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ABSTRACT. In the following text for arbitrary X with at least two elements,
nonempty countable set I' we make a comparative study on the collection of
generalized shift dynamical systems like (X1 0,) where ¢ : T — T is an arbi-
trary self-map. We pay attention to sub-systems and combinations of general-
ized shifts with counterexamples regarding Devaney, exact Devaney, Li-Yorke,

e-chaoticity and P-chaoticity.
AMS Classification: 54H20, 37D99

Keywords: Devaney chaos, Exact Devaney chaos, Distributional chaos, e-chaos,
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1. INTRODUCTION

By a dynamical system (Z, f) we mean a compact metric space Z and continuous
map f : Z — Z. Different definitions of chaos have been assigned to a dynamical

system (Z, f), like Devaney chaos, Li-Yorke chaos, topological chaos etc. On the
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other hand one-sided shift {1,...,k} — {1,..., k}Y is one of the most famous dy-
(Zn)n>1(Tnt1)n>1
namical systems. For nonempty set I', arbitrary set X with at least two elements

and self map ¢ : I' — I the generalized shift o, : XT — XT has been intro-
(IQ)QEFH(‘TAP(O))QEF
duced for the first time in [3] as a generalization of one-sided (and two-sided) shift.

For topological space X, equip X' with product (pointwise convergence) topology,
then o, : X I' 5 XT is continuous, also note to the fact X' is compact metrizable
if and only if X is compact metrizable and I' is countable. So for finite discrete
X and countable I' we may consider generalized shift dynamical system (X', 0p).
Different chaos have been studied in generalized shifts (e,g., [4]), the main aim of
this text is to study their interactions via diagram and counterexamples.

In details, in first section we have preliminaries and basic definitions, in section 2
we compare different mentioned entropies in generalized shift dynamical systems
via a diagram, in section 3 we continue our study for product and factors of gener-
alized shift dynamical systems and finally in section 4 we deal with composition of
generalized shift dynamical systems.

Let’s begin our investigations with recalling the definitions of Devaney chaos [11, 17],
exact Devaney chaos [12], distributional chaos [13], e-chaos [14], Li-Yorke chaos [10],
P-chaos [1], topological, and w—chaos [15].

Convention 1.1. In the following text suppose (Z, f) is a dynamical system with

compact metric space (Z,d).

Convention 1.2. In the following text suppose X is a finite discrete space with at
least two elements, I" is an infinite countable set, and self-map ¢ : I' — T'is arbitrary.

Equip X with product topology and consider generalized shift o, : XTI — XT.

Devaney chaos. We say the dynamical system (Z, f) is Devaney chaotic if f :
7 — Z is sensitive to initial conditions (SIC) and [11, 17]:
TT. f:Z — Z is topological transitive, i.e. for all nonempty open subsets U, V
of Z there exists n > 1 with f*(U)NV # @,
PP. the collection of all periodic points of f, Per(f), is dense in Z (where z € Z
is a periodic point of f if there exists n > 1 with f*(z) = z).
However according to [9], if Z does not have any isolated point, SIC is redundant
and TT+PP implies SIC.
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Exact Devaney chaos. We say the dynamical system (Z, f) is exact Devaney
chaotic if it is locally eventually onto or leo (i.e., for all nonempty open subset U of
Z there exists n > 1 with f™(U) = Z) and the collection of all periodic points of f,

is dense in Z (hence exact Devaney chaotic means Devaney chaotic+leo) [12].

Li-Yorke chaos, distributional chaos, w—chaos and topological chaos. In

the dynamical system (Z, f) we say x,y € Z are:

o Li-Yorke scrambled if

limsup d(f™(z), f™(y)) > 0 and linniiorgf d(f™(z), f™(y)) =0,

n—oo

o distributional scrambled if:

{i€{0,....n—1}:d(f'(2). f'(y) < s} _

ds > 0 lim inf 0,
n—oo n
and
s = 0 imenp [ € 0 con = 12 @) @) <sH |

n— oo n

o w—scrambled pair if (where wy(x) = {z € Z : there exists a strictly increas-
ing sequence (ny)g>1 with leII;O e (x) = z}):
— wy(z) \ ws(y) is uncountable,
— wiz) Nwr(y) # 2,
— wi(@) \ Per(f) # 2.

We say A C Z (with at least two elements) is an Li-Yorke scrambled set (resp. distri-
butional scrambled set, w—scrambled set), if for all distinct points z,y € A, x,y are
Li-Yorke scrambled pair (resp. distributional scrambled pair, w—scrambled pair).
We say (Z, f) is Li-Yorke chaotic (resp. distributional chaotic, w—chaotic) if it has
an uncountable Li-Yorke scrambled (resp. distributional scrambled, w—scrambled)
set [10, 13, 15].

