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Abstract    The objective of this study was to evaluate the imputation accuracy of parent-offspring 

trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in 

genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromo-

some was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred 

QTLs were randomly distributed across chromosomes. Three low density SNP panels, containing 

0.5k, 1k and 5k SNPs, were generated from the 10k panel. Six scenarios were evaluated, each con-

taining two trios (dam, sire and offspring) and sire of each dam for parent-offspring pair data. These 

scenarios were compared from completely genotyped offspring to low-density genotyped and dams 

that were completely genotyped, low density genotyped and non-genotyped. It was assumed that the 

genotypes of the offspring’s sires were available. The Beagle 3.3.2 program was used for imputation 

of parent-offspring trios. The Bayesian LASSO were used to estimate the marker effects using the R 

package of “BLR”. The results showed that accuracy of both imputation and genomic evaluation was 

influenced by imputation errors. Imputation accuracy ranged from 0.67 to 0.96 for genotyped indi-

viduals. Genotype imputation accuracy increased with increasing marker density of low-density gen-

otyping platform and with dams having high-density genotypes. Results showed that imputation ac-

curacies decreased significantly (P < 0.05) when dam was non-genotyped and both of offspring were 

low-density genotyped. In case of factors affecting imputation accuracy, the imputation accuracy of 

SNPs with low MAF increased considerably when a dam was completely genotyped. Imputation of 

non-genotyped individuals can help to include valuable phenotypes for genome-wide association 

studies or for genomic prediction, especially when the non-genotyped individuals have genotyped 

offspring. 
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Introduction 

Breeding values can be predicted with high accuracy us-

ing genomic information (Meuwissen et al., 2001). A 

successful genetic improvement program requires accu-

rate genetic parameter estimates (Molaei Moghbeli et 

al., 2013). Moreover, due to recent advances in geno-

typing technologies, the amount of genomic information 

available for genomic selection (GS) has increased from 

a few thousands (Sargolzaei et al., 2008), to 50K (Pi-

mentel et al., 2011) and 800K (Erbe et al., 2012). Now-

adays, genomic evaluation programs tend towards 

whole-genome sequence (Ober et al., 2012). Genomic 

selection combines information on genotypes, pheno-

types and pedigree to increase the accuracy of the esti-

mated breeding values (EVBs) (Weigel et al., 2010). In  

 SNPs genotyping data obtained from the SNP chip tech-

nique, missing genotype information is a common phe-

nomenon that leads to a low call rate for some SNPs and 

for some animals. Imputation can be used to predict the 

missing genotypes and could be helpful in increasing 

the accuracy of genomic selection. A major challenge in 

implementing genomic selection in most species is the 

cost of genotyping (Boichard et al., 2012). Genotype 

imputation can help reduce genotyping costs particu-

larly for implementation of genomic selection (Sargol-

zaei et al., 2014). If a relevant genotyping strategy can 

be chosen such that imputation accuracy becomes suffi-

ciently high, imputation of non-genotyped animals 

might also be of interest for breeding programs to reduce 
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genotyping costs (Williams et al., 2012). Genotype im-

putation is an important process of predicting unknown 

genotypes, which uses reference population with dense 

genotypes to predict missing genotypes for both human 

and animal genetic variations at a low cost (Boichard., 

2012). Phasing and imputation methods can be broadly 

divided into family-based methods (which use linkage 

information from close relatives) and population-based 

methods, which use population linkage disequilibrium 

information (Sargolzaei, 2014). A “trio” data consists of 

genotypes from father–mother–child triplets and some 

phasing algorithms are adapted to be used in this type of 

data (Lu and Cantor, 2014). These conditions make it 

possible to infer the genotypes of a non-genotyped indi-

vidual using genomic information from its family mem-

bers (Pimentel et al., 2013). Often sires and grandsires 

of these non-genotyped individuals are genotyped. Im-

putation methods can be divided into family-based 

methods (which use linkage information from close rel-

atives) and population-based methods, which use popu-

lation linkage disequilibrium information (Sargolzaei et 

al., 2014). The accuracy of imputation depends on sev-

eral factors, such as the number of SNPs in the low den-

sity panel, the relationship between the animals geno-

typed, the effective population size, and the method 

used (Wellmann et al., 2013).  

