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Abstract. This paper provides a review on major ergodic features of semi-

independent hyper MV –algebra dynamical systems. Theorems are presented

to make contribution to calculate the entropy. Particularly, it is proved that the

total entropy of those semi-independent hyper MV –algebra dynamical systems

that have a generator can be calculated with respect to their generator rather

than considering all the partitions.

AMS Classification: 37A35, 37-XX, 03G99, 03G20, 03-XX.

Keywords: Hyper MV –algebra, Dynamical system, Uncertainty

1. Introduction

The concept of an MV –algebra was introduced by C.C. Chang in 1958 to prove

the completeness theorem of infinite valued Lukasiewicz propositional calculus. Hy-

per structure theory was initiated by F. Marty at 8th congress of Scandinavian
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Mathematicians in 1934. Since then, many researchers have worked in these areas,

for example see [2, 4, 7]. For the first time, the notion of hyper MV –algebras was

introduced in [5] as a generalization of MV –algebras. In [9], Rasouli and Davvaz

studied several properties of hyper MV –algebras. Then in [10], they studied ho-

momorphisms, dual homomorphisms and strong homomorphisms between hyper

MV –algebras. Recently, L. Torkzadeh and Sh. Ghorbani found the conditions un-

der which a hyper MV –algebra becomes an MV –algebra, and they characterized

hyper MV –algebras of order 2 and order 3 [6]. P. Corsini and V. Leoreanu, in their

book “Applications of hyperstructure theory” discussed applications of hyperstruc-

tures in fuzzy and rough set theory, cryptography, codes, automata, probability,

geometry, lattices, binary relations, graphs and hypergraphs [2], and B. Davvaz

and V. Leoreanu-Fotea presented applications of hyperstructures in chemistry and

physics [4], also see [3]. Thus, by extending the entopy function to hyperstructures,

one can provide efficient criteria to measure the complexity of the systems in the

categories mentioned above.

In this paper, essential ergodic characteristics of HMV –algebra dynamical sys-

tems are studied. In the next section that is the main section of this paper, the fun-

damental properties are studied, and the concept of generator for semi-independent

hyper MV –algebra dynamical systems is defined. Then theorems that help calcu-

late the entropy are given. The rest of this section is dedicated to a brief review of

hyper MV –algebras and semi-independent systems over them.

Now, we recall the definition of hyper MV –algebra from [5, 8, 9].

Definition. 1.1 ([7]). A hyper MV –algebra is a non-empty set, ‘M ’, endowed

with a hyperoperation ‘⊕ : H ×H −→ P ∗(H)’, a unary operation ‘∗ : H −→ H’,

and a constant ‘0’ satisfying the following axioms for all x, y, z ∈ M :

c1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

c2) x⊕ y = y ⊕ x;

c3) (x∗)∗ = x;

c4) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x;

c5) 0∗ ∈ x⊕ 0∗;

c6) 0∗ ∈ x⊕ x∗;

c7) if x ≪ y and y ≪ x, then x = y, where x ≪ y is defined by 0∗ ∈ x∗ ⊕ y.
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Definition. 1.2 ([7]). For nonempty subsets A and B of M , we have the following

definitions:

d1) A ≪ B iff there exist a ∈ A and b ∈ B such that a ≪ b;

d2) A∗ := {a∗ | a ∈ A};
d3) 1 := 0∗.

Example. 1.3 ([9]). There are two methods to obtain a hyper MV –algebra start-

ing from an MV –algebra (M,⊕, ∗, 0, 1):
Method 1. Let (M,⊕, ∗, 0, 1) be an MV –algebra. Define x ⊕′ y := {x ⊕ y} for

each x, y ∈ M . One can see easily that (M,⊕′, ∗, 0, 1) is a hyper MV –algebra.

Method 2. Define x⊕′′y := {t ∈ M | 0 ≪ t ≪ x⊕y} = [0, x⊕y] for each x, y ∈ M .