For open covers U,V of Zlet U VYV :={UNV : U € U,V € V} and NU) :=
min{|[W| : W is a finite subcover of V}. In dynamical system (Z, f) the limit
entiop (.00 = timg ENUV IO Vv T IE))

n
entiop(f) := sup{entop(f, W) : W is a finite open cover of Z} the topological entropy
of f. We say (Z, f) is topological chaotic if entyo,(f) > 0.

exists [16] and we call
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P-chaos. In the dynamical system (Z, f) for §,¢ > 0 we say the sequence (x;);>0
is a 0—pseudo orbit, if for all ¢« > 0 we have d(f(z;),zi+1) < 0 and we say x is an
e—trace of (x;);>0 if for all i > 0 we have d(f*(z),z;) < e. We say (Z, f) has pseudo
orbit tracing property if for all € > 0 there exists § > 0 such that every d—pseudo
orbit has an e—trace. We say the system (Z, f) is P-chaotic if it has pseudo orbit

tracing property and the collection of periodic points of f, is dense in Z [1].

e-chaos. In the dynamical system (Z, f) for homeomorphism f: Z — Z is expan-
sive if there exists > 0 such that for all distinct x,y € Z there exists n € Z with
d(f™(x), f™(y)) > p. We say the dynamical system (Z, f) is e-chaoticif f : Z — Z
is an expansive homeomorphism and the collection of all periodic points of f, is
dense in Z [14].

Remark 1.3. The generalized shift dynamical system (X', 0,) is

e Devaney chaotic if and only if ¢ : I' — T' is one-to-one without periodic
points [4, Theorem 2.13],

e exact Devaney chaotic if and only if ¢ : I' — I' is one-to-one moreover
@ : I' = T does not have periodic points nor infinite p—anti orbit sequences
[4, Corollarey 3.5] (where (z,,),> infinite p—anti orbit sequence if it is one-
to-one and for all n > 1 we have p(z,41) = x,),

e Li-Yorke chaotic (resp. distributional chaotic, w—chaotic, topological chaotic)
if and only if ¢ : I' — T has at least a non-quasi-periodic point [2, 5, 6]
(where we say a € T' is a quasi-periodic point of ¢ if there exist n >m > 1
with ¢"(a) = ™ (a)),

e P-chaotic if and only if ¢ : T' — T is one-to-one [7],

e c-chaotic if and only if ¢ : I' — I' is bijective and {{p%(a):i € Z} : a € '}

is a finite partition of I" [8].

2. A DIAGRAM AND COUNTEREXAMPLES

In this section we compare different mentioned entropies (in the collection of gen-
eralized shift dynamical systems with phase space X!) via a diagram.
Let’s consider the following classes of generalized shifts:

e Ci= {(XT,0,) inelT),

e Cri—vorke = {(X",0,) € C: (X", 0,) is Li-Yorke chaotic},
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Cp:={(X',0,) €C: (X", 0,) is P-chaotic},

Ce :={(X",0,) €C: (X", 0,) is e-chaotic},

® Cevact Devaney = {(X",0,) € C: (X", 0,) is exact Devaney chaotic},
Chevaney = {(X",0,) € C: (X', 0,) is Devaney chaotic}.

Using Remark 1.3 it’s evident that

also

however if (XT,0,) is e-chaotic, then ¢ : I' — T is bijective and {{¢*(a) :

Cea:act Devaney - CDe’Uaney C CP C c

CDevaney c CLifYorke c C 3

89

1 €

Z} : a € T} is a finite partition of I', since I' is infinite, there exists a € I' such

that {¢*(c) : i € Z} is infinite and hence « is non-quasi-periodic. Thus (X', 0,,) is

Li-Yorke chaotic. Therefore

Ce c CLifYorke .

Now we have the following diagram:

E8

Cea:act Devaney CDevaney
cr
E1
Ce E4
E6 b2
E3 B5
CrLi—vorke BE7

where “Ei” means counterexample (X', 7,,) (below).

Since T is infinite countable, we may suppose I' = {x,, : n € Z} with distinct x,s.
For i = 1,...,8 define n; : I' — ' with n;(z,,) = 2x,(n) (n € Z) for \; : Z — Z
with (p,, is the mth prime number, and {y, : n € Z} = Z\ {£pF : n,k > 1} with
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Yn < Yn41 for all n

n+1l n>0,
)\1(”)2{
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€Z):

Xo(n)=n+1(neZz),

n—1 n<0,

n

n—+ 2 2In,
A5<n>={ |

n

+1 n>1,
0 —pitt n=—ph k>1,
n =
1’ Aa(n) = ¢ phtt n=pk k>1,
n=-1,
n=yik€Z,
41 n<-1, Yk+1 Yk

Xé(n) =-n(nez),
otherwise ,

M(n)=n%(nez), As(n) =1In|(neZ).

