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Abstract    Domestication and selection are processes that conserve the pattern of genetic diversities 

between and within populations. Identification of genomic regions that are targets of selection for 

phenotypic traits is one of the main aims of research in animal genetics. An approach for identifying 

divergently selected regions of the genome is to compare FST values among loci to estimate the ge-

netic variability between and within populations. In this study, a whole genome scan using the 50K 

Illumina Ovine SNP chip was performed in seventeen flocks of Australian Merino sheep (8 CRC 

flocks and 9 SG flocks). Population differentiation using FST in these flocks revealed seven genomic 

regions. These areas were located on chromosomes 2 (two region), 3, 6, 7, 16 and 26 (Wintheta> 

0.15). In this study, a number of candidate genes associated with reproductive and growth traits were 

identified. Study of the reported QTLs in these regions of the ovine and bovine genomes also showed 

that they associated with important traits such as reproduction, carcass yield, growth and wool traits. 

Further validation studies of these regions can be used to identify the candidate genes for economi-

cally important traits in sheep breeds. The results also provided intuitions for further understanding 

of the genetic diversities among the Merino flocks. 
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Introduction 

Small ruminants, especially native breed types, play an 

important role in the livelihood of a considerable section 

of human population in the tropics from socio-economic 

aspects. Therefore, integrated attempt in terms of man-

agement and genetic improvement to enhance produc-

tion is of crucial importance (Mohammadabadi and 

Sattayimokhtari, 2013). Economical and biological effi-

ciency of sheep production enterprises is generally im-

proved by increasing ewe productivity and reproductive 

performance (Soufy et al., 2009; Vajed Ebrahimi et al., 

2017). Efficiency of selection for growth performance  

 could be improved by the use of molecular genetics 

methods, because genomic data provide valuable infor-

mation for genetic evaluation of animals (Zamani et al., 

2015).  

Sheep is the first livestock species domesticated 

nearly 9000 years ago (Chessa et al., 2006). The wide 

distribution of this species is a concept of their adapta-

bility to different environments and this has resulted in 

enormous morphological variation among populations 

(Diamond, 2002; Kijas et al., 2009). After domestica-

tion, natural and artificial selection processes led to a  
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wide range of phenotypes and resulting different animal 

strains (Kijas et al., 2009). Selection for increasing of 

frequency in new mutations that are advantageous only 

in a subset of populations leaves some signatures in the 

genome (Hancock et al., 2008). Detecting these ge-

nomic regions is of great importance in animal genetics, 

particularly in species where few annotated genes are 

available (Lee et al., 2013). Understanding the genes are 

under selection and their pathways can be achieved by 

discovering these features. In addition, the locations of 

selection signatures are often correlated with QTL af-

fecting economically important traits (Moradi et al., 

2012). The need to maintain and improve local genetic 

resources has been recognized as a priority, at the world 

level. Biodiversity studies depicting a deep picture of 

the genetic variability of the available sheep breeds pro-

vide favorable opportunities for both genetic conserva-

tion programs as well as enhancing production effi-

ciency by means of controlled and well-designed cross-

breeding systems exploiting breed diversities, heterosis 

and breed complementarity (Mohammadabadi et al., 

2010a; Vajed Ebrahimi et al., 2017). Maintenance of ge-

netic diversity in livestock species requires adequate im-

plementation of conservation priorities and sustainable 

management programs, which should be based on com-

prehensive information regarding the structure of the 

populations, including sources of genetic variability 

among and within breeds (Mohammadabadi et al., 

2010b).  

The study of genes underlying phenotypic variation 

can be performed in two different directions. Firstly, 

from phenotype to genome, which is performed by link-

age disequilibrium (LD) based association QTL map-

ping or candidate genes identification. Secondly, from 

genome to phenotype, performed by statistical evalua-

tion of genomic data to identify regions under selection 

(Akey et al., 2009; Qanbari et al., 2010). The second ap-

proach identifies patterns of LD in or between popula-

tions, which are incompatible with the hypothesis of the 

genetic neutrality, and are known as selective sweeps or 

selection signatures. Recently a number of studies have 

been performed to detect signals of recent positive se-

lection on a genome-wide scan in pig (Amaral et al., 

2011; Rubin et al., 2012), cattle (Hayes et al., 2009; 

Qanbari et al., 2011; Sorbolini et al., 2015) and sheep 

(Moradi et al., 2012; Kathryn et al., 2014). Moradi et al. 