Now, it will be shown that (M,⊕′′, ∗, 0, 1) is a hyper MV –algebra. Clearly, ⊕′′ and

∗ are well defined. For each x, y, z ∈ M , 1 ∈ x⊕′′ 1 = M , x ∈ x⊕ 0 = [0, x] and

x⊕′′ (y ⊕′′ z) = {t ∈ M | 0 ≪ t ≪ x⊕ (y ⊕ z)} = {t ∈ M |0 ≪ t ≪ (x⊕ y)⊕ z} = (x⊕′′ y)⊕′′ z.

Also,

(x∗ ⊕′′ y)∗ ⊕′′ y =
∪

{s∈M |0≪s≪x∗⊕y}
s∗ ⊕′′ y

=
∪

{s∈M |0≪s≪x∗⊕y}
{t ∈ M | 0 ≪ t ≪ s∗ ⊕ y}

=
∪
{t ∈ M | 0 ≪ t ≪ (x∗ ⊕ y)∗ ⊕ y}

=
∪
{t ∈ M | 0 ≪ t ≪ (y∗ ⊕ x)∗ ⊕ x}

=
∪

{s∈M |0≪s≪y∗⊕x}
{t ∈ M | 0 ≪ t ≪ s∗ ⊕ x}

= (y∗ ⊕′′ x)∗ ⊕′′ x.

Now, let x ≪′′ y, thus 1 ∈ [0, x∗ ⊕ y] and it implies that 1 = x∗ ⊕ y, then by

MV –algebra’s properties, it is obtained that x ≪ y. Similarly, if y ≪′′ x, then

y ≪ x. Now, x ≪′′ y and y ≪′′ x imply that x ≪ y and y ≪ x, respectively which

result that x = y. Also, it can be shown that x⊙′′ y = [x⊙ y, 1]. This shows that

(M,⊕′′, ∗, 0, 1) is a hyper MV –algebra.

Example. 1.4 ([9]). Let M = {0, a, b, c, 1}. Consider Tables 1(a) and 1(b). Then,

(M,⊕, ∗, 0, 1) is a hyper MV –algebra.

Proposition. 1.5 ([7]). Every hyper MV –algebra satisfies the following state-

ments for every x, y, z ∈ M and for every subsets A, B and C of M :
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Table 1. Cayley tables for the hyperoperation and the unary operation

(a) ⊕

⊕ 0 a b c 1

0 {0} {0, a} {0, a, b} {0, c} M

a {0, a} {0, a} M {0, a, c} M

b {0, a, b} M {0, a, b, 1} {0, a, b, c} M

c {0, c} {0, a, c} {0, a, b, c} M M

1 M M M M M

(b) ∗

x x∗

1 0

b a

c c

a b

0 1

e1) (A⊕B)⊕ C = A⊕ (B ⊕ C);

e2) 0 ≪ x, x ≪ 1;

e3) x ≪ x;

e4) if x ≪ y, then y∗ ≪ x∗;

e5) if A ≪ B, then B∗ ≪ A∗;

e6) A ≪ A;

e7) if A ⊆ B, then A ≪ B, where A ̸= ∅;
e8) x ≪ x⊕ y, A ≪ A⊕B, where A ̸= ∅ and B ̸= ∅;
e9) (A∗)∗ = A;

e10) 0⊕ 0 = {0};
e11) x ∈ x⊕ 0;

e12) if y ∈ x⊕ 0, then y ≪ x;

e13) if y ⊕ 0 = x⊕ 0, then x = y.

Definition. 1.6 ([8]). A partition of unity U of 1 - partition for short - in M is a

k–tuple (u1, . . . , uk) of elements of M such that 1 ∈ u1 ⊕ . . . ⊕ uk. Moreover, the

index set of U is denoted by IU , i.e. IU = {1, . . . , k}. Also, S(U) := {u1, . . . , uk}
and PM := {U | U is a partition of unity of 1}.

