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1. Introduction

In the present paper, we concerned with the nonlinear oscillation of certain neu-

tral differential equation with continuously distributed delay of third order[
r1(t)

[
(r2(t)y′(t))

′
]γ]′

+

∫ d

c

q(t, µ)xγ(σ(t, µ)) dµ = 0,(E)

where y(t) = x(t) +
∫ b
a
p(t, µ)x(τ(t, µ))dµ and a < b, c < d. Throughout this paper

we following hypotheses are tacitly supposed to hold:

(H1) γ ≥ 1 is a ratio of two odd positive integers, r1(t), r2(t) ∈ C1([t0,+∞)),

r1(t), r2(t) > 0, r′1(t) ≥ 0 and∫ ∞
t0

1

r
1/γ
1 (t)

dt =∞,
∫ ∞
t0

1

r2(t)
dt =∞.(1.1)

(H2) p(t, µ) ∈ C
(
[t0,+∞) × [a, b], R+

)
,0 ≤

∫ b
a
p(t, µ)dµ ≤ P < 1, q(t, µ) ∈

C
(
[t0,+∞)×[c, d], R+

)
and q(t, µ) is not identically zero for [t∗,+∞)×[c, d],

t∗ ≥ t.
(H3) τ(t, µ) ∈ C

(
[t0,+∞)× [a, b], R+

)
, τ(t, µ) ≤ t, τ(t, µ) is nondecreasing in µ,

τ(t, µ)→∞ as t→ +∞ for µ ∈ [a, b] and σ(t, µ) ∈ C
(
[t0,+∞)× [c, d], R+

)
,

σ(t, µ) ≤ t, σ(t, µ) is nondecreasing in µ, σ(t, µ) → ∞ as t → +∞ for

µ ∈ [c, d].

By a solution of equation (E) we mean a function x(t) ∈ C([Tx,∞)), Tx ≥
t0, which has the property y′(t), r2(t)y′(t) and r1(t)[(r2(t)y′(t))′]γ are continuous

differentiable and satisfies (E) on [Tx,∞). We consider only those solutions x(t) of

(E) which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We make the standing

hypothesis that equation (E) do possess proper solution. A proper solution of (E)

called oscillatory if it has a sequence of large zeros lending to ∞; otherwise we call

non-oscillatory.

Of late, much attention is being paid in the research activities related to oscilla-

tion and asymptotic behavior of various types of differential equations. As a result

innumerable research papers [1, 3, 5, 7, 11, 12, 13, 14, 15, 19, 21, 22, 23] as well as

several monographs [4, 16] have published and the references quoted therein. The

applications of neutral differential equations are manifold. For example the equa-

tions are used for the study of distributed networks, automatic control, technology

and natural , physical sciences, for instance, Driver [18] and Hale [10].



NONLINEAR OSCILLATION OF THIRD-ORDER...—JMMRC VOL. 7, NUMBERS 1-2 (2018) 3

Very recently, Candan [20], Zhang et al. [24], Bartuek et al. [17], Tian et al.

[25], Elabbasy et al. [6], Fu et al. [26], Jiang et al. [2], and Wang et al. [9] are

investigated oscillation and asymptotic behavior of solutions of neutral differential

equations with distributed delay of third order.

Till necessarily very few result has been initiated with regard to oscillation and

asymptotic behavior of equation (E) with distributed delay. By using generalized

Riccati transformation and integral averaging technique, this paper presents some

sufficient conditions which guarantees that every solution of (E) oscillates or con-

verges to zero.

In the sequel, all inequalities are supposed to hold eventually i.e., for all suffi-

ciently large t.