(2012) performed a genome scan from 90 sheep to 

search for signatures of divergent selection using FST in 

Iranian fat and thin-tailed sheep breeds. Most of the re-

gions identified were associated with QTL reported for 

carcass traits. Two analytical methods including FST 

(Fisher, 1925) and Peddrift (Dodds and McEwan, 1997)  

 have been used to detect differentiation between se-

lected lines of Romney and Perendale sheep (Kathryn et 

al., 2014). In this study, fourteen novel regions which 

are associated with resistance or susceptibility to gastro-

intestinal nematodes were identified. In addition, 

Qanbari et al. (2010) reported regions associated with 

candidate genes and QTL such as milk yield, reproduc-

tive and behavioral traits in Holstein cattle. 

If the mutation is recent and the selection is strong, 

alleles on the homogeneous chromosome segment as the 

mutant allele will be increased. However, a novel muta-

tion under selection increases rapidly in allele fre-

quency, so that the conserved haplotype is long (Niel-

sen, 2005). The quick increase in frequency to fixation 

of a useful allele can reduce its signature at neutral con-

nected loci (Kim, 2006). This means that, the genomic 

regions that display high FST values compared with the 

neutral loci have been under selection (Porto-Neto et al., 

2013). The FST values related to the distinctive regions 

are expected to come from different distributions; 

higher FST values reflecting different selection and 

lower FST values reflecting balancing selection, respec-

tively. This can be estimated by clustering a set of FST 

values from a multi population analysis. Selected loci 

can be detected based on LD such as Extended Haplo-

type Homozygosity (EHH) and Relative EHH (REHH) 

or population differentiation (such as FST and theta) 

methods (Wright, 1992; Sabeti et al., 2002). The meth-

ods based on LD start with identification of the core 

haplotypes (through genotyping a set of SNPs in a re-

gion so small that recombination may not occur). 
Common signatures of selection can be detected in 

different animal populations using FST analysis. Identi-

fication of candidate genes and QTL in the regions un-
der selection can be used to further understand the ge-

netic basis of economically important traits. The animal 
genomes can be scanned for recent positive selections 

using the available large scale SNPs data. The aim of 
this study was to detect selective sweeps in the Austral-

ian Merino sheep using the dense Illumina OvineSNP50 
Bead chip, and their concurrence with the reported QTL 

and candidate genes in the ovine genome. 

 

Material and methods 

Sample collection and genotyping 

Blood samples were collected from 3974 Australian 

Merino sheep. The animals were from seventeen flocks 

including 8 CRC flocks and 9 SG flocks. The Illumina 

50K Ovine SNP chip (Illumina Inc., San Diego, USA) 

containing 48599 single nucleotide polymorphisms 

(SNPs) were used to genotype the animals. Samples for  
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genotyping were collected under approval number 

AEC12-049 of the University of New England Animal 

Ethics Committee. 

 

Data quality control  

To ensure the overall quality of the samples and a con-

sistent set of genotypes, filtering was applied to the pri-

mary data using Plink v1.07 software (Purcell et al., 

2007). After applying the quality control measures, 

48468 SNPs were retained. The SNPs with the call rate 

less than 0.95, the Illumina Gentrain score less than 

0.95, the minor allele frequency (MAF) less than 0.01 

and not in Hardy-Weinberg equilibrium (a P-value cut-

off of 1×10–6) were removed. The Bonferroni correction 

(β=α/n) was used to address the problem of multiple 

comparisons (Abdi, 2007). A conservative significance 

level (α=0.05) was applied, and the number of tests was 

equal to be the number of SNPs (n = 48,599). Then a 

value of 10-6 was calculated for β. 

 

Statistical analyses and selection signatures  

detection 

The principal component analysis (PCA) was used to 

reduce the dimensionality of large data sets. The PCA 
was performed using the PRCOMP function in R soft-

ware (R Core Team, 2011). The PCA in Australian Me-
rino sheep data set was calculated on GRM. To evaluate 

genetic differentiation for each locus, the loci with pos-
itive selection were detected based on fixation index 

(FST). The FST values were computed using R software. 
The FST is a measure of population differentiation which 

was calculated as described by MacEachern et al. 
(2009):  

FST =HT − HS/HT 

where, HT denotes the expected heterozygosities for to-

tal populations and HS denotes the expected heterozy-

gosities in subpopulations. 

