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Abstract. In this work, we use the formal definition of k-slant helix [5] to

obtain the intrinsic equations as well as the position vector for slant-slant

helices which a generalization of general helices and slant helices. Also, we

present some characterizations theorems for k-slant helices and derived, in gen-

eral form, the intrinsic equations for such curves. Thereafter, from a Salkowski

curve, anti-salkowski curve, a curve of constant precession and spherical slant

helix, as examples of slant helices, we apply this method to find the paramet-

ric representation of some slant-slant helices by means of intrinsic equations.

Finally, the parametric representation and the intrinsic equations of Slakowski

slant-slant and Anti-Slakowski slant-slant helices have been given.
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1. Introduction

Curves theory is an important branch in the differential geometry studies. We

have a lot of special curves such as geodesics, circles, Bertrand curves, circular

helices, general helices, slant helices, k-slant helices etc. Characterizations of these

special curves are heavily studied for a long time and are still studied. We can see

the applications of helical structures in nature and mechanic tools. In the field of

computer aided design and computer graphics, helices can be used for the tool path

description, the simulation of kinematic motion or design of highways. Also we can

see the helix curve or helical structure in fractal geometry, for instance hyperhelices

[1, 8].

A straight line is a geometric curve with the curvature κ(s) = 0. A plane curve is a

family of geometric curves with torsion τ(s) = 0. Helix (circular helix) is a geometric

curve with non-vanishing constant curvature κ and non-vanishing constant torsion

τ which is the simplest example of three-dimensional spirals [2, 6].

General helix (a curve of constant slope) is defined by the property that the

tangent makes a constant angle with a fixed straight line called the axis of the

general helix. A classical result was stated by Lancret in 1802 and first proved by

de Saint Venant in 1845 (see [18] for details) says that: A necessary and sufficient

condition that a curve to be a general helix is that the function

(1) σ0 =
τ(s)

κ(s)

is constant along the curve, where κ and τ denote the curvature and the torsion,

respectively.

Izumiya and Takeuchi [11] introduced the concept of slant helix by saying that

the normal lines make a constant angle with a fixed straight line. They characterize

a slant helix if and only if the geodesic curvature of the principal image of the

principal normal indicatrix

(2) σ1 =
σ′0(s)

κ(s)
(

1 + σ2
0(s)

)3/2
is a constant function.

A family of slant helices with constant curvature but non-constant torsion are

called Salkowski curves; a family of slant helices with constant torsion but non-

constant curvature are called anti-Salkowski curves which introduced in [16, 17]; a
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family of curves of constant precession [14, 15] which characterized by having

κ =
µ

m
sin[µ s], τ =

µ

m
cos[µ s],

where µ and m are constants and a family of spherical slant helices are the important

examples of a slant helices (see [4, 7] for details).

Recently, Ali [5] defined a new kind of curves which called it a k−slant helices.

He proved that the curve is a k-slant helix if and only if the geodesic curvature of

the spherical image of ψk indicatrix of the curve ψ

(3) σk =
σ′k−1(s)

κ(s)
√

1 + σ2
0(s)

√
1 + σ2

1(s) ...
(

1 + σ2
k−1(s)

)3/2 ,
is a constant function, where ψκ+1 =

ψ′k(s)

‖ψ′k(s)‖
, ψ0(s) = ψ(s), σ0(s) =

τ(s)

κ(s)
and

k ∈ {0, 1, 2, ...}. It is worth noting that, the straight lines, plane curves, general

helices and slant helices are a special subclasses of curves from the family of k-slant

helices.

Here, we give the following important definition:

Definition 1.1. A family of k-slant helices with constant curvature but non-constant

torsion are called Salkowski k-slant helices and a family of k-slant helices with con-

stant torsion but non-constant curvature are called Anti-Salkowski k-slant helices.

In this paper, we will use the definition of k-slant helix [5] and the notation of the

principal-direction curve curve [9] of a Frenet curve to obtain the intrinsic equations

and position vector of slant-slant helices as a generalization of general helices and

slant helices in Euclidean 3-space. Also, we will give the parametric representation

and the intrinsic equations of Slakowski slant-slant and Anti-Slakowski slant-slant

helices.

