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Abstract. In this paper, we investigate the problem of bifurcation control for

a delayed logistic growth model. By choosing the timedelay as the bifurcation

parameter, we present a Proportional - Derivative (PD) Controller to control

Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or

advanced via a PD Controller by setting proper controlling parameter. Under

consideration model as operator Equation, apply orthogonal decomposition,

compute the center manifold and normal form we determined the direction

and stability of bifurcating periodic solutions. Therefore the Hopf bifurcation

of the model became controllable to achieve desirable behaviour which are

applicable in certain circumstances.
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1. Introduction

The single-species logistic growth model governed by delay differential equations

plays an important role in population dynamics and ecology that has been investi-

gated in-depth involving the stability, persistent, oscillations and chaotic behaviour
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of solutions[6]-[8]. Gopalsamy and weng[2] considered the following system:ṅ(t) = rn(t)[1− n(t− τ)

k
− cv(t)]

v̇(t) = −dv(t) + en(t)
(1)

where r, c, d, e, k ∈ (0,+∞) and τ ∈ [0,+∞). the initial conditions for the

system (1) take the n(s) = ϕ(s) ≥ 0, ϕ(0) > 0, ϕ ∈ C([−τ, 0], R+), v(0) = v0. The

solutions of (1) are defined for all t > 0 and also satisfy n(t) > 0, v(t) > 0 for t > 0.

And the system (1) has unique positive equilibrium (n∗, v∗) = (
dk

d+ kec
,

ek

d+ kec
).

Then by the linear chain trick technique, system (1) can be transformed into the

following equivalent system:

ẋ(t) = −dx(t) + en∗y(t)

ẏ(t) = −crx(t)− rn∗

k
y(t− τ)− crx(t)y(t)− rn∗

k
y(t− τ)y(t)

(2)

The author obtained when the condition (H)
ec

d
>

1

k
and d > (1 +

√
2)r hold,

the positive equilibrium (n∗, v∗) of (1) is linearly asymptotically stable irrespective

of the size of the delay τ . Xie [3] interested in the effect of delay τ on dynamics

of system (1) when the condition (H) is not satisfied. Taking the delay τ as a

parameter, they showed that the stability and a Hopf bifurcation occurs when the

delay τ passes through a critical value. We summarize these features of the solution

via the existence and stability of a positive equilibrium in following:

If
ec

d
<

1

k
then (n∗, v∗) is locally asymptotically stable for 0 ≤ τ < τ0 and

unstable for τ > τ0 and system (1) undergoes Hopf bifurcation at (n∗, v∗) when

τ = τn, n=0,1,2,...

2. Hopf Bifurcation in Controlled System

In this section, we focus on designing a controller to control the Hopf bifurcation

in model based on the PD strategy[4], [5]. Apply the PD control to system (2), we

get

(3)ẋ(t) = −dx(t) + en∗y(t) + kpx(t) + kdẋ(t)

ẏ(t) = −crx(t)− rn∗

k
y(t− τ)− crx(t)y(t)− rn∗

k
y(t− τ)y(t) + kpy(t) + kdẏ(t)
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where 0 < kp ≤ 1 and 0 < kd ≤ 1. whose characteristic linear equation(3) is

(4)

λ2 − (a1 + b2 + b3e
−λτ )λ+ a1b3e

−λτ + a1b2 − a2b1 = 0

That a1 =
kp − d

1− kd
, a2 =

en∗

1− kd
, b1 =

−cr

1− kd
, b2 =

kp
1− kd

and b3 =
−rn∗

k(1− kd)
. If

τ > 0, we assume λ = iω is a purely imaginary root of (4), then we can obtained

−ω2 − b3ωsinωτ + a1b3cosωτ + a1b2 − a2b1+

i[−(a1 + b2)ω − b3ωcosωτ − a1b3sinωτ ] = 0
(5)

Separating the real and imaginary parts of (5)

ω2 + a2b1 − a1b2 = −b3ωsinωτ + a1b3cosωτ

−(a1 + b2)ω = b3ωcosωτ + a1b3sinωτ
(6)

since sin2ωτ + cos2ωτ = 1 therefore

ω4 + [2a2b1 + a1
2 + b2

2 − b3
2]ω2 + (a2b1 − a1b2)

2 − (a1b3)
2
= 0(7)

So if the condition kp
2 − (rn∗ + d)kp + drn∗ + en∗cr > 0 (M) holds, then the

equation (7) has a solution ω0 > 0, since equation of the (6)

(8)

τn =
1

ω0
arcsin[

ω0k(1− kd)(ω0
2(1− kd)

2 − en∗cr + (kp − d)
2
)

rn∗(1− kd)
2
ω0

2 + (kp − d)
2
rn∗

]+
2nπ

ω0
, n = 0, 1, 2, ...

proposition: In the equation of (4), If the condition (M) holds, then

Re(
dλ

dτ
)|λ=iω0 ̸= 0.