One of the main problems with the Wright’s FST es-
timator (Wright, 1951) is that it does not account for the 

sampling error. This was corrected for by Weir and 
Cockerham (1984) who developed the unbiased estima-

tor (θ); the method that was used in this research. Sig-
natures of selection were identified using significant 

threshold of 0.15 for the theta -window values. As indi-
vidual SNP may not show a strong signal, a 5-SNP mov-

ing average (WIN5) was used to identify regions with 
strong signatures of selection over multiple SNPs, 

which also reduces noise (Weir et al., 2005). An arbi-
trary window of 5 markers (~300 Kbp) was selected as 

it appeared to provide a better signal. To compute the  

 genetic divergence among all populations, pairwise FST 

was also calculated with the unbiased estimator (Weir 

and Cockerham, 1984). The ape package was used to 

create Neighbor joining (NJ) graph (R Core Team, 

2014). 

 

Study of genes and QTL in regions under selection 

Each region was investigated for genes and QTL using 

the Ensemble Biomart (Hubbard et al., 2009) and ani-

mal QTL Database (Zhiliang et al., 2007). It is good to 

compare regions of interest in O. aris to the correspond-

ing areas in B. taurus, as the taurine genome has been 

better annotated. The ovine and bovine sequences were 

obtained from the ovine Genome browser 

(http://www.livestockge-

nomics.csiro.au/sheep/oar1.0.php) and the UCSC Ge-

nome Browser on Cow Oct. 2007 (http://ge-

nome.ucsc.edu/), respectively. Also, two QTL data-

bases available online including http://www.animal-

genome.org/QTLdb/sheep.html and http://www.ani-

malgenome.org/QTLdb/cattle.html were explored to 

identify any overlapping of the candidate regions with 

published QTL in sheep, dairy and beef cattle. 

 

Results 

Quality control 

Australian Merino sheep (3974) were genotyped using 

the 48599 SNPs on the Illumina OvineSNP50 Bead 
chip. A number of 157 out of the 3974 individuals had 

MIND > 0.05, 259 markers were not in Hardy-Wein-
berg equilibrium (p < 1×10–6), 2788 SNPs failed messi-

ness test (GENO > 0.05) and 262 SNPs had MAF < 0.01 
for the whole dataset. Accordingly, 45290 SNPs from 

3817 individual were used for further analyses.  

 

Population structure 

Understanding the relationships between and within 
populations is an important step to find the relevant con-

servation strategies. The results derived from PCA, pair-
wise Weir and Cockerham’s FST (WCFST) and NJ tree 

were used to explore the genetic closeness among the 
flocks. 

The PCA results showed the investigated flocks 

were almost genetically close to each other except the 
SG2 flock that was clustered separately (Figure 1). In 

addition, the results indicated that there were close rela-
tionships between CRC and SG flocks which can be due 

to the use of common sires among the flocks. The pro-
portion of total variation explained by first and second 

principal components, were 46.6 and 6.3%, respectively. 
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Figure 1. Principal components analysis for the genetic differentiations 

among the Australian Merino sheep flocks. 

The WCFST between pairs of populations was inves-

tigated to create the NJ tree (Figure 2). The lowest aver-

age pairwise WCFST was observed between INO3 and 

INO2 flocks (WCFST= 0.0029), which were the most 

closely related pair and the next lowest pairwise WCFST 

(WCFST = 0.0046) was observed between the INO8 and 

INO6 flocks. The highest average pairwise WCFST was 

observed between SG1 and SG6 flocks 

(WCFST= 0.0814). Four subpopulations were originated  

 from the same branch with a very close relationship 

(Figure 2). The shortest branch was observed for INO8 

flock; while the longest one was found for SG2 where 

this flock had the most genetic distance with the other 

flocks. 

 

Genomic distribution of FST 

The number of individuals within each flock were not  

 
 

 

 

 

 

 

 

 

 

Figure 2. Relationship between populations based on Neighbor 

network obtained using pair-wise estimates of Weir annd     

Cockerham’s FST. 
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balanced and the windowed Weir and Cockerham’s FST 
values were lowly correlated with Wright's FST values (r 

= 0.17). Therefore, the level of differentiations between 
the Australian Merino sheep was measured by unbiased 

estimates of fixation index (Weir and Cockerham, 
1984). Several ovine genomic regions with high Weir 

and Cockerham’s FST values were detected (Figure 3).  
Based on previous studies 0.1 % of the highest theta 

values were considered for representing the signatures 
of selection (Kijas et al., 2009; Moradi et al., 2012; 
Yang et al., 2014).  Accordingly, a theta value of 0.15 
was used as a threshold for significant selection sweeps. 
Then, seven regions on chromosomes 2 (between 
47,826,988-48,037,659 bp and; between 252,253,005-
252,420,321 bp), 3 (between 85,499,961-85,588,448 
bp), 6 (between 40,277,406-40,496,376 bp), 7 (between  