2. Preliminaries

In Euclidean space E3, it is well known that to each unit speed curve with at

least four continuous derivatives, one can associate three mutually orthogonal unit

vector fields T, N and B which are respectively called, the tangent, the principal

normal and the binormal vector fields. We consider the usual metric in Euclidean

3-space E3, that is,

〈, 〉 = dx21 + dx22 + dx23,
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where (x1, x2, x3) is a rectangular coordinate system of E3. Let ψ : I ⊂ R → E3,

ψ = ψ(s), be an arbitrary curve in E3. The curve ψ is said to be of unit speed (or

parameterized by the arc-length) if 〈ψ′(s), ψ′(s)〉 = 1 for any s ∈ I. In particular, if

ψ(s) 6= 0 for any s, then it is possible to re-parameterize ψ, that is, α = ψ(φ(s)) so

that α is parameterized by the arc-length. A unit speed curve ψ is called a Frenet

curve if ψ′′(s) 6= 0, that is, it has non-zero curvature. Let ψ : I → E3 be a Frenet

curve and {ψ′(s) = T(s),N(s),B(s)} the Frenet frame along ψ, where the vectors

T,N and B are mutually orthogonal vectors satisfying 〈T,T〉 = 〈N,N〉 = 〈B,B〉 =

1. The Frenet equations for ψ are given by ([10])

(4)


T′

N′

B′

 =


0 κ 0

−κ 0 τ

0 −τ 0




T

N

B

 ,
where κ and τ are smooth functions on I called the curvature and the torsion of ψ,

respectively. If τ(s) = 0 for any s ∈ I, then B(s) is a constant vector V and the

curve ψ lies in a 2-dimensional affine subspace orthogonal to V , which is isometric

to the Euclidean 2-space E2.

Firstly, we will introduce a conclusion of the definition of a k-slant helix and

some important results as follows:

Definition 2.1. [5] Let ψ = ψ(s) a natural representation of a unit speed regular

curve in Euclidean 3-space with Frenet apparatus {κ, τ,T,N,B}. A curve ψ is

called a k-slant helix if the unit vector

(5) ψκ+1 =
ψ′k(s)

‖ψ′k(s)‖
, k ∈ {0, 1, 2, ...},

makes a constant angle with a fixed direction, where ψ0 = ψ(s).

From the above definition, we can deduce some important remarks:

(1): The general helix is a 0-slant helix which the curve whose the unit vector

T(s) (which is the tangent vector of the curve ψ) makes a constant angle with a

fixed direction.

(2): The slant helix is a 1-slant helix such that the curve whose the unit vector

N(s) (which is the principal normal vector of the curve ψ) makes a constant angle

with a fixed direction.
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(3): The slant-slant helix or 2-slant helix is the curve whose the unit vector
−T + σ0B√

1 + σ2
0

makes a constant angle with a fixed direction. On other hand, the

curve is a slant-slant helix if and only if the geodesic curvature of the spherical

image of ψ2 indicatrix of the curve ψ

(6) σ2 =
σ′1(s)

κ(s)
√

1 + σ2
0(s)

(
1 + σ2

1(s)
)3/2 ,

is a constant function.

Now, Choi and Kim [9] defined some associated curve ψ̃ of a Frenet curve ψ

in E3. We will introduce the conclusion of the notation of notation of the the

principal-direction curve and principal-donor curve and some important results as

follows:

Let V : I → E3 be a continuous vector valued function defined on an open

interval I. Then, it is easily seen that an integral curve ψ :→ E3 of V is a unique

up to translation of E3. If V is a unit vector field, i.e., V : I → S2, then we may

assume that the parameter s of ψ is an arc-length parameter.

Definition 2.2. [9] An integral curve ψ of Ñ(s) is called the principal-direction

curve of ψ̃ and the curve ψ̃ is called the principal-donor curve of ψ.