There are many software programs for imputation 

which are fast- PHASE (Scheet and Stephens, 2006), 

MACH (Willer et al., 2008) and Beagle (Browning and 

Browning, 2009). Some programs are designed for hu-

man and livestock populations and others have been 

used to infer missing genotypes based on known infor-

mation derived from flanking markers for livestock pop-

ulations (Sargolzaei et al., 2014). Erbe et al. (2012) used 

the Beagle software (version 3.3.2) without pedigree in-

formation to impute genotypes at 800 k SNPs from dairy 

bulls genotyped at 50k and reported accuracies of impu-

tation ranging from 0.96 to 0.98 in Jersey and Holstein 

cattle, respectively. The Beagle software uses popula-

tion information for imputation. Therefore it is expected 

that program be able to impute genotypes of animals 

with incomplete pedigree (Johnston et al., 2011). The 

Beagle program imputes missing genotypes of animals 

with and without complete pedigree with high accuracy 

(Browning and Browning, 2009). 

Meuwissen and Goddard (2010) applied a method 

for imputing whole sequence genotypes on individuals 

genotyped at a low density panel and reported that 10% 

of the missing genotypes were erroneously imputed. 

Under a SNPs markers whole-genome scans ap-

proach, many markers are likely to be located in regions 

that are not involved in the determination of traits of in-  

 terest. On the other hand, some markers may be in link-

age disequilibrium with some QTL, or in regions har-

boring genes involved in the infinitesimal component of 

the trait. This suggests that differential shrinkage of 

marker effects should be a feature of the model, then an 

alternative is the use the LASSO (Least Absolute 

Shrinkage and Selection Operator) regression, which 

provides good features of subset selection (i.e., variable 

selection) with the shrinkage theory. De los Campos et 

al. (2010) proposed a Bayesian approach of LASSO re-

gression in genome-wide selection (GWS), and the va-

lidity of this methodology has been reported (Silva et 

al., 2011). If a large number of markers are included in 

a regression model, marker-specific shrinkage of regres-

sion coefficients may be needed. For this reason, the 

Bayesian least absolute shrinkage and selection operator 

(LASSO) appears to be an interesting approach for fit-

ting marker effects in a regression model (De los Cam-

pos et al., 2009). 

The objectives of this study were to investigate the 

accuracy of imputation for low-density genotyped off-

spring of parent-offspring trios and to evaluate the per-

formance of the Bayesian LASSO method when im-

puted genotypes were used for genomic prediction. To 

evaluate the factors affecting imputation accuracy, mi-

nor allele frequency (MAF) was examined. 

 

Materials and methods 

Simulation 

Genomic data were simulated using the statistical soft-

ware package R (R Development Core Team, 2014). 

The R package of Hypred (Technow, 2015) was used 

for simulating the genomic data. 

The genome consisted of 5 chromosomes and each 
chromosome was set as one Morgan length. The number 

of SNPs per chromosome were 10000 and the recombi-

nation rate per chromosome was performed using 
hypredRecombine function obtained from the Hypred. 

One hundred QTLs were randomly distributed across 
chromosomes. Gene substitution effects for each QTL 

were assigned randomly from a standard normal distri-
bution, a ~ N(0,1). Marker allele frequencies in the first 

historical generation were set equal to 0.5 (Villumsen et 
al., 2009). An historic population consisted of 100 indi-

viduals (50 males,50 females) that were randomly 
mated during 50 generations using mutation rate of 

2.5×108 per site. To reach at a mutation-drift balance, 
the method of Villumsen et al. (2009) was used. The ref-

erence population was generated from the historic pop-
ulation by mating parent groups. The parent groups 

were randomly selected from the last generation of the  
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historic population. This structure was followed by 50 
generations of random mating. The paternal and mater-

nal haplotypes for each individual were generated based 
on Haldane mapping function to generate recombinant 

haplotypes. Eighty-five families were randomly se-
lected from the reference population.  Each family con-

tained the dam, its sire (MGS), two offspring (Offspring 

1 and Offspring 2) and the offspring’s sires (Sire 1, Sire 
2). Each family had two parent-offspring trios. 