2. Main Results

In this section , we present our main result in this paper. For convenience, we

use the notations

q∗(t) = (1− P )γ
∫ d

c

q(t, µ) dµ, φ′+(t) = max{0, φ′(t)},

σ1(t) = σ(t, c), Φ(t) =

∫ σ1(t)

t2

(∫ s
t1
r
−1/γ
1 (u)du/r2(s)

)
ds∫ σ1(t)

t1
r
−1/γ
1 (u)du

γ

ψ(t) = φ(s)q∗(s)Φ(s)− 1

(1 + γ)1+γ
r1(s)(φ′+(s))1+γ

φγ(s)
(2.1)

Theorem 2.1. Assume (H1) − (H3) and (1.1) holds. If there exists a positive

function φ ∈ C1([t0,∞),R), such that for all sufficiently large ti > t1 ≥ t0 (i =

2, 3, 4), we have

lim sup
t→∞

∫ t

t3

ψ(s)ds =∞,(2.2)

and ∫ ∞
t4

1

r2(v)

∫ ∞
v

(
1

r1(u)

∫ ∞
u

∫ d

c

q(s, µ)dµ ds

)1/γ

du dv =∞,(2.3)

where ψ(t) is defined in (2.1), then every solution x(t) of (E) is either oscillatory

or satisfies lim
t→∞

x(t) = 0.
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Proof. Assume, for sake of contradiction, that equation (E) has an eventually pos-

itive solution x(t). That is x(t) > 0, x(τ(t, µ)) > 0 and x(σ(t, µ)) > 0 for t ≥ t1

some t1 ≥ t0, by definition of y(t). By condition (1.1), there exist two possible

cases:

(i) y(t) > 0, y′(t) > 0, (r2(t)y′(t))′ > 0,
(
r1(t)[(r2(t)y′(t))′]γ

)′
< 0,

(ii) y(t) > 0, y′(t) < 0, (r2(t)y′(t))′ > 0,
(
r1(t)[(r2(t)y′(t))′]γ

)′
< 0, for t ≥ t1,

t1 is large enough.

Suppose, Case (i) holds for t ≥ t2. From the definition of y(t), y(t) ≥ x(t) for t ≥
t2 and

x(t) = y(t)−
∫ b

a

p(t, µ)x(τ(t, µ))dµ

≥ y(t)−
∫ b

a

p(t, µ)y(τ(t, µ))dµ

≥ y(t)− y(τ(t, b))

∫ b

a

p(t, µ)dµ

≥ y(t)

(
1−

∫ b

a

p(t, µ)dµ

)
= y(t)(1− P ).(2.4)

Setting (2.4) into (E), we get

(
r1(t)

[(
r2(t)y′(t)

)′]γ)′
= −

∫ d

c

q(t, µ)xγ(σ(t, µ)) dµ

≤ −(1− p0)γ
∫ d

c

q(t, µ)yγ(σ(t, µ)) dµ

≤ −(1− p0)γyγ(σ(t, c))

∫ d

c

q(t, µ) dµ

= −q∗(t)yγ(σ1(t)).(2.5)

Using the fact that y′(t) > 0, we have

r2(t)y′(t) ≥
∫ t

t1

r
1/γ
1 (s)(r2(s)y′(s))′

r
1/γ
1 (s)

ds ≥ r1/γ1 (t)(r2(t)y′(t))′
∫ t

t1

1

r
1/γ
1 (s)

ds.
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Thus

y(t) = y(t2) +

∫ t

t2

r2(s)y′(s)∫ s
t1
r
−1/γ
1 (u)du

∫ s
t1
r
−1/γ
1 (u)du

r2(s)
ds

≥ r2(t)y′(t)∫ t
t1
r
−1/γ
1 (u)du

∫ t

t2

∫ s
t1
r
−1/γ
1 (u)du

r2(s)
ds.

Then, we get

y(σ1(t))

r2(σ1(t))y′(σ1(t))
≥

∫ σ1(t)

t2

( ∫ s
t1
r
−1/γ
1 (u)du

r2(s)

)
ds∫ σ1(t)

t1
r
−1/γ
1 (u)du

,(2.6)

and

r2(σ1(t))y′(σ1(t))

r2(t)y′(t)
≥
∫ σ1(t)

t1
r
−1/γ
1 (u)du∫ t

t1
r
−1/γ
1 (u)du

(2.7)

Define

W (t) := φ(t)r1(t)

[
(r2(t)y′(t))′

r2(t)y′(t)

]γ
,(2.8)

and W (t) > 0 for t ≥ t1. Differentiating (2.8), we obtain

W ′(t) =
φ′(t)