Definition. 1.7 ([8]). Let U = (u1, . . . , uk) and V = (v1, . . . , vn) be two partitions

of unity. A common refinement - c–refinement for short - of U and V is defined as

any matrix ‘C = {cij | i ∈ IU and j ∈ IV }’ such that ui ∈ ci1 ⊕ . . . ⊕ cin for every

i ∈ IU and vj ∈ c1j ⊕ · · · ⊕ ckj for every j ∈ IV .
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Definition. 1.8 ([8]). Let U, V ∈ PM . The partitions U and V are said to

be relatively normal if there exists a c–refinement for U and V . The notation

{U, V } ∈ RN is used to show that U and V are relatively normal. Moreover, let

X and Y are the sets that are composed of partitions of unity. X and Y are said

to be relatively normal if for every U ∈ X and every V ∈ Y , {U, V } ∈ RN . The

notation {X,Y } ∈ RN is used to show that X and Y are relatively normal.

Definition. 1.9 ([8]). Let Ui ∈ PM for i ∈ {1, . . . , s}, and s ≥ 3. The partitions

U1, . . . , Us are said to be relatively normal if every way of computing c–refinements

of U1, . . . , Us leads to find at least one c–refinement. The notation {U1, . . . , Us} ∈
RN is used to show that U1, . . . , Us are relatively normal. Furthermore, the notation

{U1, . . . , Us} /∈ RN implies that the partitions U1, . . . , Us are not relatively normal.

Moreover, the notation C ∈ ∨s
i=1Ui is applied to show that C is a c–refinement of

U1, . . . , Us.

Note that ∨1
i=1Ui = U1. In this case, by C ∈ ∨1

i=1Ui it is understood that

C = U1.

Definition. 1.10 ([8]). Let M be a hyper MV –algebra, and m : M −→ [0, 1] be

a mapping. Then, m is called semi-independent if for every U, V ∈ PM and every

C ∈ U ∨ V ,

max
i∈IU

m(ui).max
j∈IV

m(vj) ≤ max
(i,j)∈IC

m(cij);

where {U, V } ∈ RN , and IC = {(i, j) | i ∈ IU and j ∈ IV }.

Definition. 1.11 ([8]). A semi-independent dynamical system on a hyper MV –

algebra is a couple of mappings ‘m : M −→ [0, 1]’ and ‘T : M −→ M ’ satisfying the

following conditions:

f1) m(t) = m(a) +m(b), ∀t ∈ a⊕ b∖ {a, b};
f2) T (a⊕ b) = T (a)⊕ T (b);

f3) m(1) = 1 and T (1) = 1;

f4) m(T (a)) = m(a);

f5) m is semi-independent;

for every a, b ∈ M .

Remark. 1.12 ([8]). If a ≪ b, then m(a) = m(b), where a ̸= 0, a ̸= 1 and b ̸= 1.
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Remark. 1.13 ([8]). For every partition of unity U = (u1, . . . , uk), maxi m(ui) ̸=
0.

Definition. 1.14 ([8]). Let U = (u1, . . . , uk) be a partition of unity. Its entropy

is defined by the formula H(U) = − logmax
i∈IU

m(ui).

Definition. 1.15 ([8]). Let U = (u1, . . . , uk) and V = (v1, . . . , vn) be two parti-

tions of unity,

{U, V } ∈ RN , and C ∈ U ∨ V . The conditional entropy of U given V with re-

spect to C is defined as

HC(U |V ) = | log
max(i,j)∈IC m(ci,j)

maxj∈IV m(vj)
|.

Definition. 1.16 ([8]). Let (M,m, T ) be a semi-independent hyper MV –algebra

dynamical system, and U ∈ PM . Then, U is said to be a perfect partition for T if

for every positive integer n ≥ 2, {U, T (U), . . . , Tn−1(U)} ∈ RN . The collection of

all perfect partitions of T is denoted by PT .

Definition. 1.17 ([8]). For any partition U ∈ PT and any positive integer n, we

define

Hn(T,U) = inf{H(C) | C ∈ Un(T )};

where Un(T ) = {C | C ∈ ∨n−1
i=0 T

i(U)}. If there is no place for ambiguity, the

notation Un is used rather than Un(T ). If U ∈ PM ∖PT , then we set Hn(T,U) = 0

for every positive integer n ≥ N , where N is the smallest positive integer for which

{U, T (U), . . . , TN (U)} /∈ RN .