 64,875,191-65,066,014 bp), 16 (between 15,056,887-

15,286,536 bp) and 26 (between 20,194,616-

20,333,552 bp) were detected as the signatures of selec-

tion (Figure 3). The mean genomic WIN5theta value 

across all SNPs was equal to 0.032 (ranged from -0.147 

to 0.317). The theta values of 6.4% of the loci (2942 

SNPs) were ≤ 0. In general, FST value is varied between 

0 and 1 (Wright, 1951). However, estimating a negative 

value is possible while it is unbiased (Akey et al., 2002). 

 

Ovine genes and published QTL in the detected  

regions 

A summary of published ovine genes and QTL in the re-

gions under selection is presented in Table 1. A few can-

didate genes were found in these regions based on Ovine  

 
Figure 3. Distribution of windowed theta values for Australian Merino sheep by chromosome. 

Regions with arrows above had windowed FST values > 0.15 
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Table 1. Ovine genes and published QTL in regions showing evidence of selection in Australian Merino sheep data set 

Location on 

Ovine genome 

Location on 

Bovine 

genome 

Gene QTL 
QTL 

Reference 

2:47826988-

48037659 

8:67242625-

67309081 
- 

Meat linolenic acid content Karamichou et al. (2006) 

Meat arachidonic acid content Karamichou et al. (2006) 

Meat docosapentaenoic acid content Karamichou et al. (2006) 

Meat eicosapentaenoic acid content Karamichou et al. (2006) 

Body weight (slaughter) Walling et al. (2004) 

Milk fat percentage Arranz and Gutiérrez-Gil (2012) 

Scrotal circumference Esmailizadeh (2015) 

2:252253005-

252420321 
- - 

Meat linolenic acid content Karamichou et al. (2006) 

Meat arachidonic acid content Karamichou et al. (2006) 

Meat docosapentaenoic acid content Karamichou et al. (2006) 

Meat eicosapentaenoic acid content Karamichou et al. (2006) 

Milk fat percentage Arranz and Gutiérrez-Gil (2012) 

3:85499961-

85638700 

11:22147167-

2185456 
hnRNPLL 

Staple Length Ponz et al. (2001) 

internal fat amount Cavanagh et al. (2010) 

Meat conjugated linoleic acid content Karamichou et al. (2006) 

6:40277406-

40496376 

6:41531345-

41577486 
KCNIp4 

Hot carcass weight Cavanagh et al. (2010) 

Body weight (slaughter) Hawlader et al. (2015) 

Facial eczema susceptibility Duncan et al. (2007) 

Fecal egg count Weight at puberty 
Pollot and Greeff (2004) 

Esmailizadeh (2015) 

7:64875191-

65074155 

10:69614505-

69635497 
KTN1 

Staple Length Ponz et al. (2001) 

Fiber diameter coefficient of variance Ponz et al. (2001) 

16:15056887-

15286536 

20:16441192-

16460717 
PNF180 

Body weight (slaughter) Cavanagh et al. (2010) 

Lean meat yield percentage Cavanagh et al. (2010) 

Subcutaneous fat area Cavanagh et al. (2010) 

Subcutaneous fat thickness Cavanagh et al. (2010) 

26:20333552-

20333552 

27:23167114-

23176434 
TUSC3 

Average daily gain Cavanagh et al. (2010) 

Worm count Marshall et al. (2013) 

Eggs per worm Marshall et al. (2013) 

Change in hematocrit Marshall et al. (2013) 
 

Genome v3.1 Assembly. Five functional candidate genes 

including hnRNPLL (θ value= 0.171), KCNIp4 (θ 

value=0.185), KTN1 (θ value= 0.317), PNF180 (θ value= 

0.163) and TUSC3 (θ value= 0.168) were mapped to the 

highest theta values. These genes were located on chro-

mosomes 3, 6, 7, 16 and 26, respectively. However, the 

two detected significant regions on chromosome 2 were 

not linked with any of the candidate genes. 