φ(t)
W (t) + φ(t)

(
r1(t)[(r2(t)y′(t))′]γ

)′
[r2(t)y′(t)]γ

−γφ(t)r1(t)

[
(r2(t)y′(t))′

r2(t)y′(t)

]γ+1

.(2.9)

By (2.8), we get [
W (t)

φ(t)r1(t)

](γ+1)/γ

=

[
(r2(t)y′(t))′

r2(t)y′(t)

]γ+1

,(2.10)

By (2.5), (2.10), and (2.9) that

W ′(t) ≤ φ′(t)

φ(t)
W (t)− φ(t)q∗(t)

(
y(σ(t))

r2(t)y′(t)

)γ
− γ

W
(γ+1)
γ (t)

[φ(t)r1(t)]1/γ

=
φ′(t)

φ(t)
W (t)− γ W

(γ+1)
γ (t)

[φ(t)r1(t)]1/γ

−φ(t)q∗(t)

(
y(σ1(t))

r2(σ1(t))y′(σ1(t))

r2(σ1(t))y′(σ1(t))

r2(t)y′(t)

)γ
(2.11)
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Taking (2.6), (2.7) and (2.11), into account

W ′(t) ≤
φ′+(t)

φ(t)
W (t)− γ W

(γ+1)
γ (t)

[φ(t)r1(t)]1/γ

−φ(t)q∗(t)


∫ σ1(t)

t2

( ∫ s
t1
r
−1/γ
1 (u)du

r2(s)

)
ds∫ σ1(t)

t1
r
−1/γ
1 (u)du


γ

≤ −φ(t)q∗(t)Φ(t) +
φ′+(t)

φ(t)
W (t)− γ W

γ+1
γ (t)

[φ(t)r1(t)]1/γ
.(2.12)

Then, using (2.12) and inequality

Bu−Au(γ+1)/γ ≤ γγ

(γ + 1)γ+1

Bγ+1

Aγ
,(2.13)

where u = W (t), A = γ
[φ(t)r1(t)]1/γ

, B =
φ′+(t)

φ(t) . We find that

W ′(t) ≤ −φ(t)q∗(t)Φ(t) +
1

(1 + γ)1+γ
r1(t)(φ′+(t))1+γ

φγ(t)
.(2.14)

Integrating (2.14) from t3 (> t2) to t gives

lim sup
t→∞

∫ t

t3

(
φ(s)q∗(s)Φ(s)− 1

(1 + γ)1+γ
r1(s)(φ′+(s))1+γ

φγ(s)

)
ds ≤W (t3),(2.15)

which contradicts (2.2).

Suppose Case (ii) holds. Since y(t) > 0 and y′(t) < 0, we have y(t)→ L ≥ 0. If

L > 0, then for ε = L(1−P )
2P > 0, there exists t4 ≥ t1 such that L < y(t) < L+ ε for

t ≥ t4. Then for t ≥ t4, we have

x(t) = y(t)−
∫ b

a

p(t, µ)x(τ(t, µ))dµ > L−
∫ b

a

p(t, µ)y(τ(t, µ))dµ

≥ L− Py(τ(t, a)) ≥ L− P (L+ ε) > ky(t)(2.16)

where k = L−P (L+ε)
L+ε and σ0(t) = σ(t, d). Using (2.16), we obtained from (E) , we

have (
r1(t)

(
r2(t)y′(t)

)′)′
= −kγ

∫ d

c

q(t, µ)y(σ(t, µ)) dµ = −q∗(t)y(σ0(t)),

where q∗(t) = kγ
∫ d
c
q(t, µ)dµ. Integrating from t(≥ t4) to∞ and r1(t)

(
r2(t)y′(t)

)′ ≥
0 is decreasing, we get

(
r2(t)y′(t)

)′ ≥ ( 1

r1(t)

∫ ∞
t

q∗(s)yγ(σ0(s))ds

)1/γ

.
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Using y(σ0(t)) ≥ L, we obtain

(
r2(t)y′(t)

)′ ≥ L( 1

r1(t)

∫ ∞
t

q∗(s)ds

)1/γ

.

