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Abstract. In the present paper we develop the soliton perturbation theory to

find nearly soliton solutions for a perturbed higher-order nonlinear Schrödinger

(PHNLS) equation. An integral expression for the first-order correction to the

wave is found and to avoid the secular terms, the dynamical systems for the

soliton parameters are found.
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1. Introduction

Among the Partial Differential Equations (PDEs) soliton equations have vast

applications in applied and pure mathematics. A soliton appears as a localized

intensity on a stable traveling zero or non-zero wave background. These equations
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are recognized due to be as the compatibility condition of a so-called Lax pair and

are solvable by Inverse Scattering Transformation (IST).

One of the most important model equation in nonlinear sciences especiallay in

soliton theory is the nonlinear Schrödinger (NLS) equation,

(1) iut + uxx + 2|u|2u = 0.

Physically, the NLS equation (1) describes the modulation of weakly-nonlinear

wavetrains in deep water. [2] showed that an uniform wavetrain is unstable to long-

wave perturbations. [10] and [19] present a historical overview of fluid mechanics

applications of the NLS equation (1) and its physical origins. In the optical context,

the NLS equation (1) was derived by [5]. It also describes the evolution of the slowly

varying envelope of an optical pulse. Derived asymptotically from Maxwells equa-

tions, it assumes slow variation in the carrier frequency and the Kerr dependence

(where the nonlinear refractive index n = n0 + n1|u|2). The NLS equation (1) is

central to understanding soliton propagation in optical fibres, which is of critical

importance to the field of fibre-based telecommunications, see [11]. The NLS equa-

tion (1) has also key applications in financial, for details i.e., see [12]-[13].

The NLS equation (1) is the first member of an infinity member family of integrable

equations via IST, so-called AKNS hierarchy. This family can be easily constructed

by a recursive procedure which lets all familiar soliton equations are found as the

members, see for more details §2. These members include Korteweg-de Vries (KdV),

NLS, modified KdV equations, Hirota equation and Sine-Gordon equations which

have several applications in physics and telecommunications. Recently, the general

and novel nonlocal AKNS hierarchies were also found [14]-[15]. The hierarchies are

shown to possess a Lax pair and infinite number of conservation laws and to be

PT-symmetric.

A powerful analytical solution technique is direct soliton perturbation theory. This

requires that the complete set of eigenfunctions for the linearized problem, related

to the nonlinear wave equation, be determined. [16] constructed this set for a large

class of integrable nonlinear wave equations such as the KdV, NLS and modified

KdV equations. The same procedure can be exploited to find the eigenstates of the

adjoint linearization operator. He found that the eigenfunctions for these hierarchies

are the squared Jost solutions. [3] developed direct soliton perturbation theory for
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the derivative NLS and the modified NLS equations. Using the similarity between

the KdV and derivative NLS hierarchies they showed that the eigenfunctions for

the linearized derivative NLS equation (1) are the derivatives of the squared Jost

solutions. Suppressing the secular terms, they found the slow evolution of soliton

parameters and the perturbation-induced radiation.

We recently investigated the weak interaction for a higher-order nonlinear Schrödinger

(HNLS) equation

(2) iut = uxxxx + 4|ux|2u+ 8|u|2uxx + 6u∗u2
x + 2u2u∗xx + 6|u|4u,

by applying the soliton perturbation theory. It is noted that (2) is the next even

member of the NLS integrable hierarchy. The HNLS equation (2) is also a mem-

ber of the integrable three-parameter fifth-order NLS (FONLS) family. Yang et.al

[18] investigated Rogue waves, rational solitons, and modulational instability in

FONLS context. Here in this paper, we develop the soliton perturbation theory for

a perturbed higher-order NLS (PHNLS) equation,

(3) iut − uxxxx − 4|ux|2u− 8|u|2uxx − 6u∗u2
x − 2u2u∗xx − 6|u|4u = εF (u),

where ε is a small parameter in magnitude and F is a polynomial of u, u∗ and

their derivatives. It is also noted that the soliton perturbation theory has a central

application in phenomena which are formulated by a perturbed soliton equations

not an exact soliton equation. The main rigorously part of the theory is to estab-

lish the closure relation for continuous and discrete eigenfunctions of the linearized

operator corresponding to (2). We shall show that the closure relations for HNLS

equation (2) and NLS equation (1) are exactly the same and therefore it is found

that the complete set of the eigenfunctions for linearized operator obtained from

HNLS equation (2) is the same of that related to NLS equation (1).