Theorem 2.3. [9] Let ψ̃ be a Frenet curve in E3 with the curvature κ̃ and the

torsion τ̃ and ψ the principal-direction curve of ψ̃. Then the curvature κ and torsion

τ are given by

(7) κ =
√
κ̃2 + τ̃2, and τ =

κ̃2

κ̃2 + τ̃2
( τ̃
κ̃

)′
.

Theorem 2.4. [9] If a curve ψ̃ in E3 is a principal-donor curve of a curve ψ with

the curvature κ and the torsion τ , then the curvature κ̃ and torsion τ̃ of the curve

ψ̃ are given by

(8) κ̃(s) = κ(s)| cos
(∫

τ(s)ds
)
| and τ̃(s) = κ(s) sin

(∫
τ(s)ds

)
.

Corollary 2.5. [9] let ψ̃ be a Frenet curve in E3 with the curvature κ̃ and torsion

τ̃ and ψ the principal-direction curve of ψ̃. Then it satisfies

(9)
τ

κ
=

κ̃2

(κ̃2 + τ̃2)3/2
( τ̃
κ̃

)′
.
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Definition 2.6. [9] Let ψ be a principal-direction curve of a Frenet curve ψ̃ and ψ̃ a

principal-direction curve of
˜̃
ψ in E3. Then, ψ is called a second-principal-direction

curve of
˜̃
ψ and

˜̃
ψ a second principal-donor curve of ψ.

By the definition of the principal-direction of ψ̃,
dψ

ds
= T = Ñ and T′ = Ñ

′
=

−κ̃T̃+ τ̃Ñ. Also,, the principal normal vector field N and the binormal vector field

B of ψ are given by

(10)
N = − κ̃√

κ̃2 + τ̃2
T̃ +

τ̃√
κ̃2 + τ̃2

B̃,

B = T×N =
τ̃√

κ̃2 + τ̃2
T̃ +

κ̃√
κ̃2 + τ̃2

B̃.

By solving the above equation, we have

(11) T̃ = − κ̃√
κ̃2 + τ̃2

N +
τ̃√

κ̃2 + τ̃2
B.

Then, we have ψ̃ =
∫

T̃ds.

3. Position vector of some special curves

In this section we will deduce the position vector of some special curves such as:

general helix, slant helix and slant-slant helix. Firstly, we give the following remark:

Remark 3.1. We will refer to the position vector of the k-slant helix by Ψk = Ψk(s)

and the Frenet apparatus by {κk, τk,Tk,Nk,Bk}. It is worth noting that ψ0 = Ψk,

ψ1 =
Ψ′k(s)

‖Ψ′k(s)‖
and so on.

3.1. General helices. In this subsection, we study a general helices as principal-

donor curve. A Frenet curve ψ is said to be a general helix if σ0 =
τ0
κ0

= m is

a constant. It is well known that a general helix in E3 is a geodesic on a general

cylinder and it can be constructed by a plane curve [3, 12, 18].

The following characterization of general helices in E3 is obtained from corollary

2.5.

Theorem 3.2. [9] The following are equivalent:

(1): A Frenet curve ψ is a general helix in E3.

(2): ψ is a principal-donor curve of a plane curve.

(3): A principal-direction curve of ψ is a plane curve.
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Theorem 3.2(2) gives a canonical method to construct a general helix from a

plane curve. Let ψ be a unit speed plane curve. Then, ψ can be expressed by

[1, 13]:

(12) ψ(s) =

∫ (
cos
[ ∫

κ(s)ds
]
, sin

[ ∫
κ(s)ds

]
, 0
)
ds,

where κ(s) is the curvature and the torsion τ(s) = 0.

Then the curve ψ has the following Frenet vectors as the following:

(13)


T(s) =

(
cos
[ ∫

κ(s)ds
]
, sin

[ ∫
κ(s)ds

]
, 0
)

= N0(s),

N(s) =
(
− sin

[ ∫
κ(s)ds

]
, cos

[ ∫
κ(s)ds

]
, 0
)
,

B = (0, 0, 1).