Again integrating

r2(t)y′(t) ≥ −L
∫ ∞
v

(
1

r1(u)

∫ ∞
u

q∗(s) ds

)1/γ

du,

and finally integration from t4 to ∞, we get

y(t4) ≥ L
∫ ∞
t4

1

r2(v)

∫ ∞
v

(
1

r1(u)

∫ ∞
u

q∗(s)ds

)1/γ

du dv.

This contradicts to (2.3) and hence L = 0. �

Remark 2.2. Suitable choice of φ(t), by Theorem 2.1 gives a various asymptotic

criteria for (E).

Corollary 2.3. If (H1)−(H3) and (2.3) holds. If φ = 1, such that for all sufficiently

large t3 > t1 ≥ t0, we have

lim sup
t→∞

∫ t

t3

q∗(s)Φ(s)ds =∞,(2.17)

then all solution x(t) of (E) is either oscillatory or satisfies lim
t→∞

x(t) = 0.

Next, examine the oscillation results of solutions of (E) by Philos-type.

Let S0 = {(t, s) : a ≤ s < t < +∞} , S = {(t, s) : a ≤ s ≤ t < +∞} the continuous

function E(t, s), E : S→ R belongs to the class function <

(i) E(t, t) = 0 for t ≥ t0 and E(t, s) > 0 for (t, s) ∈ S0,

(ii) ∂E(t,s)
∂s ≤ 0, (t, s) ∈ S0 and some locally integrable function e such that

∂E(t, s)

∂s
+
φ′(t)

φ(t)
E(t, s) = −e(t, s)(E(t, s))

γ
1+γ for all (t, s) ∈ S0.

Theorem 2.4. Assume that (2.3) holds. If there exists a positive function E ∈ <
and φ ∈ C1([t0,∞),R), such that for all sufficiently large t5 > t1 ≥ t0, we have

(2.18) lim sup
t→∞

1

E(t, t5)

∫ t

t5

[
E(t, s)φ(s)q∗(s)Φ(s)− r1(s)φ(s)|e(t, s)|γ+1

(γ + 1)γ+1Eγ(t, s)

]
ds =∞,

then all solution x(t) of (E) is either oscillatory or satisfies lim
t→∞

x(t) = 0.
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Proof. Suppose that x(t) is a positive solution of (E). Then by the proof of Theorem

2.1, we have Cases (i) and (ii). Let Case (i) hold; W (t) is defined as in (2.8). Then,

we get

W ′(t) ≤ −φ(t)q∗(t)Φ(t) +
φ′(t)

φ(t)
W (t)− γ W

γ+1
γ (t)

[φ(t)r1(t)]
.(2.19)

Take X(t) = φ′(t)
φ(t) , Y (t) = γ

(
1

φ(t)r1(t)

)1/γ
, we have

φ(t)q∗(t)Φ(t) ≤ −W ′(t) +X(t)W (t)− Y (t)W
γ+1
γ .(2.20)

Multiplying (2.20) by E(t, s) and integrating from t5 to t, with T ≥ t1, we have∫ t

t5

E(t, s)φ(s)q∗(s)Φ(s)ds

≤
∫ t

t5

E(t, s)
[
−W ′(s) +X(s)w(s)−B(s)W

γ+1
γ (s)

]
ds

= E(t, t5)W (t5) +

∫ t

t5

[
∂E(t, s)

∂s
+ E(t, s)X(s)

]
W (s)ds

−
∫ t

t5

[
E(t, s)Y (s)W

γ+1
γ (s)

]
ds

≤ E(t, t5)W (t5) +

∫ t

t5

[
|e(t, s)|W (s)− E(t, s)Y (s)W

γ+1
γ (s)

]
ds.

Then, using (2.12) and inequality, we obtain∫ t

t5

E(t, s)φ(s)q∗(s)Φ(s)ds ≤

E(t, t5)W (t5) +

∫ t

t5

r1(s)φ(s)|e(t, s)|γ+1

(γ + 1)γ+1Eγ(t, s)
ds.(2.21)

Therefore, we have

1

E(t, t5)

∫ t

t5

[
E(t, s)φ(s)q∗(s)Φ(s)

−r1(s)φ(s)|e(t, s)|γ+1

(γ + 1)γ+1Eγ(t, s)

]
ds ≤W (t5),(2.22)

which contradicts (2.18).

