N − 1)∆t (1− d(N))∆t


where Ai = 1− [b(i) + d(i)]∆t for i = 1, ..., N − 1.
According to the 4.2, it is obvious that

p(n+ 1) = P (∆t)p(n) = P (∆t)n+1p(0),

and p
(n)
ji = ((P (∆t))n)ji. From now on, we will be using P instead of P (∆t). We

consider that there is i0 infected at the initial time (t = 0), so p(0) = (0, ..., 1︸︷︷︸
ith0 place

, 0, ..., 0)
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and p(n) = Pnp(0), then

pi(n) = ((pn)i0 , (p
n)i1 , ..., (p

n)iN )p(0)T = (Pn)ii0 = P
(n)
ii0

.

4.1. The entropy of SIS epidemic model. The entropy of a stochastic process
X = {Xn}∞n=0 on a probability space (Ω, β, µ) is defined by the following formula

(4.3) h(X) = limn−→∞
1

n
H(X0, ..., Xn−1),

provided that the limit exists [4].

Definition 4.2. If X = {Xn}∞n=0 is a homogeneous Markov chain, the matrix
H(P ) is defined by

(4.4) H(P ) = (−pij logpij)(N+1)×(N+1),

and 0log0 := 0.

Remark 4.3. Let X = {Xn}∞n=0be a homogeneous Markov chain, then

H(Xn|Xn−1) = −
∑N

j=0

∑N
i=0 Prob(Xn−1 = j,Xn = i)logProb(Xn = i|Xn−1 =

j) = −
∑N

j=0

∑N
i=0 Prob(Xn−1 = j)Prob(Xn = i|Xn−1 = j)logpij =

−
∑N

i=0

∑N
j=0 Prob(Xn−1 = j)pjilogpji.

Theorem 4.4. Let I = {In}∞n=0 be the stochastic process of the SIS epidemic
model with constant population and I0 = k, then h(I0, ..., In) is the summation of

kth column entries of matrix Hn = H(p)(0+I+P+...+Pn−1

n+1 ).

Proof. Using part (iv) in theorem 4.2,

h(I0, ..., In) =
1

n+1H(I0, ..., In) =
H(I0)+H(I1|I0)+...+H(In|In−1)

n+1 . Since I0 = k, clearly

H(I0) = 0, so h(I0, ..., In) =
H(I1|I0)+...+H(In|In−1)

n+1 .

Also by the above remark, H(In|In−1) =
∑

j

∑
i Prob(In−1 = j)pij log

1
pij

. By the
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assumption I0 = k, we have Prob(In−1 = j) = p
(n−1)
jk , so

h(I0, ..., In) =
∑
j

∑
i

Prob(I0 = j) + ...+ Prob(In−1 = j)

n+ 1
pij log

1

pij

=
N∑
j=0

N∑
i=0

p
(0)
jk + ...+ p

(n−1)
jk

n+ 1
pij log

1

pij

=
N∑
j=0

N∑
i=0

p
(0)
jk + ...+ p

(n−1)
jk

n+ 1
(H(p))ij

=
N∑
j=0

N∑
i=0

Ijk + Pjk + ...+ (Pn−1)jk
n+ 1

(H(p))ij

=

N∑
i=0

(H(p))ik + (H(p)P )ik + ...+ (H(p)Pn−1)ik
n+ 1

=

N∑
i=0

(
H(p) +H(p)P + ...+H(p)Pn−1

n+ 1
)ik.

So h(I0, ..., In) is the summation of kth column entries of the matrix

H(p) +H(p)P + ...+H(p)Pn−1

n+ 1
= H(p)

0 + I + P + ...+ Pn−1

n+ 1
.

□

The matrix Hn = H(p)(0+I+P+...+Pn−1

n+1 ) is called the entropy matrix of I.
In the SIS DTMC epidemic model, the state i = 0 is recurrent and the states
i = 1, 2, ..., N are transient. We know for any state j and any transient state i,
limn→∞Pn

ij = 0 [1]. Therefore,

limn→∞Pn =



1 1 1 . . . 1
0 0 0 . . . 0
0 0 0 0
. . . .
. . . .
. . . .
0 0 0 . . . 0


.

In the next theorem, we prove that an epidemic with constant population which is
modelled by SIS, will disappear after a long time.

Theorem 4.5. h(I) = 0.

Proof. By the pervious assumptions, since the limit of Pn as n → ∞ exists, then

according to Cesaro’s mean theorem, if limn→∞an = a and bn =
∑n

k=0 ak

n+1 , then
limn→∞bn = a. Therefore, we have

limn→∞H(P )( 0+I+...+Pn−1

n+1 ) = limn→∞H(P )Pn
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= H(P )



1 1 1 . . . 1
0 0 0 . . . 0
0 0 0 0
. . . .
. . . .
. . . .
0 0 0 . . . 0



=


−p00logp00 . . . −p00logp00
−p10logp10 . . . −p10logp10

. .

. .

. .
−p(N+1)0logp(N+1)0 . . . −p(N+1)0logp(N+1)0

 .

We know that p00 = 1 and 0 is a recurrent state, so limn→∞H(P )(0+I+...+Pn−1

n+1 ) =

0. Thus, h(I) = limn→∞h(I0, I1, ..., In) = 0. □

We can say as time increases, this model becomes closer to the real. This model
predicts that after a long time, the disease will disappear, so this prediction is true,
because h(I) = 0.
In the next section, we compute h(In0 ) which shows the uncertainty about n con-
secutive outcomes of a random experiment.

5. Numerical simulation

The entropy is used to compute the uncertainty in dynamical systems. In this
paper, SIS DTMC epidemic model is introduced. As follows, in the next example
the entropy at different time steps n for different values of β is computed. Figure 1
shows how the entropy of the model is changed with respect to the time.

Example 5.1. Consider the population size N = 10, ∆t = 0.01, b = 0.25, γ = 0.25,
I(0) = 2 and s(0) = 8. The resulted table for different values of β is

n⧹β 0.01 0.02 0.03 0.04
5 0.0296 0.0380 0.0475 0.058
10 0.0167 0.0226 0.0299 0.0391
15 0.0113 0.0155 0.0210 0.0286
20 0.0085 0.0117 0.0160 0.0228
20 0.0068 0.0155 0.0130 0.0208
30 0.0057 0.0094 0.0110 0.0249
40 0.0043 0.0059 0.008 0.0111
50 0.0034 0.0047 0.0064 0.0088
60 0.0028 0.0039 0.0054 0.0074
100 0.0017 0.0023 0.0032 0.0044
200 0.0008 0.0012 0.0016 0.0022

Fig.1 indicates that by increasing β, the entropy generally will increase as well.
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Figure 1. blue: β = 0.01, orange: β = 0.02, violet: β = 0.03 and
yellow: β = 0.04.

By theorem 4.5, the entropy is zero after a long time. As one can consider,
the entropy has alow amount for all values of time. Figure1 also shows that by
increasing β, the entropy will increase. Thus, the smaller β is the more accurate
the prediction will be.
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