From (7) and (11), we have κ(s) =
√

1 +m2κ0(s) =
m

n
κ0(s) and

(14) T0(s) =
n

m

(
sin
[m
n

∫
κ0(s)ds

]
,− cos

[m
n

∫
κ0(s)ds

]
,m
)
.

If we integrate the tangent vector T0(s), we get the following theorem:

Theorem 3.3. The position vector Ψ0 of a general helix whose tangent vector

makes a constant angle with a fixed straight line in the space, is expressed in the

natural representation form as follows:

(15) Ψ0(s) =
n

m

∫ (
sin
[m
n

∫
κ0(s)ds

]
,− cos

[m
n

∫
κ0(s)ds

]
,m
)
ds,

where κ0(s) is the curvature of the curve Ψ0, the quantity mκ0(s) = τ0(s) is the

torsion, m =
n√

1− n2
, n = cos[φ] and φ is the angle between the fixed straight line

e3 (axis of a general helix) and the tangent vector T0(s) = ψ1(s) of the curve Ψ0.

3.2. Slant helices. In this subsection, we study a slant helix in E3 as a second

principal-donor curve of a plane curve or a principal-donor of a general helix. The-

orem 3.2 and Corollary 2.5 give a characterization of the slant helices in E3 as

follows:

Theorem 3.4. [9] The following are equivalent:

(1): A Frenet curve ψ is a slant helix in E3.

(2): ψ is a principal-donor curve of a general helix in E3.

(3): ψ is a second principal-donor curve of a plane curve.

(4): A principal-direction curve of ψ is a general helix in E3.

(5): A second principal-direction curve of ψ is a plane curve.
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From the construction (19) of a general helix Ψ0, we can construct a slant helix

Ψ1 in E3. In fact, from (19), the Frenet frame of ψ0 is given by:

(16)


T0(s) =

n

m

(
sin
[m
n

∫
κ0(s)ds

]
,− cos

[m
n

∫
κ0(s)ds

]
,m
)

= N1(s),

N0(s) =
(

cos
[m
n

∫
κ0(s)ds

]
, sin

[m
n

∫
κ0(s)ds

]
, 0
)
,

B0(s) = n
(
− sin

[m
n

∫
κ0(s)ds

]
, cos

[m
n

∫
κ0(s)ds

]
,

1

m

)
.

From (7), (11) and (16), we have

(17) T1(s) =


T11 = −n θ sin

[ 1

n
sin−1[θ]

]
−
√

1− θ2 cos
[ 1

n
sin−1[θ]

]
,

T12 = n θ cos
[ 1

n
sin−1[θ]

]
−
√

1− θ2 sin
[ 1

n
sin−1[θ]

]
,

T13 =
n

m
θ,

where κ0(s) =
κ1(s)√
1− θ2

and θ = m
∫
κ1(s)ds. The integration of the tangent vector

T1(s) leads to the following theorem:

Theorem 3.5. The position vector Ψ1 = (Ψ11,Ψ12,Ψ13) of a slant helix whose

normal vector makes a constant angle with a fixed straight line in the space, is

expressed in the natural representation form as follows:

(18)


Ψ11 = −

∫ [
n θ sin

[ 1

n
sin−1[θ]

]
+
√

1− θ2 cos
[ 1

n
sin−1[θ]

]]
ds,

Ψ12 =
∫ [

n θ cos
[ 1

n
sin−1[θ]

]
−
√

1− θ2 sin
[ 1

n
sin−1[θ]

]]
ds,

Ψ13 =
n

m

∫
θ ds,

where θ = m
∫
κ1(s)ds, κ1(s) is the curvature of the curve Ψ1, the quantity τ1(s) =

mκ1(s)
∫
κ1(s)ds√

1−m2
( ∫

κ1(s)ds
)2 is the torsion, m =

n√
1− n2

, n = cos[φ] and φ is the an-

gle between the fixed straight line e3 (axis of a slant helix) and the normal vector

N1(s) = ψ2(s) of the curve Ψ1.