This paper contains four sections. In section §2, Lax pair of HNLS equation (2)

is introduced and the scattering matrix is obtained. Analytical property of scat-

tering data are also determined. In §3 the closure relation between eigenfunctions

is proved. And finally in §4 we consider our HNLS equation (2) under a small

perturbation and use direct soliton perturbation theory to find its solution.
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2. Lax pair and scattering matrix

It is well known that to establish a general soliton solution of a soliton equation

via IST, a pair of ordinary differential equations (ODEs) named Lax pair is needed

where their compatibility condition will be the equation. The Lax pair correspond-

ing to the soliton equation can be readily constructed by AKNS procedure, i.e., see

[1].

We outline the Lax pair for HNLS equation (2) as

(4) Yx = MY, Yt = NY,

where

M = −iζΛ +Q, N = −8iζ4Λ + 8ζ3Q+ 4iζ2V +R,

and Λ =

(
1 0

0 −1

)
, Q =

(
0 u

−u∗ 0

)
, V =

(
|u|2 ux

u∗x −|u|2

)
,

R =

(
|ux|2 − uu∗xx − uxxu∗ − 3|u|2 −(uxxx + 6|u|2ux)

−(u∗xxx + 6|u|2u∗x) −(|ux|2 − uu∗xx − uxxu∗ − 3|u|2)

)
,

and ζ is scattering parameter, then the compatibility condition for (4), i.e., Yxt =

Ytx gives HNLS equation (2).

To study and investigate the relations between the linearized operator’s eigenfunc-

tions we need to borrow some facts and relations of Jost solutions of the Lax pair

(4) which are essential in IST from [17]. Therefore up to end of this section we will

repeatedly apply these relations. The soliton solution u has the spacial boundary

condition |u| −→ 0 as |x| −→ ∞. We shall use this property to find the fundamental

solution of (4). Therefore, it is clear that Y ∝ exp{−iζΛx− 8iζ4Λt} as x −→ ±∞.

It is convenient to change (4) to

Jx = −iζ[Λ, J ] +QJ,(5)

Jt = −8iζ4[Λ, J ] + (8ζ3Q+ 4iζV +R)J,(6)

by

(7) Y = Je−iζΛx−8iζ4Λt,
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where the Jost solution J is (x, t)-independent at infinity.

As the main step in IST we mainly focus on the first equation of (4) called Zakharov-

Shabat (Z-S) system and time evolution of the solitons shall be done by applying the

second ODE in (4) when they explicitely determined. HNLS equation (2) shares its

Z-S system with NLS and hence the spatial evolution using IST procedure for equa-

tions will be analogous. We consider two Jost solutions J±(x, ζ) of the scattering

problem (5), with the following asymptotic

(8) J±(x, ζ) −→ I, x −→ ±∞,

where I is the 2 × 2 unit matrix. Note that we temporally forget “t” from the

notations. Abel’s identity shows that

(9) det J±(x, ζ) = 1,

for all (x, ζ). As J±E (E = e−iζΛx) are both solutions of the (linear) Z-S system,

they are linearly related as J−E = J+ES, where S = S(ζ) is called scattering

matrix and the potential u can be retrieved from the elements of S. Consequently,

the property (9) gives

(10) detS(ζ) = 1, ζ ∈ R.

Up to now, the scattering parameter ζ was considered on real line. Extending

the analyticity of Jost solutions J±(x, ζ) and therefore S(ζ) to the ζ-complex half-

planes provides the opportunity of applying Riemann-Hilbert Problem to construct

the soliton solutions for HNLS equation (2) from the scattering data stored in S.

