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(TPBV) problem. An approximate solution of this problem is constructed by

using the Legendre-Gauss collocation method such that the exact boundary

conditions are satisfied. Several example are given and the optimal errors are

obtained for the sake of comparison. The obtained results are shown that the

technique introduced here is accurate and easily applied to solve the FOCPs.
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1. Introduction

Fractional calculus is a generalization of ordinary calculus which introduces

derivatives and integrals of fractional order. The most important types of frac-

tional derivatives are Riemann-Liouville (RLFD) and Caputo fractional derivatives

(CFD) that we adopt here the Caputo definition. Major reviews on the concepts

and history of fractional calculus can be found in the books of [25, 12]. Interest-

ing and promising applications of fractional calculus have been proposed to model

the physical and engineering processes, science and economics, gravity , medicine,

[10, 13, 34], that have found to be best described by FDEs. In general, most of

FDEs do not have exact analytic solutions, so, numerical methods have been used

widely to find the approximate solutions of these equations such as Homotopy Per-

turbation Method (HPM) [9], the Adomian Decomposition Method (ADM) [26],

the Variational Iteration Method (VIM) [11], the Generalized Differential Trans-

formation Method (GDTM) [27], the Measurable functions approach [35] and the

Fractional Difference Method (FDM) [28].

FOCPs are a subclass of optimal control problems whose dynamics are described

by FDEs. This type of problems can be defined with different definitions of frac-

tional derivatives. With the emerging number of the applications of FOCPs [15, 8],

the solution of these kind of problems has become an important topic for researchers.

Since, it is difficult to obtain the exact solutions of most FOCPs, approximate

and numerical methods are used extensively. Work on FOCPs has started by [19]

and was extended by [20, 21], where the necessary conditions of optimization are

achieved with derivatives of fractional order. By using necessary optimality condi-

tions, the FOCP is reduced to a system of FDEs and by finding its solutions, one

approximates the solution to the original fractional problem. The interested reader

can see [22, 37, 29, 7, 30, 1, 31, 23, 16, 17, 24, 36] for some recent study in FOCPs.

In this paper, we would like to investigate the possibility of presence numerical

approximated solutions for a class of FOCPs. To proceed, we achieved the necessary

conditions of optimization for this class of FOCPs with a system of FDEs. To solve

this system, first using a modified approach Caputo fractional derivatives (CFD)

that our problem relies on. By using this approach and a joint application of

Legendre polynomials, we transform the original system of FDEs into a discrete
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system of ordinary differential equations, in way by obtaining the optimal solutions

of this system, we obtain the approximate solution of the FOCP.

The motivation of this research is transforming the FOCP to a system of FDEs.

Then by approximating FDs, the Legendre-Gauss collocation method have been

used for this system. However, as the problem have the singular point, discrete

methods cannot be used in this case. So, we have used and showed the efficiency

of Legendre-Gauss collocation method for our problem. In the next section, we

described the method in detail.

This study is organized as follows: In Section 2, some important definitions

and necessary preliminaries of fractional derivatives and Legendre-Gauss colloca-

tion method are described. We summarize the necessary optimality conditions of

FOCPs and the reconstraction approach of it’s solutions in Section 3. Finally, some

examples are solved to demonstrate the performance of the method in Section 4

and a brief summary is given in the final section.

2. Preliminary Considerations

In this section, we present some notations, definitions and preliminary facts of

the fractional calculus theory which will be used further in this work. For the sake

of simplicity, we consider 0 < α < 1. These considerations don’t affect the general-

ization of the derivation procedure. For the definitions of fractional derivatives and

some of their applications, see [2, 3, 14, 32, 6]

2.1. Fractional Calculus.

Definition 2.1. Let f ∈ L1[t0, tf ]. The left Riemann-Liouville Fractional Integral

(RLFI) of order α of function f ∈ L1[t0, tf ] is defined as

Iαt0f(x) :=
1

Γ(α)

∫ x

t0

(x− t)α−1f(t)dt,

and the right RLFI as

Iαtf f(x) :=
1

Γ(α)

∫ tf

x

(t− x)α−1f(t)dt,

for all x ∈ [t0, tf ] and Γ(.) is known as the Euler-Gamma function.

We denote I0t f(x) = f(x). Now, we define the Left and Right RLFDs.
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Definition 2.2. For a continuous function f : [t0,+∞) → R, the left RLFD of

fractional order α > 0, is defined by

(2.1) t0D
α
t f(x) :=

dn

dxn
In−αt0 f(x) =

1

Γ(n− α)

dn

dxn

∫ x

t0

(x− t)n−α−1f(t)dt,

that provided the right-hand side of (2.1) is pointwise defined on (t0,∞), where

x ∈ [t0, tf ], n = [α] + 1 and [α] denotes the integer part of the real number α.