 

Scenarios 

To assess the effect of imputation on the accuracy of es-
timation, 6 different scenarios were considered (Figure 
1). In all scenarios, the missing SNP genotypes rates 
were 50, 90 and 95 percent under a random missing pat-
tern genotypes. 3 low-density panels (5K, 1K and 0.5K 

 SNPs) were created based on a high-density panel (10K 

SNP). Our first goal was to determine the accuracy of 

imputation in low-density offspring, when the dam and 

an offspring were genotyped (S1). Our second goal was 

to determine the accuracy of imputation in both low-

density offspring, when the dam was genotyped (S2). 

The third and fourth goals were to assess the accuracy 

when low-density dams had one and two low-density 

offspring respectively (S3 and S4). In the scenarios four 

and six we intended to determine the accuracy of impu-

tation in one and two low-density offspring, respec-

tively, when dam was non-genotyped. In the fourth and 

sixth scenarios, imputation on low-density and non-gen-

otyped dams was performed using known genotypes 

from the sire of each dam (MGS) as parent-offspring 

pair data (Figure 1). 

Sire 1 Sire 2Dam

O2O1

Sire 1 Sire 2Dam

O2O1

Sire 1 Sire 2Dam

O2O1

Sire 1 Sire 2Dam

O2O1

MGS

Sire 1 Sire 2Dam

O2O1

Sire 1 Sire 2Dam

O2O1

MGS

Scenario 1 Scenario 2

Scenario 3 Scenario 4

Scenario 5 Scenario 6
 

Figure 1. Assumed family members with available genotypic information (black) used for imputing a low-

density genotyped (green) or non-genotyped (red) individual. O1 is offspring 1 and O2 is offspring 2 
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Imputation 

The Beagle software (version 3.3.2) has special options 

allowing the user to provide genotypes from parent-off-

spring trios and parent-offspring pairs for phasing. Us-

ing the haplotype phasing and imputation program, it is 

possible to impute genotypes from low-to-high density. 

We used the Beagle software  (v.3.3.2) to impute parent-

offspring trios and parent-offspring paired data. 

 

Assessing imputation accuracy 

After imputation of genotypes in each scenario, the im-

putation accuracy was calculated as the correlation be-

tween imputed and real genotypes. For each scenario, 

the mean of imputation accuracy, standard deviation, 

and the percentage of the correct and incorrect imputed 

SNP genotypes of each individual with 10 replicates 

were calculated. 

 

Assessing genomic prediction accuracy 

A Bayesian implementation of the Lasso method with 

BLR package in R (De los Campos et al., 2010) was 

used to estimate marker effects. Genomic breeding 

value accuracy was defined as the correlation between 

GEBVs and true breeding values.  

 

Results  

SNP-specific Imputation accuracy of  

non-genotyped and low-density genotyped dams 

Table 1 shows the imputation accuracy and correspond-

ing standard deviation (SD) of non-genotyped and low-

density genotyped dams. Imputation accuracies ranged 

from 0.76 to 0.91. The least amount of imputation accu-

racy and highest SD were achieved for non-genotyped 

dams. The imputation accuracy for the 5k genotyped 

dam was the highest. The imputation accuracy de-

creased with the increase of missing SNPs. The results 

of each scenario indicated that imputation of low-den-

sity genotyped and non-genotyped individuals based on  

Table 1. Average imputation accuracy (r) for low-density 

genotyped and non-genotyped dams 

SDb ra Genotyping 

0.009 0.91 5k genotyped 

0.04 0.82 1k genotyped 

0.06 0.79 0.5k genotyped 

0.07 0.76 non-genotyped  
aMean of imputation accuracy calculated as the correlation between 

true genotypes and imputed genotype dosages. Values are means 

across 10 replicates. bStandard deviation 

 parent-offspring trios and parent-offspring paired is 

possible. 