3. COUNTABLE PRODUCTS AND APPROPRIATE FACTORS

In this section we st

eralized shift dynamical systems. Suppose {(Z,, fo) : @ € A} is a nonempty count-

udy different entropies for product and (suitable) factors in gen-

able collection (A is countable) of dynamical systems, then H Zo with product

topology is a compact metrizable space and one may consider the dynamical sys-

tem (H Zos H fa

acA

) with H fa((xa)aeA) = (foc(xa))ael\ (for (ma)aGA € H Zoc)'

a€A aeA a€A aEA

Regarding product of generalized shifts we have the following table:

* | o(%)

exact Devaney for all a € A, (X', 0,,) is exact Devaney chaotic

Devaney for all a € A, (X", 0,,) is Devaney chaotic

e- A is finite and for all a € A, (X", 0,,) is e-chaotic

P- for all @ € A, (XT=,0,,) is P-chaotic

Li-Yorke there exists a € A, such that (X', 0, ) is Li-Yorke chaotic

In the above table suppose A is a nonempty countable set

and for each a € A, T', is an infinite countable set and ¢, : ', — ', is an

arbitrary self-map, so for corresponding case we have

LL(H

a€cA

XTe, H 0y, ) is % chaotic if and only if o(3)”.
aEA
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U T,
First note that (H XTe, H 0y, ) is just (X=€r " 0 | ) now use Remark 1.3

acA aEA aeh
to establish the above table.

For self-map n: I' = I let:

o I() = {ACT: A#2,9(4)C A},
o J(n):={AeT:n1(A) C A},

e O(n) ={U{n"(a) :ne€eZ}:aeT},
e O,(n) ={{n"(a0) :n>0}: e},

then it’s evident that O(n) € J(n) C Z(n) and Oy(n) C Z(n). Moreover for all
A € I(n) one may consider the generalized shift dynamical system (X%, o,14) (note
that (X4, 0,,,) is a factor of (XT,0,), e.g. via conjugacy X' — X4 . Now

(za)aer—=(za)aca
we have the following table:

* H & ‘ K ‘ counterexample
exact Devaney || V ,J,0 D1
Devaney v 7,J,0 D1

e- N ,J D2, D3

P- N ,J,0 D1
Li-Yorke 31Z,7,0,04 -

In the above table for the corresponding case, (X', 0,) is % chaotic if and only if
OD € K(n) (XP,0,,) is % chaotic)
moreover “Di” means counterexample “i” in the blow

(these counterexamples deal with column KC).
In the following items suppose I = {z,, : n € Z} with distinct z,,s.

(1) Consider n: I" = I'' with

T n<0,
Tpy1 N 2>0,

then for all D € Oy, n [p is one-to-one without periodic points and infinite
anti orbit sequence thus (X, 0,;,) is exact Devaney, Devaney, and P-
chaotic, however 7 is not one-to-one and (X', 0,) is not none of exact

Devaney, Devaney, or P-chaotic.
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(2) Consider 1 : I' = I' with n(z,) = 2x,(n) for Ay : Z — Z as in the previous
section, then for all D € O(n), (XP,0,,,) is e-chaotic, however (X', 0,) is
not e-chaotic.

(3) Consider nn : I' — I' with n(z,) = z_, then O(n) = O4(n) and for all
D € O(n), D is finite. For all D € O(n) = O4(n), (XP,0,,) is e-chaotic,

however (X', 0,) is not e-chaotic.

4. ITERATIONS AND COMPOSITIONS

In our last section we pay attention to different entropies in generalized shift dy-
namical systems. If (Z, f) and (Z,g) are dynamical systems, one may consider
dynamical system (Z, f o g). In particular for all p > 1, one may consider the
dynamical system (Z, fP), the following Note help us to improve our ideas on this

maftter.