Theorem. 1.18 ([8]). limn→∞
1

n
Hn(T,U) exists.

Definition. 1.19 ([8]). Entropy of a semi-independent hyper MV –algebra dynam-

ical system (M,m, T ) is defined by the formula

h(T ) = sup{h(T,U) | U ∈ PM}, where h(T,U) = lim
n→∞

(
1

n
)Hn(T,U).

2. Some ergodic properties

During this section, some characteristics semi-independent hyper MV –algebras

dynamical systems and their entropy are studied. a couple of notions and theorems

so as to help caculate the entropy are given.
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Definition. 2.1. Let U and V be two relatively normal partitions, and C be any

c–refinement of U and V . Then, U is said to be C–dominated if for every ui there

exists cpj such that ui ≪ cpj , where ui ∈ S(U), and cpj ∈ S(C).

Definition. 2.2. Let C = {cij | i ∈ IU and j ∈ IV } be any c–refinement of the

relatively normal partitions U = (u1, . . . , uk) and V = (v1, . . . , vn), and

Si(C) := {ci1, . . . , cin} for i ∈ IU and Sj(C) := {c1j , . . . , ckj} for j ∈ IV .

U is said to be Ci–dominating if ui /∈ Si(C). By the statement ‘U is C–dominating’,

it is understood that U is Ci–dominating for every i ∈ IU . Cj–dominating and V

being C–dominating are defined similarly.

For any partition of unity U = (u1, . . . , uk) of a semi-independent hyper MV –

algebra dynamical system (M,m, T ), by um we mean the element of U for which

m(um) = maxi m(ui). If C is any c–refinement of the relatively normal partitions U

and V , by the statement ‘U is Cim–dominating’, we mean that U is Ci–dominating

and cm ∈ Si(C).

Theorem. 2.3. Let (M,m, T ) be a semi-independent hyper MV –algebra dynam-

ical system. If U = (u1, . . . , uk), V = (v1, . . . , vn) and W = (w1, . . . , wq) are

partitions of unity, then:

g1) H(C) ≤ H(U) + HC(V |U). Moreover, if U is C–dominated, or um ∈
S(C), then H(C) = H(U)−HC(V |U). If U is C–dominating, or U is Cim–

dominating, then

H(C) = H(U) +HC(V |U);

g2) if S(U) ⊆ S(V ), then H(U) = H(V );

g3) if S(U) ⊆ S(V ), thenHC′(U |W ) ≤ HC′′(V |W ), where U is C ′–dominating,

V is C ′′–dominated, and W is C ′–dominated;

g4) if S(U) ⊆ S(V ), thenHC′(U |W ) ≥ HC′′(V |W ), where U is C ′–dominating,

V is C ′′–dominated, and W is C ′′–dominating;

g5) if S(U) ⊆ S(V ), thenHC′(W |U) ≥ HC′′(W |V ), where V is C ′′–dominated,

W is C ′′–dominating, and W is C ′–dominated;

g6) if S(U) ⊆ S(V ), thenHC′(W |U) ≤ HC′′(W |V ), where U is C ′–dominating,

W is C ′′–dominating, and W is C ′–dominated;

g7) HC(U |V ) ≤ H(U), where V is C–dominating;
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g8) HT (C)(T (U)|T (V )) = HC(U |V );

g9) HW ′(C|W ) ≤ HC′(U |W )+HC′′(V |W ), where {U, V } ∈ RN , C ∈ U∨V ,

{C,W} ∈ RN , W ′ ∈ C ∨W , C is W ′–dominated, W is W ′–dominating, U

is C–dominated, and U is C ′–dominating;

g10) HW ′(C|W ) ≤ HC′(U |W ) +HC′′(V |W ), where {U, V } ∈ RN , C ∈ U ∨
V ,

{C,W} ∈ RN , W ′ ∈ C ∨W , C is W ′–dominating, W is W ′–dominated, U

is C–dominating, and U is C ′–dominated;