 

SNP-specific Imputation accuracy of offspring 

Table 2 shows that average of imputation accuracy and 

percentage of correctly imputed genotypes increased 

with genotyped dam and offspring. In S1 (dam and one 

offspring were genotyped completely) the imputation 

accuracy and percentage of correctly imputed genotypes 

were the highest and in S6 (dam was not genotyped and 

both of offspring were low-density genotyped) were 

lowest. Genotyping density also affected the accuracy 

and percentage of correctly imputed genotypes. For ex-

ample in S6 average of imputation accuracy for 5K gen-

otyped offspring was 0.73 and for 0.5K genotyped off-

spring was 0.67. In this scenario the average of imputa-

tion accuracy was 0.73 for the 5K genotyped offspring. 

 

Animal-specific imputation accuracy 

In genomic selection, it is important to know the impu-

tation accuracy per individual, because there is a direct 

relation with the accuracy of genomic predic-

tion (Mulder et al., 2012) and therefore the response to 

selection. Imputation accuracy of individuals ranged 

from 0.70 to 0.85 and was 0.85 for full genotyped dam. 

The lowest of animal-specific imputation accuracy was 

for non-genotyped dam (Figure 2). 

 

The effect of MAF on the imputation accuracy 

The SNP imputation accuracies increased as the number 

of offspring genotyped increased (Figure 3). More inter-

esting was the fact that imputation accuracy of SNPs 

with high MAF decreased considerably when a dam was 

non-genotyped but imputation accuracy depended less 

on MAF when a dam and one of the offspring were gen-

otyped (S1). The imputation accuracy of SNPs with low 

MAF increased considerably when the dam was com-

pletely genotyped (Figure 3). In this study, there were 

no typed SNPs thus only a few SNPs had imputation ac-

curacy equal to 1. 

 

Genomic breeding value accuracy 

Three populations were simulated for this section based 

on the scenarios used. The reference population (Pr): in 

Pr most individuals were genotyped for all SNPs in each 

scenario. Validation 1 population (P1) and Validation 2 

population (P2) had the same individuals: only in P1 

these individuals had true genotypes and in P2 had im-

puted genotypes (Table 3). 
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Table 2. Average imputation accuracy (r) and percentage of correct imputed genotypes 

for offspring in several each scenarios 

 correct    r   
c 0.5k b1k a5k  

c 0.5k b1k a5k Scenarios 

91.47 91.76 96.17  0.9 0.92 0.96 Scenario1 

80.29 85.29 87.64 
 

0.8 0.84 0.88 Scenario2 

Scenario3 

77.61 83.12 87.5  0.78 0.83 0.87 ddam (5k) 

77.14 79.41 80.78  0.77 0.79 0.81 edam (1k) 

76.8 76.9 79.9  0.77 0.77 0.8 
fdam (0.5k) 

 

74.85 

 

77.51 

 

83.05 
 

 

0.75 

 

0.78 

 

0.83 

Scenario4 
ddam (5k) 

72.91 73.14 74.7  0.73 0.73 0.75 edam (1k) 

72.35 72.41 74.21  0.72 0.72 0.74 fdam (0.5k) 

75.16 76.8 80.42  0.75 0.77 0.8 Scenario5 

67.34 68.88 73.10  0.67 0.69 0.73 Scenario 6 
S1 (Full genotyped dam with one low-density genotyped offspring), S2 (Full genotyped dam with 

two low-density genotyped offspring), S3 (low-density genotyped dam with one low-density gen-

otyped offspring), S4 (low-density genotyped dam with two low-density genotyped offspring), S5 

(Non-genotyped dam with one low-density genotyped offspring), S6 (Non-genotyped dam with 

two low-density genotyped offspring). a5k genotyped offspring, b1k genotyped offspring, c0.5k 

genotyped offspring,d5k genotyped dam, e1k genotyped dam, f0.5k genotyped dam. 

 
Figure 2. Individual imputation accuracy with full, low-density and non-genotyped 