Note 4.1. For h: A — A, t € A, p > 2, and sequence (zy),>1 in A we have:

1. Per(h) = Per(h?) (¢t is a periodic point of h : A — A if and only if it is a
periodic point of AP : A — A),

2. t is a quasi-periodic point of h : A — A if and only if it is a quasi-periodic
point of h? : A — A,

3. h: A — Ais one-to-one (resp. onto) if and only if h? : A — A is one-to-one
(resp. onto),

4. if (wp)n>1 is an infinite h—anti orbit sequence, then (wi4np)n>1 is an infi-
nite h? —anti orbit sequence,

5. if (wp)n>1 is an infinite A? —anti orbit sequence, let
Y1 = Wi, Y2 = hp—l(w2)7 ey Yp = h(’lUQ),

Ypt1 i= Wa, Ypr2 i= WP~ (w3), ..., ya2p = h(ws),

Ymp+1 = Wi, Ympt2 = PP H(Wig1), - -+ Y(ma1)p = M(Wms1),

then (yn)n>1 is an infinite h—anti orbit sequence,
6. consider (3) and suppose h, h? : A — A, using {h(t) : i € Z} = U{{h"(y) :
i €Z}:y € {t,h(t),...,h?71(t)}}, the set =1 := {{hi(z) :i € Z} : x € A}
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is finite if and only if =, := {{h"(z) : i € Z} : z € A} is finite with
card(E,) < card(Z1) < pcard(Z,).

Corollary 4.2. Using of = oy», Remark 1.3 and Note 4.1, for p > 1, (X", 0,) is
chaotic (all kinds of chaos in Remark 1.3) if and only if (X', 02) is so.

Note 4.3. For one-to-one map h : Z — Z, the following statements are equivalent:

e there is not any infinite h—anti orbit sequence,
e for all & € Z there exists n > 1 such that h™"(a) = @ or « is a periodic

point of h.

Lemma 4.4. For ¢,n: ' = I" we have:

1. If (X', 0, 0 0y) is P-chaotic, then (X', 0,) is P-chaotic.

2. If (X", 5,) and (X', 0y) are P-chaotic, then (X', 0, 0 0y) is P-chaotic.

3. For pon = nov, (XV 0,) and (X',0,) are P-chaotic if and only if
(X', 0, 00,) is P-chaotic.

4. Suppose thon = no1), 1 is one-to-one and (X1, oy) is exact Devaney chaotic,
then (X1, 0,00y) is exact Devaney chaotic. In particular if ¢yon = not, and
both dynamical systems (X', 0,) and (X', 0y) are exact Devaney chaotic,
then (X', 0, 00y) is exact Devaney chaotic.

5. If pon=mno and (X', 0, 00y) is Li-Yorke chaotic, then either (X', o))
is Li-Yorke chaotic or (X', 0y) is Li-Yorke chaotic.

Proof. Note that o, 00y = oyoy-

4) Suppose thon = no1p, ¢ is one-to-one and (X', 0,) is exact Devaney chaotic, then
7 is one-to-one without any periodic point, moreover there is not any infinite n—anti
orbit sequence. Since 7,1 are one-to-one, ¥ o7 is one-to-one too. By Note 4.3, since
7 is one-to-one without any periodic point and there is not any infinite n—anti
orbit sequence, for all @ € T' there exists n > 1 such that 7" (a) = &, thus
(Won) ™(a) =9y "(n "(a)) = & and I' does not contain any infinite 1) o n—anti
orbit sequence.

If « is a periodic point of ¥ o7, then for all n > 1 there exists p > 1 with a =
(6 o n)P(a) = n"(P~"(¥P(a))) and 7P~"(P(a)) € n~"(a) which leads to the
contradiction 7~ "(a) # @ for all n > 1. Thus 9 o n does not have any periodic
point.

5) Suppose ¢ o = no 1 and both dynamical systems (X',0,) and (X', 0y)
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are not Li-Yorke chaotic. Choose o € T', since (X F,an) is not Li-Yorke chaotic,
{n™(a) : n > 0} is finite, suppose {n™(a) : n > 0} = {B1,...,B8,}. Since (XT,0,)
is not Li-Yorke chaotic, for all ¢ = 1,...,p, {¢"(B;) : n > 0} is finite, hence
{™(B;) :n > 0,1 <i < p} is finite, using:

{Won)*(a):n=0} = {$"(n"(a)):n =0}
C {¥"(B):n=0,1<i<p}

the set {(¢ on)™(a) : n > 0} is finite too (for all & € T') and (X', 0, 0 0y) is not
Li-Yorke chaotic. O

N

Two tables. Regarding composition of generalized shifts we have the following

tables (use Lemma 4.4):

“ exact Devaney ‘ Devaney e- P- Li-Yorke H P

=

C4, C5 C3,C2 | €3, C2 o6 C3,C2 || (XY, 0p) or (X, 04)
=

(XT, 0, 004) C4, C5 C3,C2 | C3,C2 6 C3, 02 (xXT,0,)

Cl1, C4 C3,Cl | C3,C2|C6,ClL| C3,C1 (XY, 04)
< r r

C1, C4 C2,C3 | C2,C3 o 02, C3 || (XT,0,) and (XT,04)

For 1,7 : ' — I we have the above table for studying
“f (X1, 0, 00y) is * chaotic, then p is % chaotic”
and
“if p is % chaotic, then (X', 0, 00y) is % chaotic”
in the corresponding case, where “Ci” means counterexample “i” in the blow.