3.3. Slant-slant helices. In this subsection, we study a slant-slant helix in E3

as a third principal-donor curve of a plane curve or a second principal-donor of a

general helix or a principal-donor slant helix. Theorem 2.4 and Corollary 2.5 give

a characterization of the slant-slant helices in E3 as follows:

Theorem 3.6. The following are equivalent:

(1): A Frenet curve ψ is a slant-slant helix in E3.

(2): ψ is a principal-donor curve of a slant helix in E3.
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(3): ψ is a second principal-donor curve of a general helix in E3.

(4): ψ is a third principal-donor curve of a plane curve.

(5): A principal-direction curve of ψ is a slant helix in E3.

(6): A second principal-direction curve of ψ is a general helix in E3.

(7): A third principal-direction curve of ψ is a plane curve.

From the construction (18) of a slant helix Ψ1, we can construct a slant-slant

helix Ψ2 in E3. In fact, from (18), the Frenet frame of Ψ1 is given by:

(19)


T1(s) =

(
T11,T12,T13

)
= N2(s),

N1(s) = T0(s),

B1(s) = T1(s)×N1(s).

From (7) and (11), we have κ1(s) =
√
κ22(s) + τ22 (s) and

(20) T2(s) =


T21 = − 1

κ1

[
θτ2 sin[Θ] +

(nκ2
m

+ nτ2
√

1− θ2
)

cos[Θ]
]
,

T22 =
1

κ1

[
θτ2 cos[Θ]−

(nκ2
m

+ nτ2
√

1− θ2
)

sin[Θ]
]
,

T23 =
n

mκ1

(
τ2
√

1− θ2 −mκ2
)
.

Then the position vector of a slant-slant helix can be written as

(21) Ψ2(s) =


Ψ21 = −

∫ 1

κ1

[
θτ2 sin[Θ] +

(nκ2
m

+ nτ2
√

1− θ2
)

cos[Θ]
]
ds,

Ψ22 =
∫ 1

κ1

[
θτ2 cos[Θ]−

(nκ2
m

+ nτ2
√

1− θ2
)

sin[Θ]
]
ds,

Ψ23 =
∫ n

mκ1

(
τ2
√

1− θ2 −mκ2
)
ds,

where Θ =
1

n
sin−1[θ], θ = m

∫
κ1(s)ds, κ1(s) =

√
κ22(s) + τ22 (s) and κ2(s) is

the curvature of the curve Ψ2, the quantity τ2(s) is the torsion, m =
n√

1− n2
,

n = cos[φ] and φ is the angle between the fixed straight line e3 (axis of a slant-slant

helix) and the vector

−κ2(s)T2(s) + τ2(s)B2(s)√
κ22(s) + τ22 (s)

= ψ3(s)

of the curve Ψ2.

4. Some characterizations of k-slant helices

In this subsection, we will generalize the results in the above sections as follows:
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Theorem 4.1. The following are equivalent:

(1): A Frenet curve ψ is a k-slant helix in E3.

(2): ψ is a principal-donor curve of a (k − 1)-slant helix in E3.

(3): ψ is a second principal-donor curve of a (k − 2)-slant helix in E3.

(4): ψ is a (k − 1)-principal-donor curve of a slant helix in E3.

(5): ψ is a k-principal-donor curve of a general helix in E3.

(6): ψ is a (k + 1)-principal-donor curve of a plane curve.

(7): A principal-direction curve of ψ is a (k − 1)-slant helix in E3.

(8): A second principal-direction curve of ψ is a (k − 2)-slant helix in E3.

(9): A (k − 1)-principal-direction curve of ψ is a slant helix in E3.

(10): A k-principal-direction curve of ψ is a general helix in E3.

(11): A (k + 1)-principal-direction curve of ψ is a plane curve.