Similary, the right RLFD of order α of function f , defined by

(2.2) tD
α
tf
f(x) := (−1)n

dn

dxn
In−αtf

f(x) =
(−1)n

Γ(n− α)

dn

dxn

∫ tf

x

(x− t)n−α−1f(t)dt.

Definition 2.3. The left and right CFDs of order α ∈ R+ are defined respectively,

by C
t0D

α
t f(x) := In−αt0 t0D

n
t f(x) and C

t D
α
tf
f(x) := (−1)nIn−αtf tD

n
tf
f(x) with n =

[α] + 1; that is

(2.3) C
t0D

α
t f(x) :=

1

Γ(n− α)

∫ x

t0

f (n)(t)

(x− t)n−α−1
dt

and

(2.4) C
t D

α
tf
f(x) :=

(−1)n

Γ(n− α)

∫ tf

x

f (n)(t)

(t− x)n−α−1
dt

where t0 ≤ x ≤ tf and f (n)(t) = dnf(t)
dtn ∈ L1[t0, tf ] is the ordinary derivative of

integer order n.

Some useful properties of fractional integrals and derivatives, include all frac-

tional operators are linear, that is, if D is an arbitrary fractional operator, then

(2.5) D(tf + sg) = tD(f) + sD(g).

Also, for all function f ∈ L1[t0, tf ]; if α, β > 0, then

• IαIβf(x) = IβIαf(x) = Iα+βf(x),

• DαDβf(x) = Dα+βf(x),

• DαIαf(x) = f(x),

• DαIβf(x) = Iβ−αf(x).
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For approximation in numerical computations of fractional derivatives, a modified

Grunwald-Letnikov approach was proposed in [5]. Authors in [18] focused on the

Jacobi polynomials to solve fractional variational problems and FOCPs. Later, a

new expanision formula was obtained in [33] as the following form:

C
t0D

α
t x(t) ' A(α,N)(t− t0)−αx(t) +B(α,N)(t− t0)1−αẋ(t)

−
N∑
p=2

C(α,N)(t− t0)1−p−αVp(t)−
x(t0)(t− t0)−α

Γ(1− α)
,(2.6)

where Vp(t) is defined as the solution of the system
V̇p(t) = (1− p)(t− t0)p−2x(t),

Vp(t0) = 0, p = 2, 3, · · · , N,

and

C
t D

α
tf
x(t) ' A(α,N)(tf − t)−αx(t)−B(α,N)(tf − t)1−αẋ(t)

+

N∑
p=2

C(α,N)(tf − t)1−p−αWp(t)−
x(tf )(tf − t)−α

Γ(1− α)
,(2.7)

where Wp(t) is the solution of the differential equation
Ẇp(t) = −(1− p)(tf − t)p−2x(t),

Wp(tf ) = 0, p = 2, 3, · · · , N,

and A(α,N), B(α,N), C(α, p) are defined by:

A(α,N) =
1

Γ(1− α)

[
1 +

N∑
p=2

Γ(p− 1 + α)

Γ(α)(p− 1)!

]
,

B(α,N) =
1

Γ(2− α)

[
1 +

N∑
p=2

Γ(p− 1 + α)

Γ(α− 1)p!

]
,

C(α, p) =
1

Γ(2− α)Γ(α− 1)

Γ(p− 1 + α)

(p− 1)!
, p = 2, 3, · · · , N.
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Theorem 2.1. If we approximate the left fractional derivative by the finite sum

(2.6), then the error Etr(.) is bounded by:

|Etr(t)| ≤ max
s∈[a,t]

|x
′′
(s)|exp((1− α)2 + 1− α)

Γ(2− α)(1− α)S1−α (t− a)2−α.(2.8)

Proof. See [33] for proofs and other details. �

2.2. Legendre-Gauss Collocation Method. Let Pn(t) be the n th-degree Le-

gendre polynomial defined on [−1, 1]. Any piecewise continuous function in this

interval can be expresses as follows:

f(t) ∼
∞∑
n=0

cnPn(t); cn =
2n+ 1

2

∫ 1

−1
f(t)Pn(t)dt, t ∈ [−1, 1].(2.9)

Let us define the modified Legendre polynomials (MLPs) of degree at most n as

follows:

P̂n(t) = Pn

( 2t

tf − t0
− tf + t0
tf − t0

)
, t ∈ [t0, tf ].(2.10)

According to the properties can be achieved of these functions, any function f(t) ∈
L2[t0, tf ] can be approximated as follows [4]:

f(t) ∼
∞∑
n=0

ĉnP̂n(t); ĉn =
2n+ 1

tf − t0

∫ tf

t0

f(t)P̂n(t)dt, t ∈ [t0, tf ].(2.11)