For example, it can be shown that the first column of J− and the second column of

J+ can be analytically continued to the upper half plane ζ ∈ C+, while the second

column of J− and the first column of J+ can be analytically continued to the lower

half plane C−, for a detailed review of application of Volterra integral equations

see [17]. For simplicity, we let Φ = J−E and Ψ = J+E and express (Φ,Ψ) as a

collection of columns and Φ−1,Ψ−1 as a collection of rows as

Φ = (φ1, φ2), Ψ = (ψ1, ψ2),

Φ−1 =

(
φ̂1

φ̂2

)
, Ψ−1 =

(
ψ̂1

ψ̂2

)
.(11)
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Finally, collecting the functions with same analyticity areas yields that the Jost

solutions

(12) P+ = (φ1, ψ2)eiζΛx = J−H1 + J+H2,

where

(13) H1 ≡ diag(1, 0), H2 ≡ diag(0, 1),

are analytic in ζ ∈ C+, and in a similar consideration the Jost solutions

(14) P− = e−iζΛx

(
φ̂1

ψ̂2

)
= H1J

−1
− +H2J

−1
+

are analytic in ζ ∈ C−, with asymptotics

(15) P±(x, ζ) −→ I, ζ ∈ C± −→∞.

Now, the definition of sacttering matrix S

(16) S = Ψ−1Φ =

(
ψ̂1

ψ̂2

)
(φ1, φ2), S−1 = Φ−1Ψ =

(
φ̂1

φ̂2

)
(ψ1, ψ2),

determines the analyticity of the diagonal elements of S. For example, s11 and ŝ22

are analytical in upper half plane and s22 and ŝ11 are analytical in lower half plane,

where sij and ŝij are elements of S and S−1, respectively.

3. Closure of Zakharov-Shabat Eigenstates

As mentioned earlier, the Z-S relations for NLS equation (1) and HNLS equation

(2) are the same, hence the closure of eigenfunctions for the linear operator under

investigation related to HNLS equation (2) can be constructed analogous to that

related to NLS. There are several alternative methods to do so, but the procedure

applied here is based on contour integrations. For continuity the discussion we

adopted the notations from [17].

Define

R+(x, y, ζ) = χ+(x, ζ)diag[θ(y − x),−θ(x− y)](χ+)−1(y, ζ),

R−(x, y, ζ) = χ−(x, ζ)diag[θ(x− y),−θ(y − x)](χ−)−1(y, ζ),(17)
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where χ+ = (φ1, ψ2), χ− = (ψ1, φ2), (see the first relation in (11)) and θ(x) is the

standard step function

θ(x) =

{
1, x ≥ 0,

0, x < 0.

According to definitions, these functions R± are meromorphic in the upper and

lower halves of the ζ plane, respectively. It is easy to check that

χ+ = Φ(H1 + S−1H2),

χ− = Φ(S−1H1 +H2).(18)

which yield

detχ+ = s11 = ŝ22, detχ− = s22 = ŝ11.

Because of the nature of the step functions and also the asymptotics (8), R± are

satisfied

R+(x, y, ζ) −→ diag[θ(y − x)eiζ(y−x),−θ(x− y)eiζ(x−y)],

R−(x, y, ζ) −→ diag[θ(x− y)eiζ(y−x),−θ(y − x)eiζ(x−y)],(19)

as ζ −→ ∞ in the respective half plane of analyticity. These relations show that

R± are both bounded. Now∫
γ+

R+(x, y, ζ)dζ =

∫
γ+

diag[θ(y − x)eiζ(y−x),−θ(x− y)eiζ(x−y)]dζ

=

∫ ∞
−∞

diag[θ(y − x)eiξ(y−x),−θ(x− y)eiξ(x−y)]dξ,(20) ∫
γ−

R−(x, y, ζ)dζ =

∫
γ+

diag[θ(x− y)eiζ(y−x),−θ(y − x)eiζ(x−y)]dζ

=

∫ ∞
−∞

diag[θ(x− y)eiξ(y−x),−θ(y − x)eiξ(x−y)]dξ,(21)

where γ+ (γ−) is a contour starts from ζ = −∞ + i0+ (ζ = −∞ + i0−), passes

over (under) all zeros of ŝ22(ζ) (s22(ζ)) in C+ (C−) and ends at ζ = ∞ + i0+

(ζ =∞+ i0−). Some calculations show that

(22)