Next, Assume that Case (ii) holds, we get lim
t→∞

x(t) = 0. �

Next, Based on Theorem 2.1, we present a Kamenev-type criterion for (E).
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Theorem 2.5. Assume that (2.3) holds. If there exists a positive function φ ∈
C1([t0,∞),R), such that for sufficiently large t6 > t0, we have

lim sup
t→∞

1

tn

∫ t

t6

(t− s)nψ(s)ds =∞,(2.23)

where ψ(t) is defined in (2.1), then all solution x(t) of (E) is either oscillatory or

satisfies lim
t→∞

x(t) = 0.

Proof. Assume, for sake of contradiction, that equation (E) has an eventually pos-

itive solution x(t). Then by the proof of Theorem 2.1, we have Cases (i) and (ii).

Let Case (i) hold. By using the same arguments as in the proof of Theorem 2.1, we

obtain (2.14), then

W ′(t) ≤ −φ(t)q∗(t)Φ(t) +
1

(1 + γ)1+γ
r1(t)(φ′+(t))1+γ

φγ(t)
.(2.24)

Multiplying by (t− s)n and integrating (2.24) from t6 to t gives∫ t

t6

(t− s)n ψ(s)ds = −
∫ t

t1

(t− s)nW ′(s)ds.(2.25)

We get

1

tn

∫ t

t6

(t− s)n ψ(s)ds = − 1

tn

∫ t

t6

(t− s)nW ′(s)ds

≤ − n
tn

∫ t

t6

(t− s)n−1W (s)ds+
(
1− t6

t

)n
W (t1)

<
(
1− t6

t

)n
W (t1) <∞,(2.26)

which contradicts (2.24).

Next, Assume that Case (ii) holds, we get lim
t→∞

x(t) = 0. �

We give the following examples illustrate applications of theoretical results pre-

sented in this paper.

Example 2.6. For t ≥ 1, consider the 3rd order differential equation[
t
[
t−1
[
x(t) +

1

2

∫ 0

−1
x
( t+ ξ

3

)
dξ
]′′]3]′

+

∫ 1

0

ξ

t3
x3
( t+ ξ

2

)
dξ = 0,(2.27)

where γ = 3, r1(t) = t , r2(t) = t−1, τ(t, µ) = (t+µ)/3, σ(t, µ) = (t+µ)/2, a = −1,

b = 0, c = 0, d = 1, then we obtain
∫ d
c
q(t, µ) dµ = 1/2 = P , σ1(t) = σ(t, c) = t/2.

Choose φ(t) = t, easily verified that the conditions (2.2), (2.3) of Theorem 2.1 are

satisfied. Since all solutions of (2.27) is oscillatory or lim
t→∞

x(t) = 0..
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Example 2.7. Consider the 3rd order differential equation[
x(t) +

∫ 1

1/2

1

2
x
( t+ ξ

3

)]′′′
+

∫ 2

1

ξ

t2
x
( t+ ξ

2

)
dξ = 0, t ≥ 1,(2.28)

where γ = 1, r1(t) = r2(t) = 1, τ(t, µ) = (t+µ)/3, σ(t, µ) = (t+µ)/2, a = 1/2, b =

1, c = 1, d = 2, then we obtain
∫ d
c
q(t, µ) dµ = 1/2 = P , σ1(t) = σ(t, c) = (t+ 1)/2.

Pick φ(t) = 1, it is not difficult to verified that the conditions of Theorem 2.5. Since

all solutions of (2.28) is oscillatory or lim
t→∞

x(t) = 0.

3. Conclusions

In this paper, we using generalized Riccati transformation, Philos and Kamenev-

type to established three new oscillation and asymptotic theorems for (E) in the

case of (1.1) . Our result improves and complements results in the cited papers.

This results easily extended to the corresponding dynamic equations on time scales.

The details are left to the reader.

Acknowledgment. The author would like to express his sincere appreciation to
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