As a similar methods as above, we can deduce the position vector of a k-slant

helices in Euclidean 3-space. Here we can write the following result:

From theorem 2.4, we can write the following result:

Theorem 4.2. The intrinsic equations of a (k + 1)-slant helix Ψ(k+1) takes the

form

(22) κk+1(s) = κk(s)| cos
(∫

τk(s)ds
)
| and τk+1(s) = κk(s) sin

(∫
τk(s)ds

)
,

where κk = κk(s) and τk = τk(s) are the intrinsic equations of a k-slant helix Ψk.

From the above theorem we can deduce the intrinsic equations of some special

curves.

(1): When the curve ψ is a plane curve, then we know that the intrinsic equations

of this curve is κ = κ(s) and τ = 0. So that the intrinsic equation of a 0-slant helix

(general helix) Ψ0 is

(23) κ0(s) = a κ(s) and τ0(s) = b κ(s),

or in the standard form

(24) κ0(s) = κ(s) and τ0(s) = mκ(s),

In this case, it is easy to prove that:

σ0(s) =
τ0(s)

κ0(s)
= m,
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where m =
n√

1− n2
, n = cos[φ] and φ is the angle between the fixed straight line

(axis of a general helix) and the tangent vector of the general helix.

(2): When the curve ψ = Ψ0 is a general helix, then the intrinsic equation of a

1-slant helix (slant helix) Ψ1 is

(25) κ1(s) = κ(s)| cos
(
m

∫
κ(s)ds

)
| and τ1(s) = κ(s) sin

(
m

∫
κ(s)ds

)
,

In this case, we have

σ0(s) =
τ1(s)

κ1(s)
= tan

(
m

∫
κ(s)ds

)
,

σ1(s) =
σ′0(s)

κ1(s)
(
1 + σ2

0(s)
)3/2 = m.

We can solved the above ordinary differential equation and obtained the explicit

relation between the torsion and curvature (intrinsic equations) for a slant helix as

follows:

(26) κ1 = κ1(s), τ1 = ±
mκ1(s)

∫
κ1(s)ds√

1−m2
( ∫

κ1(s)ds
)2 ,

where m =
n√

1− n2
, n = cos[φ] and φ is the angle between the fixed straight line

(axis of a slant helix) and the principal normal vector of the slant helix.

(3): When the curve ψ = Ψ1 is a slant helix, then the intrinsic equation of a

2-slant helix (slant-slant helix) Ψ2 is

(27) κ2(s) = κ1(s)| cos
(∫

τ1(s)ds
)
| and τ2(s) = κ1(s) sin

(∫
τ1(s)ds

)
,

From (40), we have
∫
τ1(s)ds = −

√
1−m2

( ∫
κ1(s)ds

)2
m

. Now, from equation (27)

we can write the following lemma:

Lemma 4.3. The intrinsic equations of a slant-slant helix takes the form

(28)


κ2(s) = κ1(s)| cos

(√1−m2
( ∫

κ1(s)ds
)2

m

)
|,

τ2(s) = −κ1(s) sin
(√1−m2

( ∫
κ1(s)ds

)2
m

)
.

where κ1(s) is an arbitrary function of s.
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Proof: For a slant-slant helix with intrinsic equations (28), we can prove the

quantity σ2(s) is constant as the following:

σ0(s) =
τ2(s)

κ2(s)
= − tan

(√1−m2
( ∫

κ1(s)ds
)2

m

)
,

σ1(s) =
σ′0(s)

κ2(s)
(
1 + σ2

0(s)
)3/2 =

m
∫
κ1(s)ds√

1−m2
( ∫

κ1(s)ds
)2 ,

σ2(s) =
σ′1(s)

κ2(s)
√

1 + σ2
0

(
1 + σ2

1(s)
)3/2 = m.

Then the proof is completed.