∫
γ+

R+(x, y, ζ)dζ +

∫
γ−

R−(x, y, ζ)dζ = 2πδ(x− y)Λ.
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Now the residue theorem yields∫
γ+

R+(x, y, ζ)dζ +

∫
γ−

R−(x, y, ζ)dζ =

∫ ∞
−∞

R+(x, y, ξ) +R−(x, y, ξ)dξ

+2πi
∑
j

{Res[R−(x, y, ζ), ζ̄j ]−Res[R+(x, y, ζ), ζj ]},(23)

where ζj and ζ̄j are zeros of ˆs22(ζ) and s22(ζ), respectively, for left hand side of

(22).

As χ±(x, ξ) are fundamental matrices of Z-S system on the real axis, then

χ+(x, ξ)(χ−)−1(x, ξ) is x-independent. therefore∫ ∞
−∞

[R+(x, y, ξ) +R−(x, y, ξ)]dξ =

∫ ∞
−∞

{
χ+(x, ξ)diag(1, 0)(χ+)−1(y, ξ)

−χ−(x, ξ)diag(0, 1)(χ−)−1(y, ξ)
}
dξ.(24)

The residue terms in (23) are now simplified to

Res[R+(x, y, ζ), ζj ] = Res[χ+(x, ζ)diag(1, 0)(χ+)−1(y, ζ), ζj ],

Res[R−(x, y, ζ), ζ̄j ] = −Res[χ−(x, ζ)diag(0, 1)(χ−)−1(y, ζ), ζ̄j ],(25)

where the step functions have disappeared.

To end of this section we replace χ± with columns of Jost solutions (Φ,Ψ) and

(χ±)−1 by rows of adjoint Jost solutions (Φ−1,Ψ−1) to get the closure relation

δ(x− y)Λ =
1

2π

∫ ∞
−∞

[
1

s11
(ξ)φ1(x, ξ)ψ̂1(y, ξ)− 1

s22
(ξ)φ2(x, ξ)ψ̂2(y, ξ)

]
dξ

−i
∑
j

[
1

s′11(ζj)
φ1(x, ζj)ψ̂1(y, ζj)−

1

s′22(ζ̄j)
φ2(x, ζ̄j)ψ̂2(y, ζ̄j)

]
.(26)

The closure relation (26) states that

(27) {φ1(x, ξ), φ2(x, ξ), ξ ∈ R; φ1(x, ζj), φ2(x, ζ̄j), 1 ≤ j ≤ N}

form a complete set as well as

(28) {ψ̂1(x, ξ), ψ̂2(x, ξ), ξ ∈ R; ψ̂1(x, ζj), ψ̂2(x, ζ̄j), 1 ≤ j ≤ N}.

These results have critical role in our analysis, as any function can be extended as a

combination of eigenstates of the Z-S system. The closure relation (26) has a direct
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implementation in the soliton perturbation theory wich shall be discussed in next

section.

4. Soliton Perturbation

It has been shown that the soliton (direct) perturbation theory is a powerful tool

to find nearly soliton solutions for a (small) correction to an integrable equation. For

a survey on the application of the theory refer to [7] and the references therein. In

this section we review in details the soliton perturbation theory for PHNLS equation

(3). Using the closure relation established in previous section, the complete set of

eigenfunctions for linearized operators is found.

When ε = 0, (2) has a soliton solution as

(29) u(x, t) = rsech(r(x− vt− x0))ei(ax+bt+σ0)

where

(30) v = 4a(a2 − r2), b = −a4 + 6a2r2 − r4.

There are four free parameters in this solution; r and a are soliton’s amplitude

and phase parameter and x0 and σ0 are also position and phase of the soliton,

respectively. This solution can be rewritten as

(31) u(x, t) = Υ(θ)eiφ,

where

Υ(θ) = rsechrθ,(32)

θ = x− ν, φ = aθ + σ,

ν = 4a(a2 − r2)t+ x0, σ = (3a4 − r4 + 2a2r2)t+ σ0.