Proof. We compute
dλ

dτ
from equation (4),

dλ

dτ
=

a1b3λ− b3λ
2

2λeλτ + b3τλ− a1eλτ − b2eλτ − b3 − a1b3τ
.

The real part of (
dλ

dτ
)|λ=iω0 obtained from

(9)

A =
[−2ω0

3b3 − a1b3ω0(a1 + b2)]sinω0τn + [−b3ω0
2(a1 + b2) + 2ω0

2a1b3]cosω0τn − b3
2ω0

2

Λ
where
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Λ = [−2ω0sinω0τn − (a1 + b2)cosω0τn − b3 − a1b3τn]
2

+ [2ω0cosω0τn + b3ω0τn − (a1 + b2)sinω0τn]
2
So A ̸= 0 completing the proof. □

Consequently, the equilibrium of (3) will occur Hopf bifurcation when τ = τn.

3. Direction and Stability of Hopf Bifurcation Period Solution

In Section 2, we obtained conditions for the Hopf bifurcation to occur when

τ = τn under the condition (M). In the section we study the direction of the Hopf

bifurcation and the stability of the bifurcating periodic solutions, using techniques

from normal form and center manifold theory for delay differential equations[1]. Let

x(t) := x(τt), y(t) := y(τt). Then system (3) can be written as

(10)
ẋ(t) =

τ

1− kd
[(kp − d)x(t) + en∗y(t)]

ẏ(t) =
τ

1− kd
[−crx(t) + kpy(t)−

rn∗

k
y(t− 1)− crx(t)y(t)− rn∗

k
y(t− 1)y(t)]

Let µ = τ − τn, functional differential equation (10) in C = C([−1, 0], R2) is

x́(t) = Lµ(xt) + f(µ, xt)(11)

where x(t) = (x(t), y(t))
T ∈ R2 and Lµ : C −→ R2, f : R × C −→ R2are given,

respectively:



Lµ(ϕ) =
(τn + µ)

1− kd

(kp − d) en∗

−cr kp

ϕ1(0)

ϕ2(0)


+
(τn + µ)

1− kd

0 0

0 −rn∗

k

ϕ1(−1)

ϕ2(−1)

(12)

f(µ, ϕ) =
(τn + µ)

1− kd

[
0

Q

]
, Q = −crϕ1(0)ϕ2(0)−

rn∗

k
ϕ2(−1)ϕ2(0)(13)

By the Riesz representation theorem, there exists a function η(θ, µ) of bounded

variation for θ ∈ [−1, 0] such that Lµ(θ) =
∫ 0

−1
dη(θ, µ)ϕ(θ), ϕ ∈ C. In fact, we can

choose :
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η(θ, µ) =
(τn + µ)

1− kd

[
(kp − d) en∗

−cr kp

]
δ(θ) − (τn + µ)

1− kd

0 0

0 −rn∗

k

 δ(θ + 1). That

δ =

0 ifθ ̸= 0

1 ifθ = 0
. For ϕ ∈ C([−1, 0], R2), define:

A(µ)ϕ =


dϕ(θ)

dθ
ifθ ∈ [−1, 0)∫ 0

−1
dη(θ, µ)ϕ(θ) ifθ = 0

, R(µ)ϕ =

0 ifθ ∈ [−1, 0)

f(µ, ϕ) ifθ = 0
. Then

system (11) is equivalent to

x́t = A(µ)xt +R(µ)xt(14)

where xt(θ) = x(t + θ), θ ∈ [−1, 0]. For Γ ∈ C([0, 1], (R2)
∗
), define A∗(µ)Γ =−dΓ(θ)

dθ
ifθ ∈ (0, 1]∫ 0

−1
dη(θ, µ)ϕ(θ) ifθ = 0

and a bilinear inner product< Γ, ϕ >= Γ̄T (0)ϕ(0)−

∫ 0

−1

∫ θ

ξ=0
Γ̄T (ξ−θ)dη(θ)ϕ(ξ)dξ Where η(θ) = η(θ, 0). As < Γ, A(0)ϕ >=< A∗Γ, ϕ >,

obviously A(0) and A∗(0) are adjoint operators and±iω0 are eigenvalues of A(0) and