Also:

“ exact Devaney ‘ Devaney ‘ e- ‘ P- ‘ Li-Yorke “
=
9, C5 C3,C5 | €3, C8 = (XT,0,) or (XT,0y)
C6 C3
=
(XY, 0p004) C9, C7 C3,C7 | C3,C7 o6 C3, C7 (XY, 00)
< r r
o C3,C7 | €3, CT N 3, C7 || (XT,0,) and (X7, 0y)

For n,¢ : ' = T" with 1) o) = 1 o ¢) we have the above table for studying
“f (XT, 0, 00y) is % chaotic, then p is % chaotic”
and

“if p is % chaotic, then (X', 0, 00y) is * chaotic”
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in the corresponding case, where “Ci” means counterexample “i” in the blow.

Note that o, 0 0y = 0yoy. In the following counterexamples once more since I is

infinite countable, we suppose I' = {z,, : n € Z} with distinct z,s.

(1) Consider 0, : T' — T with 0(z,) = z2, and p(xe,) = xon, w(ront1) =
x|2n+1|) forn € Z, then pof =6 : ' — T is one-to-one without periodic
points and infinite anti orbit sequences, so (X', 09)(= (X', 0900,,)) is exact
Devaney, Devaney, Li-Yorke and P-chaotic but p is not one-to-one and all
points of I' are quasi periodic points of y, thus (X', o) is not chaotic in
any of the above senses.

(2) Consider 0, : T — T with 0 = -+ (z_3 2_2)(z_1 z0)(21 22) (x5 24) - - - and
p=-(z_gx_1)(wo x1)(w2 x3) - - -, then neither (X', oy) nor (X', 0,) is
Li-Yorke chaotic (resp. Devaney chaotic, e-chaotic) but (X', 09 0 ),) is.

(3) Consider 0,p : I' — T with 6(x,) = xp41 (n € Z) and p = 07!, then
(X", 09) and (X, 0,) are Devaney, Li-Yorke and e-chaotic, but (X', 0¢ o
o,) is not.

(4) Consider 0, : T — T with g = (xg x1 x—1 22 x_g x3 ---) and 6§ =
(Tox_1 212 2x2x_5 ---), then (X, 0p) and (X', 0,) are exact Devaney,
however —1 is a fix point of po 6, thus (X', 0,00) = (X', 09 0 5,) is not
exact Devaney chaotic.

(5) Consider 0,y : ' — T" with

Tn+1 N Z 0 ) Tn, n Z 0 )
O(zy,) = () =
T n<0, Tp_1 n<O0,

T n>0,
0o u(xzy) =pob(x,) = i -
Tn—1 N< 0 s
then 6 and g have fix points, so neither (X', 09) nor (X', 0,) are exact

Devaney chaotic, however (X', g 0 0,,) is exact Devaney chaotic.

(6) Consider 0, p: I' — I" with p(z,) = xo for all n € Z and

Tn+1 n#_LOv
O(xzn) =4 xo n=20,

T1 n=-—1,
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then 6 o u = p 0 60 constant map. Hence (X', 0y) is Li-Yorke chaotic, e-
chaotic and P-chaotic, however (X', 04 0 0,,) is not chaotic in any of the
above senses.

(7) Consider n : I' — I such that (X', o)) is exact Devaney (resp. Devaney, Li-
Yorke) chaotic, then noidr = idron, moreover (X', 0,) = (X, 0,00:4,) =
(X', 044y 0 0yy) is exact Devaney (resp. Devaney, Li-Yorke, e-) chaotic, but
(X1, 044,.) is not exact Devaney (resp. Devaney, Li-Yorke, e-) chaotic.

(8) Consider 6, : T' — T" with:

T, nisodd,

0(x,) = () =
" Tnt+2 MNUSeven, " Ty nis even ,

Tpto Nisodd,

then neither (X', 09) nor (X', 0,) are e-chaotic, however (X', oy, is e-
chaotic.
(9) Consider 6, : T' — T with:

Tn+1 n >0, T_p_1 n=>0,

w(@n) =
Tp—1 n <0, Tn n < 0,

O(xy,) =

then (X', 0p) is exact Devaney chaotic and 6 o = p o @ however neither

(X', 0,) nor (X, 09 00,) is exact Devaney chaotic.
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