In the presence of perturbation, the four free parameters of the soliton will slowly

change with time, i.e.,

(33) r = r(T ), a = a(T ), x0 = x0(T ), σ0 = σ0(T ), T = εt.

According to standard multi scale perturbation analysis, we expand the solution

u(x, t) into the following perturbation series

(34) u(x, t) = eiφ
(
Υ(θ) + εΥ1(θ, t, T ) +O(ε2)

)
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Here Υ, φ and θ are given in (32), and

ν =

∫ t

0

4a(a2 − r2)dτ + x0,(35)

σ =

∫ t

0

(4a4 − (a2 − r2)2)dτ + σ0.(36)

Substituting (34) in PHNLS equation (3) and collecting O(ε) terms determines

(37) (i∂t + L)A1 = W

where A1 = (Υ,Υ∗),W = (w,−w∗)T and

w = F0 − iΥrrT + ix0T
Υθ − (ax0T

− a
T
θ − σ0T

)Υ,

F0 = e−iφF (Υeiφ).(38)

The operator L is

(39)

L =

(
−∂θθθθ − 4ia∂θθθ + L2∂θθ + L1∂θ + L0 −2Υ2∂θθ − 4ΥΥθ∂θ + F0

2Υ2∂θθ + 4ΥΥθ∂θ − F ∗0 ∂θθθθ − 4ia∂θθθ − L2∂θθ − L∗1∂θ − L∗0

)
where

L0 = −4Υθ − 18Υ4 + r4 − 24iaΥΥθ − 6a2r2 + 24a2Υ2 − 12ΥΥθθ,

L1 = i(4ar2 − 24aΥ2)− 16ΥΥθ, L2 = 6a2 − 8Υ2,

F0 = −8ΥΥθθ − 12Υ4 − 6Υ2
θ − 24iaΥΥθ + 12a2Υ2.

By straightforward differentiations the adjoin of L, LA is found as

(40) LA = σ3Lσ3, σ3 = diag{1,−1},

in the sense

(41) 〈lV,W 〉 = 〈V, lAW 〉,

for V and W vanishing at infinity, and where the inner product

(42) 〈f, g〉 =

∫ ∞
−∞

fT (x)g(x)dx

is applied through the paper. It is worthy to note that the explicit expressions

of L and LA are not vital for our analysis, however the explicit forms of their

eigenfunctions are needed.
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4.1. Eigenfunctions of L and its adjoint. In a similar manner related to NLS

the eigenfunctions of L (39) are explicitly determined as

Z1(θ, k) =

(
−sech2rθ

(ik − tanhrθ)2

)
eirkθ,(43)

Z2(θ, k) =

(
(ik + tanhrθ)

2

−sech2rθ

)
e−irkθ,(44)

which are satisfied in

LZ1(θ, k) = λ(k)Z1(θ, k),(45)

LZ2(θ, k) = −λ(k)Z2(θ, k),(46)

where

(47) λ(k) = r4(k4 − 1).

Calculations also show that

ZD,1 = Υθ

(
1

1

)
, ZD,2 = Υ

(
1

−1

)
,(48)

ZG,1 =
1

2
θΥ

(
1

−1

)
, ZG,2 = Υr

(
1

1

)
,(49)

are discrete and generalized discrete eigenfunctions of L with eigenrelations

LZD,1 = LZD,2 = 0(50)

LZG,1 = −2r2ZD,1, LZG,2 = −4r3ZD,2.(51)

Similarly we obtain continuous and discrete eigenfunctions of LA

γ1(θ, k) =

(
sech2rθ

(ik + tanhrθ)
2

)
e−irkθ,(52)

γ2(θ, k) =

(
(ik − tanhrθ)2

sech2rθ

)
eirkθ,(53)

γD,1 = σ3ZD,1, γD,2 = σ3ZD,2, γG,1 = σ3ZG,1, γG,2 = σ3ZG,2,(54)
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where

LAγ1(θ, k) = λ(k)γ1(θ, k), LAγ2(θ, k) = −λ(k)γ2(θ, k),(55)