If we substitute (28) in (21), we can write the following important theorem:

Theorem 4.4. The position vector Ψ2 = (Ψ21,Ψ22,Ψ23) of a slant-slant helix

whose the vector ψ3 makes a constant angle with a fixed straight line in the space,

is expressed in the natural representation form as follows:

(29)

Ψ2(s) =


Ψ21 =

n

m

∫ [
m sin[Φ]

(√
1− θ2 cos[Θ] +

θ

n
sin[Θ]

)
− cos[Φ] cos[Θ]

]
ds,

Ψ22 =
n

m

∫ [
m sin[Φ]

(√
1− θ2 sin[Θ]− θ

n
cos[Θ]

)
− cos[Φ] sin[Θ]

]
ds,

Ψ23 = − n
m

∫ (
m cos[Φ] +

√
1− θ2 sin[Φ]

)
ds,

where Φ =

√
1− θ2
m

, Θ =
1

n
sin−1[θ], θ = m

∫
κ1(s)ds, κ1(s) is an arbitrary func-

tion of s, m =
n√

1− n2
, n = cos[φ] and φ is the angle between the fixed straight

line e3 (axis of a slant-slant helix) and the vector ψ3(s) of the curve Ψ2.

It is worth noting that: the curvature κ2(s) and the torsion τ2(s) of a slant-slant

helix Ψ2(s) takes the form (28).

5. Applications

In this section, we introduce the position vector of some slant-slant helices for

several choices for the curvature κ2 and torsion τ2 from the curvature κ1 and torsion

τ1 of the slant helices.

Example 5.1. If we take the case of a slant helix with

(30) κ1 = 1, τ1 =
ms√

1−m2 s2
,
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which are the intrinsic equations of a Salkowski curve [16] and substituting (30) in

(28), we can deduce the intrinsic equations of a slant-slant helix as the following:

(31) κ2 = cos
[√1−m2s2

m

]
, τ2 = − sin

[√1−m2s2

m

]
.

Substituting (30) and (31) in (29) we have the explicit parametric representation of

such curve as follows:

(32) Ψ2(s) =



Ψ21(s) =
n

2m

∫ ((m2 s

n
− 1
)

cos[Φ−] +
(m2 s

n
+ 1
)

cos[Φ+]

+m
√

1−m2s2
(

sin[Φ+] + sin[Φ−]
))
ds,

Ψ22(s) =
n

2m

∫ ((
1− m2 s

n

)
sin[Φ−]−

(
1 +

m2 s

n

)
sin[Φ+]

+m
√

1−m2s2
(

cos[Φ−]− cos[Φ+]
))
ds,

Ψ23(s) = − n
m

∫ (
m cos

[
Ω
]

+
√

1−m2s2 sin
[
Ω
])
ds,

where Φ± = Ω± 1

n
sin−1[ms] and Ω =

√
1−m2s2

m
.

Example 5.2. If we take the case of a slant helix with

(33) κ1 =
ms√

1−m2 s2
, τ1 = −1,

which are the intrinsic equations of anti-Salkowski curve [16] and substituting (33)

in (28), we can deduce the intrinsic equations of a slant-slant helix as the following:

(34) κ2 =
ms cos[s]√
1−m2s2

, τ2 = − ms sin[s]√
1−m2s2

.

Substituting (33) and (34) in (29) we have the explicit parametric representation of

such curve as follows:

(35)

Ψ2(s) =



Ψ21(s) =
1

2

∫ [(√
1−m2s2 − n

m

)
cos[Φ−]−

(√
1−m2s2 +

n

m

)
cos[Φ+]

+nms
(

sin[Φ−] + sin[Φ+]
)]
ds,

Ψ22(s) =
1

2

∫ [(√
1−m2s2 − n

m

)
sin[Φ−] +

(√
1−m2s2 +

n

m

)
sin[Φ+]

+nms
(

cos[Φ+]− cos[Φ−]
)]
ds,

Ψ23(s) = n
(
s cos[s]− 2 sin[s]

)
,
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where Φ± = s± 1

n
sin−1

[√
1−m2s2

]
.

Example 5.3. If we take the case of a slant helix with

(36) κ1 =
µ

m
cos[µ s], τ1 = − µ

m
sin[µ s],

where µ is an arbitrary constant, and substituting (36) in (28), we can deduce the

intrinsic equations of a slant-slant helix as the following:

(37) κ2 =
µ

m
cos[µ s] cos

[ 1

m
cos[µ s]

]
, τ2 = − µ

m
cos[µ s] sin

[ 1

m
cos[µ s]

]
.