Study of the reported QTL in these regions of the 

ovine genome showed that they were associated with 

QTL of economically important traits such as meat, car-

cass yield, growth and wool traits. For example, the re-

gions on chromosomes 3 and 7 are associated with QTL 

reported for staple length, on chromosome 26 with av-

erage daily gain and on chromosome 6 with hot carcass 

weight. The regions showing signature of selection in 

the O. aries genome were also compared to the ortholo-

gous areas in B. taurus (data not shown). The online da-

tabases of published QTL in beef and dairy cattle 

showed that the regions detected in the current study  

 
were associated with the QTL affecting milk yield and 

milk composition, body weight, udder depth and 

strength (Hiendleder et al., 2003; Ashwell et al., 2005; 

Chen et al., 2006). 
 

Discussion 

In this study, population structure of seventeen Austral-

ian Merino flocks was analyzed. The PCA results 

showedclose relationships among these flocks. Based on 

the PCA analyses, significant genetic diversity was ob-

served among cattle and pig individuals from diverse 

geographical places (Gibbs et al., 2009; Yang et al., 

2014). The results derived from the NJ graph and the 

WCFST were in agreement with the PCA analysis. 

NeighborNet graph between different sheep breeds 

showed branches with nearly equal length, suggesting 

the approach is robust to differences in effective popu-

lation size and genetic drift between populations (Kijas 

et al., 2012).  
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In current study, a mean theta value of 0.032 was found 

for the genetic differentiation between the flocks inves-

tigated. Kijas et al. (2009) reported a value of 0.023 

when 23 domestic breeds and two wild sheep species 

were used. They indicated that the low differentiation 

among sheep breeds was due to their short evolutionary 

history. The results are in agreement with those derived 

from a study conducted by Moradi et al. (2012) where a 

mean value of 0.024 was calculated for the genetic dif-

ferentiation between two Iranian sheep breed including 

Zel and Lori Bakhtiari.  In our study, the highest theta 

value (0.372) was found for chromosome 7. Artificial 

selection and local environmental adaptation can 

change the allelic frequencies of specific loci, then the 

frequency of useful alleles at the selected loci will in-

crease, leading to a higher than expected level of popu-

lation differentiation (Akey et al., 2002). 

Genetic improvement for wool and meat character-

istics as well as disease resistance has been the main 

breeding objective in Merino sheep breeding programs. 

In the investigated Merino flocks, the region between 

40.27 and 40.49 Mb on OAR6 was associated with hot 

carcass weight and body weight at slaughter age. The 

QTL underlying weight at puberty in ewe lambs in Ker-

mani sheep was reported on chromosome 6 at 47 cM 

(Esmailizadeh, 2015). This region was also associated 

with body weight at mature age, gestation length, milk 

yield, milk fat yield, and milk fat percentage in a 41.5 

Mb interval on BTA6 (Chen et al., 2006; Maltecca et al., 

2008; McClure et al., 2010). The biologically relevant 

gene in this region, KCNIP4 (Kv channel-interacting 

protein 4), plays a crucial role in a variety of growth 

processes, including body weight and growth regula-

tion. According to previous studies, the most significant 

SNPs which impact on body weight were on chromo-

somes 6 (position OAR6_41936490.1). This region was 

linked with several candidate genes such as KCNIP4, 

GPR125 (G protein-coupled receptor 125) and GBA3 

(glucosidase beta acid 3) (Hawlader et al., 2015). In 

other studies in the chicken, the KCNIP4 and GPR125 

genes were associated with body weight and growth rate 

from 6 to 12 weeks of age (Gu et al., 2011; Jin et al., 

2015).  

Another important candidate gene under selection 

was Kinectin-1 (KTN1). This gene was located on 

OAR7_ 65066014 (theta= 0.372). The KTN1 encodes 

kinectin in the endoplasmic reticulum and is responsible 

for the transport of vesicles along microtubules (Hibar 

et al., 2015).  The IGF (Insulin-Like Growth Factor) 

gene can be activated by RhoA indirectly. Upon RhoA is 

also activated by KTN1 (Tran et al., 2002; Bai et al., 

2006); and IGF-II is required for normal placental (De- 

 (DeChiara et al., 1990).  Furthermore, IGF-I was asso-

ciated with several reproductive traits, such as twin ov-

ulations (Echternkamp et al., 2004), age at first calving 

(Brickell et al., 2007), pregnancy rate to first service 

(Patton et al., 2007), and preimplantation embryonic de-

velopment (Velazquez et al., 2005). The studies of 

eQTL from 304 individuals from the North American 

brain expression cohort showed evidence of altering the 

expression of the KTN1 gene in both the brain and blood 

tissue (Hibar et al., 2015).  