A∗(0). We first need to compute the eigenvector of A(0) and A∗(0) corresponding

to iω0 and −iω0 respectively. Suppose that q(θ) = (1, q1)
T
eiω0θ is the eigenvector

of A(0) and q∗(s) = D(1, q∗1)e
−iω0s is the eigenvector of A∗(0) corresponding to

iω0, −iω0 respectively. In order to assure < q∗, q >= 1, we need to determine the

value of the D. From inner product we can obtain D =
1

1 + q̄∗1q1 −
rn∗τne

iω0

k(1− kd)
q̄∗1q1

.

To compute the coordinates describing center manifold C0 at µ = 0. Define

z(t) =< q∗, xt >,W (t, θ) = xt − 2Rez(t)q(θ). On the center manifold C0 we have

W (t, θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ ..., For the solution xt of (14) since

µ = 0, we have ź(t) = iω0z+ q̄∗(0)f(0, z, z̄) = g20
z2

2
+ g11zz̄+ g02

z̄2

2
+ g21

z2z̄

2
..., to

calculate the coefficients, we have g20 =
2τnD̄q∗1(0)

1− kd
[−crq1 −

rn∗

k
q1

2e−iω0 ], g11 =

τnD̄q∗1(0)

1− kd
[−cr(q̄1 + q1) −

rn∗

k
(q1q̄1e

iω0 + q1q̄1e
−iω0)], g02 =

2τnD̄q∗1(0)

1− kd
[−crq̄1 −

rn∗

k
q̄1

2eiω0 ] and g21 =
τnD̄q∗1(0)

1− kd
[−cr(W20

(1)(0)q1 + 2W11
(1)(0)q1 + 2W11

(2)(0) +

W20
(2)(0))−rn∗

k
(W20

(2)(0)q̄1e
iω0+2W11

(2)(0)q1e
−iω0+2W11

(2)(−1)q1+W20
(2)(−1)q̄1)]
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that W11 = (W11
(1),W

(2)
11 ), W20 = (W20

(1),W
(2)
20 ). Let ∆ =

i

2ω0
{g11g20 − 2|g11|2 −

|g02|2

3
} + g21

2
. We define


µ2 = − Re{∆}

Reλ̇(τn)

T2 = −Im{∆}+ µ2Imλ̇(τn)

ω0

β2 = 2Re{∆}

. According to the case

described above, We can summarize the results in the following theorem:

theorem : For the controlled system (10), the Hopf bifurcation determined by

the parameters µ2, T2 and β2, the conclusions are summarized:(I) Parameter µ2

determines the direction of the Hopf bifurcation. if µ2 > 0, the Hopf bifurcation

is supercritical, the bifurcating periodic solutions exist for τ > τn, if µ2 < 0 the

Hopf bifurcation is subcritical, the bifurcating periodic solutions exist for τ < τn.

(II)Parameter β2 determines the stability of the bifurcating periodic solutions. If

β2 < 0, the bifurcating periodic solutions is stable, if β2 > 0 , the bifurcating

periodic solutions is unstable. (III) Parameter T2 determines the period of the

bifurcating periodic solution. If T2 > 0, the period increases, If T2 < 0, the period

decreases.

In the (2) let r = 1, k = 1, c =
1

2
, d = e = 2. we have:
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Figure 1. The numerical solution of uncontrol modle with corresponding

to ((A)): τ = 1.74281 and ((B)): τ = 1.5.

Conclusion

In this paper, the problem of Hopf bifurcation control for an logistic growth

model with time delay was studied. In order to control the Hopf bifurcation, a
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Figure 2. The numerical solution of control modle with corresponding to

kd = 0.3, kp = 0.1 ((A)): τ = 1.74281 and ((B)): τ = 1.5.

PD controller is applied to the model. This PD controller can successfully delay or

advance the onset of an inherent bifurcation. The end theorem helped to improve

model.
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