Substituting (36) and (37) in (29) we have the explicit parametric representation of

such curve as follows:

(38)

Ψ2(s) =



Ψ21(s) =
∫ (

sin[µ s] sin
[µ s
n

]
sin
[ 1

m
cos[µ s]

]
+
n

m
cos
[µ s
n

](
m cos[µ s] sin

[ 1

m
cos[µ s]

]
− cos

[ 1

m
cos[µ s]

]))
ds,

Ψ22(s) =
∫ (
− n

m
sin
[µ s
n

]
cos
[ 1

m
cos[µ s]

]
+
(
n cos[µ s] sin

[µ s
n

]
− sin[µ s] cos

[µ s
n

])
sin
[ 1

m
cos[µ s]

])
ds,

Ψ23(s) = − n
m

∫ (
m cos

[ 1

m
cos[µ s]

]
+ cos[µ s] sin

[ 1

m
cos[µ s]

])
ds.

Example 5.4. If we take the case of a spherical slant helix [7] with

(39)

κ1 =
1

c cos
[ sin[θ]

m

]
+
√

1− c2 sin
[ sin[θ]

m

] ,

τ1 =
cot[θ]

c cos
[ sin[θ]

m

]
+
√

1− c2 sin
[ sin[θ]

m

] ,
where c is an arbitrary constant and the arc-length parameter is

s =

∫
sin[θ]

m

(
c cos

[ sin[θ]

m

]
+
√

1− c2 sin
[ sin[θ]

m

])
dθ.
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Substituting (39) in (28), we can deduce the intrinsic equations of a slant-slant helix

as the following:

(40)

κ2 =
cos
[ sin[θ]

m

]
c cos

[ sin[θ]

m

]
+
√

1− c2 sin
[ sin[θ]

m

] ,

τ2 = −
sin
[ sin[θ]

m

]
c cos

[ sin[θ]

m

]
+
√

1− c2 sin
[ sin[θ]

m

] .
Substituting (39) and (40) in (29) we have the explicit parametric representation

of such curve as follows:

(41)

Ψ2(θ) =



Ψ21(θ) =
∫ [

cos[θ] sin
[ sin[θ]

m

]
sin

[
sin−1

[
cos[θ]

]
n

]

+
n

m
cos

[
sin−1

[
cos[θ]

]
n

](
m sin[θ] sin

[ sin[θ]

m

]
− cos

[ sin[θ]

m

])]
ds,

Ψ22(θ) =
∫ [
− cos[θ] sin

[ sin[θ]

m

]
cos

[
sin−1

[
cos[θ]

]
n

]

+
n

m
sin

[
sin−1

[
cos[θ]

]
n

](
m sin[θ] sin

[ sin[θ]

m

]
− cos

[ sin[θ]

m

])]
ds,

Ψ23(θ) =
n

m

∫ (
m cos

[ sin[θ]

m

]
+ sin[θ] sin

[ sin[θ]

m

])
ds,

where

ds =
sin[θ]

m

(
c cos

[ sin[θ]

m

]
+
√

1− c2 sin
[ sin[θ]

m

])
dθ.

Remark 5.5. When c = 1, the intrinsic equations of a slant-slant helix (41) takes

the form

(42) κ2 = 1, τ2 = − tan
[ sin[θ]

m

]
.

We called this curve by a Salkowski slant-slant helix and the position vector takes

the form (41) such that ds =
( sin[θ]

m

)
cos
[ sin[θ]

m

]
dθ.
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Remark 5.6. When c = 0, the intrinsic equations of a slant-slant helix (41) takes

the form

(43) κ2 = cot
[ sin[θ]

m

]
, τ2 = −1.

We called this curve by an Anti-Salkowski slant-slant helix and the position vector

takes the form (41) such that ds =
( sin[θ]

m

)
sin
[ sin[θ]

m

]
dθ.
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