The locus with the highest theta value, located on 

chromosome 7, was associated with the staple length 

and coefficient of variation of fiber diameter (CVFD) 

which are important economic traits in Merino sheep. A 

moderate negative genetic correlation was reported be-

tween CVFD and litter size (- 0.33 ± 0.04) and between 

CVFD and yearling weight (-0.22 ± 0.04) in Australian 

Merino sheep (Asadi Fozi et al., 2005). Meat production 

is affected by both the litter size and body weight. Litter 

size, the main fertility trait in sheep, is of high economic 

value (Notter, 2008), only expressed in one sex, cannot 

be recorded at an early ages, and has low heritability. 

Therefore, low genetic gain can be achieved for litter 

size when animals are selected based on this trait per-

formance. Accordingly, the region detected herein can 

be useful for genetic improvement of litter size, yearling 

weight as well as staple length and CVFD.  

The regions on chromosomes 2, 6 and 16 were asso-

ciated with body weight at slaughter age. Previous stud-

ies showed moderate genetic correlation (0.24–0.39) be-

tween body weight at slaughter age and reproduction 

traits such as fertility and litter size (Safari et al., 2007). 

Kijas et al. (2012) also reported that a region on chro-

mosome 16 that was associated with growth traits in 

sheep. In their study a genome wide scan was performed 

using 2819 individuals from 74 sheep breeds including 

the Merino. 

 

Conclusions 

Identifying recent positive selection signatures in do-

mesticated animals can provide information on genomic 

regions that are affected by selection. It can be useful to 

explore the advantage of mutations and important bio-

logical pathways for economically important traits. In 

summary, we revealed the genetic differentiation among 

Australian Merino sheep flocks using the Illumina 

OvineSNP50 BeadChip. The PCA results did not show 

a clear differentiation among the selected populations. 

Genome wide analysis of selection signatures detected 

7 regions under selection. These regions were almost as-

sociated with QTLs that have effects on growth, carcass,  
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reproduction, and wool traits in sheep, beef and dairy 
cattle. These are important traits for the Australian Me-
rino sheep industry. The results may be used in Merino 
breeding programs. In addition, the genetic diversity 
among Merino flocks can be explored. 
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دهند. ها تغییر میهایی هستند که الگوهای تنوع ژنتیکی را در داخل و بین جمعیتانتخاب و اهلی کردن پروسهچکیده    

ابزاری سودمند  حیوانات اهلیاستفاده از است و  زیستیاز اهداف اصلی تحقیقات یکی  ،اساس ژنتیکی تنوع فنوتیپی شناخت

بین  STFهای یک روش برای کشف نواحی تحت انتخاب مقایسه ارزشباشد. این هدف می برای پیشرفت در راستای

به منظور شناسایی نواحی تحت انتخاب  تک نوکلئوتیدینشانگر  50000در این مطالعه، کاوش ژنومی با ها است. جایگاه

های انتخاب از روش نشانهبه منظور بررسی صورت گرفت. ( SGگله  9و  CRCگله  8)مرینوس استرالیائی  گوسفند

درصد حد  1/0آنها بالاتر از  SNP)تتا( استفاده شد. در مجموع هفت ناحیه از ژنوم که نشانگرهای  STFبرآوردگر نااریب 

د های مرینوس استرالیایی شناسایی شده و مورهای انتخاب در مقایسه گلهبالای توزیع تجربی تتا بودند، به عنوان نشانه

)دو  2ی هاوی کروموزوم، ر15/0بالای  (تتا) نااریب شاخص تثبیتاین مناطق با ارزش تر قرار گرفتند. های بیشبررسی

در این مطالعه تعدادی ژن کاندیدا مهم مرتبط با صفات تولید مثل و رشد شناسایی  اند.واقع شده 26و  16، 7، 6، 3، ناحیه(

های صفات مهم اقتصادی از جمله صفات QTLن مناطق با نشان داد که ایهای گزارش شده QTLشد. در نهایت بررسی 

دید برای صفات های کانباشند. مطالعه بیشتر این نواحی در شناسایی ژنلاشه، رشد و پشم در ارتباط میتولید مثل، مرتبط با 

یکی تر تنوع ژنتتوان برای فهم بهچنین از اطلاعات این تحقیق میهم .موثر خواهد بودمهم اقتصادی در نژادهای گوسفند 

 این نژاد استفاده نمود.

 