LAγD,1 = LAγD,2 = 0, LAγG,1 = −2r2γD,1, LAγG,2 = −4r3γD,2.(56)

The nonzero inner products between the eigenfunctions of L and LA are

< Z1(θ, k), γ1(θ, k
′
) >=< Z2(θ, k), γ2(θ, k

′
) >=

2π

r
(k2 + 1)2δ(k − k

′
),(57)

< ZD,1, γG,1 >=< ZG,1, γD,1 >= −r(58)

< ZD,2, γG,2 >=< ZG,2, γD,2 >= 2.(59)

4.2. Solution for the Perturbed Soliton. After the eigenfunctions and adjoint

eigenfunctions of the linearization operator L have been obtained, we can now

solve the first-order equation (37) and derive the solution for the soliton under

perturbations. To solve (37), we first expand the forcing term W into the complete

set of L’s eigenfunctions,

W = c1ZD,1(θ) + c2ZD,2(θ) + c3ZG,1(θ) + c4ZG,2(θ)

+

∫ ∞
−∞

[α1(k)Z1(θ, k) + α2(k)Z2(θ, k)]dk.(60)

Utilizing the orthogonality relations (58)-(59), we find that:

c1 = −1

r
< W, γG,1 >, c2 = −1

2
< W, γG,2 >,(61)

c1 = −1

r
< W, γD,1 >, c2 = −1

2
< W, γD,2 >,(62)

αj(k) =
r

2π(k2 + 1)2
< F , γj >, j = 1, 2,(63)

where

(64) F = (F0,−F ∗0 )T

Next, we expand the solution A1 into the complete set of L’s eigenfunctions as well,

A1 = h1(t)ZD,1(θ) + h2(t)ZD,2(θ) + h3(t)ZG,1(θ) + h4(t)ZG,2(θ)

+

∫ ∞
−∞

[g1(t, k)Z1(θ, k) + g2(t, k)Z2(θ, k)]dk.(65)
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Finally If we follow the same way for NLS (1), try to (34) be valid lead us to the

following dynamical equations for the soliton parameters:

dr

dT
=

∫ ∞
−∞

Im(F0)rsech(rθ)dθ,(66)

da

dT
= −

∫ ∞
−∞

Re(F0)rsech(rθ)tanh(rθ)dθ,(67)

dx0

dT
=

∫ ∞
−∞

Im(F0)θsech(rθ)dθ,(68)

dσ0

dT
= ax0T

−
∫ ∞
−∞

Re(F0)rsech(rθ)(1− rθtanh(rθ))dθ.(69)

Evolution equations for the position ν and phase σ then can be found from these

equations and (35) and (36) as:

dν

dt
= 4a(a2 − r2) + ε

∫ ∞
−∞

Im(F0)θsech(rθ)dθ,(70)

dσ

dt
= −a4 + 6a2r2 − r4 + a

∫ ∞
−∞

Im(F0)θsech(rθ)dθ

−
∫ ∞
−∞

Re(F0)rsech(rθ)(1− rθtanh(rθ))dθ.(71)

With straightforward calculations we finally obtain the perturbed soliton solution

(up to O(ε)) as:

u(x, t) = eiφ
{
rsech(rθ)− εsech2(rθ)

∫ ∞
−∞

1− eir4(k4+1)t

2πr(k2 + 1)3(k2 − 1)
eirkθ < F , γ1 > dk

−ε
∫ ∞
−∞

1− e−ir4(k4+1)t

2πr(k2 + 1)3(k2 − 1)
(ik + tanh(rθ))2e−irkθ < F , γ2 > dk

}
.(72)

5. Conclusion

Using relationship between scattering data and the potential, the squared eigen-

functions for the Z-S system corresponding to the higher-order nonlinear Schrödinger

equation are constructed. These eigenfunctions have direct implementation in soli-

ton perturbation theory where the perturbed solutions for the nearly integrable

equation is explored. Applying the explicit forms of eigenfunctions and avoiding

secular terms, the dynamical systems for the soliton’s parameters are found.
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