dam. A: full genotyped dam, B: 5k genotyped dam, C: 1k genotyped dam, D: 0.5k 

genotyped dam, E: non-genotyped dam 

The accuracies for each scenario and alternative low-

density genotyping strategies are shown in Table 4. The 

GEBV accuracy for Pr was higher than two other popu-

lations. The P2 had lowest accuracy because in this pop-

ulation genotypes were imputed. As expected maximum 

accuracies for three population were obtained at S1 

where the dam was completely genotyped and one off-

spring was low-density genotyped. In S1, the accuracy 

for P2 with 5k SNP was 0.78, while for S2 (completely 

genotyped dam with two low-density genotyped offspr- 

 ing) was 0.73. Accuracies for S3 where the dam and one 

offspring were genotyped with low density panels were 

lower than S1 and S2. Also the accuracy for S4 where 

the dam and both offspring were low density genotyped 

was lower than S3. In S5 and S6, the accuracy decreased 

compared to S4. This is due to the presence of non- gen-

otyped dams in these scenarios. In S5, where only one 

offspring was genotyped with low density panel, the ac-

curacy was 0.60 for the 5k SNP and 0.56 for S6 with 

two low-density genotyped offspring. 
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Figure 3. Imputation accuracy by SNP (rSNP) plotted against the minor allele frequency (MAF) in conditions 

that the offspring in all scenarios and the dam in third and fourth scenarios had 0.5K SNPs...... 

Table 3. Reference and validation populations for several scenarios 

Scenario Reference (Pr) Validation 1 and 2 (P1 and P2) 

1 Sire 1, Sire 2,  Dam, Offspring a Offspring b 

2 Sire 1, Sire 2,  Dam Offspring a and b 

3 Sire 1, Sire 2,  MGS, Offspring a Dam, Offspring b 

4 Sire 1, Sire 2,  MGS Dam and Offspring a and b 

5 Sire 1, Sire 2,  MGS, Offspring a Dam, Offspring b 

6 Sire 1, Sire 2,  MGS Dam and Offspring a and b 
P1 has true genotype and P2 has imputed genotype 

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

rS
N

P

MAF

Scenario1

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

rS
N

P

MAF

Scenario2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

rS
N

P

MAF

Scenario3

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

rS
N

P

MAF

Scenario4

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

rS
N

P

MAF

Scenario5

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

rS
N

P

MAF

Scenario6



Imputation of parent-offspring trios n using Bayesian method 

 

49 

 

Table 4. Accuracy of genomic breeding values in reference and validation populations for several scenarios 

P2/P1 
Validation2 

( P2) 

Validation1 

( P1) 

Reference 

(Pr) 