g11) HW ′(C|W ) ≤ HC′(U |W )+HD′(V |D), where {U, V } ∈ RN , C ∈ U∨V ,

{C,W} ∈ RN , W ′ ∈ C ∨W , D ∈ U ∨W , {V,D} ∈ RN , D′ ∈ V ∨ D, C

is W ′–dominated, W is W ′–dominating, U is C–dominated, and U is C ′–

dominating;

g12) HW ′(C|W ) ≤ HC′(U |W )+HD′(V |D), where {U, V } ∈ RN , C ∈ U∨V ,

{C,W} ∈ RN , W ′ ∈ C ∨W , D ∈ U ∨W , {V,D} ∈ RN , D′ ∈ V ∨ D, C

is W ′–dominating, W is W ′–dominated, U is C–dominating, and U is C ′–

dominated.

Proof. g1) We have

H(C) = − logm(cm) = − log(
m(cm)

m(um)
m(um))

= − log
m(cm)

m(um)
+ (− logm(um))

≤ | log m(cm)

m(um)
|+H(U)

= HC(V |U) +H(U).

Notice that if U is C–dominated, or um ∈ S(C), then m(um) ≤ m(cm). Thus,

(1) HC(V |U) = | log m(cm)

m(um)
| = log

m(cm)

m(um)
.
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Now, using Equation (1), the obtained result is

H(C) = − logm(cm) = − log(m(um)
m(cm)

m(um)
)

= (− logm(um)) + (− log
m(cm)

m(um)
)

= H(U)− | log m(cm)

m(um)
| = H(U)−HC(V |U).

The other part is proved similarly.

g2) It is straightforward from the definitions.

g3) Considering S(U) ⊆ S(V ), the obtained result is

(2) m(um) = m(vm).

Since U is C ′–dominating, it follows that

(3) m(c′m) ≤ m(um).

Also,

(4) m(vm) ≤ m(c′′m);

since V is C ′′–dominated. Now, considering Equations (2), (3) and (4), the obtained

result is

(5) m(c′m) ≤ m(c′′m).

By using Equation (5), we have

(6) log
m(c′m)

m(wm)
≤ log

m(c′′m)

m(wm)
≤ | log m(c′′m)

m(wm)
| = HC′′(V |W ).

Since W is C ′–dominated, it follows that

(7) log
m(c′m)

m(wm)
≥ 0.

Considering Equations (6) and (7), then we obtain HC′(U |W ) ≤ HC′′(V |W ).

g4) Similarly as the proof of (g3).

g5) Considering W is C ′′–dominating, the obtained result is m(c′′m) ≤ m(wm).

Since W is C ′–dominated, then m(wm) ≤ m(c′m). Thus,

(8) m(c′′m) ≤ m(c′m).
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Since S(U) ⊆ S(V ), it follows that

(9)
1

m(vm)
=

1

m(um)
.

By Equations (8) and (9), the obtained result is

(10) log
m(c′′m)

m(vm)
≤ log

m(c′m)

m(um)
≤ | log m(c′m)

m(um)
| = HC′(W |U).

Since V is C ′′–dominated, it follows that

(11) log
m(c′′m)

m(vm)
≥ 0.

Now, Equations (10) and (11) imply that HC′(W |U) ≥ HC′′(W |V ).

g6) Similarly as the proof of (g5).

g7) We have m(um) ≤ m(cm)

m(vm)
. Thus,

(12) H(U) = − logm(um) ≥ − log
m(cm)

m(vm)
.

Since V is C–dominating, it follows that

(13) HC(U |V ) = − log
m(cm)

m(vm)
.

Considering Equations (12) and (13), the obtained result is HC(U |V ) ≤ H(U).

g8) It is easy to check that T (C) ∈ T (U) ∨ T (V ). Then,

HT (C)(T (U)|T (V )) = | log m(T (cm))

m(T (vm))
| = | log m(cm)

m(vm)
| = HC(U |V ).

g9) Considering U is C ′–dominating, the obtained result is

(14) m(c′m) ≤ m(um).