Therefore, if we have:
d

dt
u(t) = f(u(t), t), t0 ≤ t ≤ tf

u(t0) = u0,

(2.12)

the Legendre-Gauss collocation method for solving this problem is equivalent to

solve the following problem:
d

dt
uM (t̂Mj ) = f(uM (t̂Mj ), t̂Mj ),

uM (t0) = u0, 1 ≤ j ≤M,

(2.13)

where:

uM (t) =

M∑
n=0

ĉnP̂n(t),(2.14)
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and P̂M (t0, tf ) is the set of MLPs of degree at most M and t̂Mj , 1 ≤ j ≤M , are the

nodes of the MLPs interpolation on [t0, tf ]. To get the answer of equation (2.12),

it’s enough to obtain coefficients ĉn from equations (2.13)-(2.14).

3. Numerical Scheme for Solving FOCPs

In this section we want to present a formulation and a numerical approximations

for solving fractional order optimal control problem of Caputo type, which we define

as follow:

min J(u) =
1

2

∫ tf

t0

{
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

}
dt(3.1)

s.t. C
t0D

α
t x(t) = A(t)x(t) +B(t)u(t),

x(t0) = x0, 0 ≤ α ≤ 1

where x(t) is the state variable, u(t) is the control variable, Q(t) and R(t) are chosen

to be positive semidefinite and positive definite matrices respectively. The aim is

to find a control vector u∗(t) such that the cost functional (3.1) is minimized while

the dynamic equality constraint is satisfied. To obtain the necessary conditions, we

define the following Hamiltonian function:

H(x(t), u(t), λ(t), t) =
1

2

{
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

}
+ λT

{
A(t)x(t) +B(t)u(t)

}
,(3.2)

where λ ∈ Rn is the vector of the Lagrange multiplier. By application of the

maximum principle for problem (3.2), we can obtain the following nonlinear TPBVP

(see [5]):

C
t D

α
tf
λ(t) =

∂H

∂x
= Q(t)x(t) +AT (t)λ(t), λ(tf ) = 0(3.3)

∂H

∂u
= R(t)u(t) +BT (t)λ(t) = 0

t0
CDα

t x(t) =
∂H

∂λ
= A(t)x(t) +B(t)u(t), x(t0) = x0.
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From this system of equations we obtain u(t) = −R−1BTλ. So, it can be demon-

strated that the necessary conditons for problem (3.1) are as follows:

C
t D

α
tf
λ(t) = Q(t)x(t) +AT (t)λ(t), λ(tf ) = 0(3.4)

C
t0D

α
t x(t) = A(t)x(t)−B(t)R−1(t)BT (t)λ(t), x(t0) = x0

Then, by solving the above system of FDEs, we will find the optimal value of x(t)

and u(t) in a way which the function J(u) in problem (3.1) becomes minimum. To

reach this goal, we use approximation (2.6), which can rewrite equations (3.3) as

the following form:

A(α,N)(tf − t)−αλ(t)−B(α,N)(tf − t)1−αλ̇(t) +
∑N
p=2 C(α, p)(tf − t)1−p−αWp(t)

−λ(tf )(tf − t)−α

Γ(1− α)
= Q(t)x(t) +AT (t)λ(t),

A(α,N)(t− t0)−αx(t) +B(α,N)(t− t0)1−αẋ(t)−
∑N
p=2 C(α, p)(t− t0)1−p−αVp(t)

−x(t0)(t− t0)−α

Γ(1− α)
= A(t)x(t)−B(t)R−1(t)BT (t)λ(t),

V̇p(t) = (1− p)(t− t0)p−2x(t), Vp(t0) = 0, p = 2, 3, · · · , N,

Ẇp(t) = −(1− p)(tf − t)p−2λ(t), Wp(tf ) = 0, p = 2, 3, · · · , N,

x(t0) = x0, λ(tf ) = 0.

(3.5)

Now, instead of solving the system of fractional differential equations (3.4), we can

solve the system of ordinary differential equations (3.5). For applying the Legendre

Gauss collocation method for solving this system of equations, it is necessary to

assume that:

λM (t) =

M∑
n=0

ânP̂n(t), xM (t) =

M∑
n=0

b̂nP̂n(t),(3.6)

VMp (t) =

M∑
n=0

ĉnP̂n(t), WM
p (t) =

M∑
n=0

d̂nP̂n(t), p = 2, 3, · · · , N,

λM (t), xM (t), VMp (t),WM
p (t) ∈ P̂M (t0, tf ).
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Now, from equations (3.5)-(3.6), we have:

A(α,N)(tf − t)−αλM (t)−B(α,N)(tf − t)1−α
dλM (t)

dt
+
∑N
p=2 C(α, p)(tf − t)1−p−αWM

p (t)

−λ
M (tf )(tf − t)−α

Γ(1− α)
= Q(t)xM (t) +A(t)λM (t),

A(α,N)(t− t0)−αxM (t) +B(α,N)(t− t0)1−α
dxM (t)

dt
−
∑N
p=2 C(α, p)(t− t0)1−p−αVMp (t)

−x
M (t0)(t− t0)−α

Γ(1− α)
= A(t)xM (t)−B(t)R−1(t)BT (t)λM (t),

dVMp (t)

dt
= (1− p)(t− t0)p−2xM (t), VMp (t0) = 0, p = 2, 3, · · · , N,

dWM
p (t)

dt
= −(1− p)(tf − t)p−2λM (t), WM

p (tf ) = 0, p = 2, 3, · · · , N,

xM (t0) = x0, λM (tf ) = 0.

(3.7)

Finally, by obtaining the solution of this system of equations, we recognize the

approximated solution of FOCP (3.1).

4. Numerical Examples

Here, we apply the approach presented in the last section to some FOCPs. The

test problems demonstrate the validity and efficiency of this approximation.

Example 4.1. Consider the following FOCP:

min J(u(.)) =
1

2

∫ 1

0

(
x2(t) + u2(t)

)
dt(4.1)

subject to

C
0 D

α
t x(t) = −x(t) + u(t), x(0) = 1.(4.2)

The necessary conditions for this problem are as follows [19]:

C
t D

α
1 λ(t) = x(t) + u(t)(4.3)

C
0 D

α
t x(t) = −x(t)− λ(t)

u(t) + λ(t) = 0

λ(1) = 0, x(0) = 1.
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For this example, we have Q(t) = R(t) = −A(t) = B(t) = x0 = 1. Assuming N = 2

and using approximations (2.6)-(2.7) for the system of FDEs (4.3). The absolute

errors of the cost functional values at different values of M , are listed in Table 1.

Also, simulation results of the optimal control u(t) and the corresponding state x(t)

are presented in Table 2 and Figure 1. It can be seen that when M increased, the

better approximations to both the state and the control functions and than the better

approximation of the optimal cost will be obtained.

Table 1. Absolute errors of cost functional values at α = 0.9 and

different values of M .

M EJ

5 0.1041

10 0.0232

15 0.0033

20 0.0019

Table 2. Absolute errors of the optimal control and optimal state

at M = 20 and different values of α.

α u(t) x(t)

0.5 4.21340× 10−2 3.40323× 10−3

0.8 2.51714× 10−4 2.21262× 10−4

0.9 1.32072× 10−7 2.64992× 10−6

1 3.97889× 10−9 1.43634× 10−9

Example 4.2. Consider the following FOCP:

min J(u) =
1

2

∫ 1

0

{
(x(t)− t2)2 + (u(t)− t+ 1)2

}
dt(4.4)

s.t. C
0 D

α
t x(t) =

Γ(3)

Γ(2)
(x(t)− tu(t)), x(0) = 0.

The exact solution of this equation is given by x(t) = t2, u(t) = t−1 when α = 1. In

Figure 2, we present the approximation state and approximation control by Legendre-

Gauss collocation method with M = 20 and different values of α. It shows that as
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Figure 1. Simulation curve at different values of α for Example 4.1.

the values of α approaches to 1, the numerical solutions of system (3.7), approach

into the analytical solutions of FOCP (4.4). Also, Table 3 shows the maximum

absolute errors of this approximation for x(t) and u(t).

Figure 2. Approximate solutions of x(t) and u(t) for different

values of α (� : α = 1, −− : α = 0.98, −.− : α = 0.95, −−− : α =

0.9 ).
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Table 3. Absolute errors of x(t) and u(t) at α = 1.

t x(t) u(t)

0.0 0.50E − 10 0

0.2 0.52E − 10 0.3E − 12

0.4 0.61E − 10 0.1E − 12

0.6 0.12E − 11 0.1E − 12

0.8 0.20E − 11 0.1E − 12

1.0 0.35E − 11 0.1E − 12

5. Conclusions

In the present work, we developed a new approximation for the fractional differ-

ential problem has been derived in which, the fractional derivatives are described in

the Caputo sense. The properties of the CFDs are used to reduce the given FOCP

into a system of FDEs. Numerical approach for solving this system of FDEs is

based on the Legendre-Gauss collocation method to approximate the solutions of

the original FOCPs. Numerical results show that this approximation is computa-

tionally attractive and also reduces keeping the accuracy of the solution.
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