Density for 

offspring 
Scenarios 

0.96 

0.91 

0.89 

0.06   ± 0.78 

0.08   ± 0.73 

0.10   ± 0.72 

0.06   ± 0.81 0.01   ± 0.94 

5k 

1k 

0.5k 

Scenario1 

Full genotyped dam with 

one low-density offspring 

0.91 

0.86 

0.84 

0.10   ± 0.73 

0.13   ± 0.69 

0.15   ± 0.67 

0.06   ± 0.80 0.02   ± 0.91 

5k 

1k 

0.5k 

Scenario2 
Full genotyped dam with 

two low-density offspring 

0.88 

0.81 

0.78 

0.11   ± 0.72 

0.15   ± 0.67 

0.15   ± 0.65 

0.05   ± 0.83 0.01   ± 0.92 

5k 

1k 

0.5k 

Scenario3 
5k genotyped dam with one 

low-density offspring 

0.81 

0.76 

0.75 

0.16   ± 0.67 

0.19   ± 0.63 

0.20   ± 0.62 

0.05   ± 0.83 0.01   ± 0.92 

5k 

1k 

0.5k 

Scenario3 
1k genotyped dam with one 

low-density offspring 

0.82 

0.76 

0.75 

0.17   ± 0.66 

0.21   ±0.61 

0.21   ± 0.60 

0.05   ± 0.80 0.01   ± 0.92 

5k 

1k 

0.5k 

Scenario3 
0.5k genotyped dam with 

one low-density offspring 

0.86 

0.80 

0.78 

0.13   ± 0.68 

0.19   ± 0.63 

0.20   ± 0.62 

0.05   ± 0.79 0.03   ± 0.91 

5k 

1k 

0.5k 

Scenario4 
5k genotyped dam with two 

low-density offspring 

0.81 

0.73 

0.71 

0.19   ± 0.64 

0.22   ± 0.58 

0.22   ± 0.56 

0.05   ± 0.79 0.03   ± 0.91 

5k 

1k 

0.5k 

Scenario4 
1k genotyped dam with two 

low-density offspring 

0.79 

0.69 

0.68 

0.20   ± 0.63 

0.23   ± 0.55 

0.24   ± 0.54 

0.05   ± 0.79 0.03   ± 0.91 

5k 

1k 

0.5k 

Scenario4 
0.5k genotyped dam with 

two low-density offspring 

0.72 

0.64 

0.64 

0.21   ± 0.60 

0.26   ± 0.53 

0.26   ± 0.53 

0.05   ± 0.83 0.01   ± 0.92 

5k 

1k 

0.5k 

Scenario5 
Non-genotyped dam with 

one low-density offspring 

0.71 

0.63 

0.62 

0.22   ± 0.56 

0.30   ± 0.50 

0.31   ± 0.49 

0.05   ± 0.79 0.03   ± 0.91 

5k 

1k 

0.5k 

Scenario6 
Non-genotyped dam with 

two low-density offspring 

Pr and P1 were genotyped completely and P2 was imputed with three low density panels.  

Discussion   

This study investigated the accuracy of imputation of 

low-density genotyped offspring of completely geno-

typed, low-density genotyped and non-genotyped dams. 

The results showed sufficient accuracy could be ob-

tained when a dam is genotyped. The average of impu-

tation accuracy in 5k genotyped offspring with com-

pletely genotyped dam was 0.96 and with 5k genotyped 

dam, it decreased to 0.87. Genotype imputation accu-

racy increased with increasing marker density of low-

density genotyping platform and with close relatives 

having high-density genotypes. An important question 

is whether the use of phenotypes from imputed animals 

is advantageous, for example, in GWAS or genomic 

prediction. This question is not specifically addressed in 

the simulations presented here, but has received some 

attention in the literature. For example, in human 

GWAS studies, inclusion of predicted genotypes for in-

dividuals increased the power of GWAS when close re- 

 latives were genotyped (Chen et al., 2012). 
This enables re-use of valuable phenotypes from his-

torical datasets for, e.g. GWAS or genomic prediction. 
Usually, datasets with valuable phenotypes are small 
and in such cases, adding phenotypes with imputed gen-
otypes can have a relatively larger impact on the power 
of GWAS or on the improvement of the accuracies of 
genomic prediction. Chen et al. (2014) showed the ac-
curacy of genotypes that were imputed from various low 
density panels to the 50k SNP panel under different sce-
narios. The imputation accuracy was the highest (0.98) 
when all bulls in the training set were genotyped with 
50 k panel and bulls in the validation set were genotyped 
on the 6k panel. In this study, genotypes on 0.5k, 1k, 5k 
panels were simulated from 10k genotypes. In reality, 
there are more genotyping errors in 0.5k genotypes than 
1k or 5k. Using the Bayesian method, the 5k SNP panel 
performed better than the 1k and 0.5k panels. Imputa-
tions from lower density panels were more prone to er-
rors and resulted in lower accuracy of genomic predic- 
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tion. But for individuals with both parents genotyped, 

genotype imputation achieves a relatively high accu-

racy. Chen et al. (2014) investigated the impact of gen-

otype imputation on the performance of GBLUP and 

Bayesian methods; their results showed that perfor-

mance of both methods was influenced by imputation 

errors. Boichard et al. (2012) showed there were more 

genotyping errors in lower density panel. Therefore, 

lower density panels performed worse due to more in-

accurate imputation of SNP genotypes.  

In the literature, several definitions of imputation ac-

curacy are used. As pointed out by Hickey et al. (2012) 

and empirically shown by Brøndum et al. (2012), the 

widely used percentage of correctly imputed SNPs de-

pends on the MAF, and the correlation between the true 

genotype and the imputed genotype (or dosage) is a bet-

ter measure of the quality of imputation. However, for 

the animal-specific imputation accuracy, different SNPs 

have different MAF, and thus also a distribution with a 

different mean, while a Pearson correlation assumes that 

the correlated variables are bivariate normally distrib-

uted. Therefore, we calculated imputation accuracy as 

the correlation between imputed genotypes and real 

genotypes. Callus et al. (2014) calculated imputation ac-

curacy as the correlation between true and imputed al-

leles because this definition is in line with the definition 

of the accuracy of breeding values, which is commonly 

used in the context of animal breeding.  