Since U is C–dominated, it follows that

(15) m(um) ≤ m(cm).

In addition, considering C is W ′–dominated, it is obtained that

(16) m(cm) ≤ m(w′
m).

Equations (14), (15) and (16) occur that m(c′m) ≤ m(w′
m). Then,

(17) − log
m(w′

m)

m(wm)
≤ − log

m(c′m)

m(wm)
.
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Since W is W ′–dominating, it follows that

(18) HW ′(C|W ) = − log
m(w′

m)

m(wm)
.

Now, using Equations (17) and (18), the obtained result is

HW ′(C|W ) ≤ − log
m(c′m)

m(wm)

≤ | log m(c′m)

m(wm)
|+HC′′(V |W )

= HC′(U |W ) +HC′′(V |W ).

g10) Suppose U is C–dominating. This implies that

(19) m(cm) ≤ m(um).

Since U is C ′–dominated, it follows that

(20) m(um) ≤ m(c′m).

In addition, suppose that C is W ′–dominating. It is obtained that

(21) m(w′
m) ≤ m(cm).

Equations (19), (20) and (21) imply that m(w′
m) ≤ m(c′m). Then,

(22) log
m(w′

m)

m(wm)
≤ log

m(c′m)

m(wm)
.

Since W is W ′–dominated, it follows that

(23) HW ′(C|W ) = log
m(w′

m)

m(wm)
.

Now, using Equations (22) and (23), it is concluded that

HW ′(C|W ) ≤ log
m(c′m)

m(wm)

≤ | log m(c′m)

m(wm)
|+HC′′(V |W )

= HC′(U |W ) +HC′′(V |W ).

g11) The proof is similar to the proof of (g9).

g12) Similarly as the proof of (g10). □
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Definition. 2.4. Let (M,m, T ) be a semi-independent hyper MV –algebra dynam-

ical system, and U, V ∈ PM . Then U is said to be a refinement of V modulo m if

m(um) ≥ m(vm). The notation V
m
≤ U is used to show that U is a refinement of

V modulo m. U and V are said to be m–equivalent if V
m
≤ U and U

m
≤ V . The

notation U
m∼ V is used to show that U and V are m–equivalent.

Moreover, if U ′ and V ′ are the sets that are composed of partitions of unity of

(M,m, T ), by saying U ′ is a refinement of V ′ modulo m, V ′ m
≤ U ′, it is understood

that for every V ∈ V ′, V
m
≤ U for some U ∈ U ′. The notation U ′ m∼ V ′ is used if

V ′ m
≤ U ′ and U ′ m

≤ V ′.

Remark. 2.5. Let (M,m, T ) be a semi-independent hyperMV –algebra dynamical

system, U, V ∈ PT , {U, V } ∈ RN , and C ∈ U ∨ V . It is straightforward to check

that

l1) C
m
≤ U if and only if H(C) = H(U) +HC(V |U);

l2) U
m
≤ C if and only if H(C) = H(U)−HC(V |U);

l3) V
m
≤ U if and only if H(V ) ≥ H(U). In particular, U

m∼ V if and only if

H(U) = H(V );

l4) HC(U |W ) = 0 if and only if W
m∼ C.

Moreover, we have

l5) if U ≤ V , then U
m
≤ V .

Definition. 2.6. Let U, V ∈ PT . We say that U is a generator of V of order K if

the following conditions are satisfied:

m1) there exists a positive integer N such that for every n ≥ N , Un

m
≤ Vn;

m2) K = min{N | N satisfies Condition (m1) }.

In this case, the notation V ≪GK
U is applied. If it is not important to emphasize

on K, it is just written as V ≪G U . In addition, a perfect partition of unity, U ,

of T is called a generator of the semi-independent hyper MV –algebra dynamical

system (M,m, T ) if for every V ∈ PT , V ≪G U . The notation U <G T is used to

show that U is a generator of T .