In the future, more animals might be genotyped on 

low-density panels. One might have to decide whether 

to include these animals in the validation population to 

derive genomic prediction equations. From Table 4, the 

accuracy of genomic prediction was consistently re-

duced when more animals in the validation population 

were imputed when the density of the SNP panel was 

lower than 5 k. Currently, nearly all males used for 

breeding are genotyped or regenotyped on panels with a 

density of 5 k or higher and results from this study jus-

tified the application of the 5 k panel. The trend that the 

accuracy changed with the density of SNP panel agreed 

with results of Weigel et al. (2010). 

 

Conclusion 

Non-genotyped individuals could be imputed with an 

imputation accuracy, ranging from 0.67 to 0.96. Im-

puted genotypes are calculated for use in genomic eval-

uation but the accuracy of breeding values will depend 

on the level of genotyping in close relatives. Phenotypes 

with imputed genotypes can have a relatively larger im-

pact on the power of GWAS or on the improvement of 

the accuracies of genomic prediction. Imputations from  

 lower density panels were more prone to errors and re-
sulted in less accurate genomic prediction. But for indi-

viduals with both parents genotyped, genotype imputa-
tion achieve a relatively high accuracy. The accuracy of 

genomic prediction was reduced when more animals in 
the validation population were imputed when the den-

sity of the SNP panel was less than 5k. 
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ه تایی های سهای متفاوت از خانوادههدف از این مطالعه ارزیابی صحت تخمین ژنوتیپی با استفاده از استراتژیچکیده    

بینی در پیشBayesian LASSO  سازی شده، عملکرد روش های شبیهفرزندان( است. با استفاده از داده-)والدین

سازی از پنج کروموزوم هر یک با طول یک مورگان شبیهژنومیک مورد استفاده قرار گرفت. در این تحقیق ژنومی متشکل 

بر صحت برآورد ارزشهای QTLبرای بررسی اثر  .سازی شدبر روی هر کروموزوم شبیه SNPنشانگر  10000گردید. تعداد 

سازی یهاند شببا استفاده از توزیع یکنواخت بر روی کروموزوم پراکنده شده کهمکان صفت کمی  100اصلاحی ژنومی تعداد 

( مورد استفاده قرار گرفت. شش استراتژی که هر کدام شامل دو خانواده k 5/0 ،k1 ،k5با تراکم پایین SNPشد. سه سطح 

فرزند( است شبیه سازی گردید. در این -های دوتایی )والدسه تایی )پدر، مادر و فرزندان( و پدربزرگ مادری برای داده

ژنوتایپ شده، ژنوتایپ شده با تراکم پایین و یا ژنوتایپ نشده و فرزندان در دو  ها مادرها در سه وضعیت کاملاًاستراتژی

( برای تخمین ژنوتایپی 3.3.2) Beagleوضعیت ژنوتایپ شده بطور کامل و ژنوتایپ شده با تراکم پایین هستند. از برنامه 

بینی اثرات مارکرها استفاده شد. نتایج برای پیش Bayesian LASSOروش با استفاده از  BLRپکیج  Rافزار و از نرم

بینی ژنومیک تحت تاثیر خطاهای تخمین ژنوتایپی است. صحت تخمین نشان داد که صحت تخمین ژنوتایپی و پیش

یپ ارا دارد که به تراکم ژنوتایپی در فرزندان و مادر بستگی دارد.  در استراتژی که مادر ژنوت 96/0تا  67/0ژنوتایپی رنجی از 

نوتایپی یابد. صحت تخمین ژاند، صحت تخمین ژنوتایپی کاهش مینشده است و هر دو فرزند با تراکم پایین ژنوتایپ شده

یابد. می افزایش آللی پایین وقتی که یک مادر بطور کامل ژنوتایپ شده است بطور قابل ملاحظههایی با فراوانی SNPدر 

د بویژه بینی ژنومیک میشوهای با ارزش برای پیشنشده موجب ایجاد فنوتیپصحت تخمین ژنوتایپی از افراد ژنوتایپ 

 وقتی افراد ژنوتایپ نشده فرزند ژنوتایپ شده دارند.

 