Moreover, if U ′ and V ′ are the sets that are composed of partitions of unity of

(M,m, T ), by saying U ′ is a generator of V ′, V ′ ≪G U ′, it is understood that for

every V ∈ V ′, V ≪G U for some U ∈ U ′.
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Theorem. 2.7. Let (M,m, T ) be a hyper MV –algebra dynamical system, and

PT ̸= ∅. If

G = PT ∖ U0, then h(T ) = sup{h(T,W ) | W ∈ G}, where

U0 = {U ∈ PT | U ≪G V for some V ∈ PT }.

Proof. Suppose that U ≪GK
V for some V ∈ PT . Let n ≥ K; then, for every

C ∈ Vn, C
m
≤ D for some D ∈ Un. Thus, Hn(T,U) ≤ Hn(T, V ) for n ≥ K. It

occurs that h(T,U) ≤ h(T, V ). □

Theorem. 2.8. Let (M,m, T ) be a semi-independent hyper MV –algebra dynam-

ical system, and k be any positive integer. If PT ̸= ∅, and for every U ∈ PT , the

following statements are satisfied:

n1) there exists N > 0 such that for every n ≥ N , and every C ∈ Uk(T ),

C ∈ PTk and Cn(T
k)

m∼ Unk(T );

n2) U ≪G W for some W ∈ Gk, where Gk =
∪

V ∈PT
Vk(T );

then, h(T k) = kh(T ). If PT = ∅, then h(T k) ≥ kh(T ).

Proof. Evidently, we have

(24) kh(T,U) = h(T k, C).

Now, considering (n2), there exists V ∈ PT such that Hn(T
k, U) ≤ Hn(T

k,W )

for some W ∈ Vk(T ); thus, h(T
k, U) ≤ h(T k,W ). It follows that

(25) sup
W∈Gk

h(T k,W ) = sup
U∈PM

h(T k, U).

Considering, Equations (24) and (25), it is obtained that

kh(T ) = k sup
U∈PT

h(T,U) = sup
C∈Gk

h(T k, C) = sup
W∈Gk

h(T k,W ) = sup
U∈PM

h(T k, U) = h(T k).

If PT = ∅, then h(T ) = 0. Therefore, h(T k) ≥ 0 = kh(T ). □

Theorem. 2.9. Let (M,m, T ) be a semi-independent hyper MV –algebra dynam-

ical system, and U ∈ PT for which there exists N > 0 such that for every n ≥ N ,

{U}
m
≤ Un. Then h(T,U) = 0.
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Proof. Let n ≥ N . Since {U}
m
≤ Un, then H(C) ≤ H(U) for some C ∈ Un. Thus,

Hn(T,C) ≤ H(U); then,

h(T,U) = lim
n→∞

1

n
Hn(T,C) ≤ lim

n→∞

1

n
H(U) = 0.

□

Corollary. 2.10. Let (M,m, T ) be a semi-independent hyper MV –algebra dy-

namical system. If for every U ∈ PT , there exists N > 0 such that for every n ≥ N ,

{U}
m
≤ Un, then h(T ) = 0.

Proof. The proof is clear by using Theorem 2.9. □

Theorem. 2.11. Let (M,m, T ) be a semi-independent hyper MV –algebra dynam-

ical system, and U <G T . Then h(T ) = h(T,U).

Proof. Let V ∈ PT be given. Since U <G T , it follows that V ≪G U . Consid-

ering the proof of Theorem 2.7, the obtained result is h(T, V ) ≤ h(T,U). Thus,

supV ∈PT
h(T, V ) ≤ h(T,U). □

3. Conclusion

In this paper, the essential ergodic properties of semi-independent systems over

hyper MV –algebras are discussed. Specifically, it is proved that the total entropy

of a system that has a generator is calculated with respect to its generator. For the

purpose of calculating the entropy, it is paramount to make use of sequences rather

than tuples as partitions to define the idea of the entropy of a semi-independent

hyper MV –algebra dynamical system for future research.
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