
SOME RESULTS ON CONVERGENCE AND EXISTENCE OF

BEST PROXIMITY POINTS

M. AHMADI. BASERI∗1, H. MAZAHERI1 AND T. D. NARANG2

1 DEPARTMENT OF MATHEMATICS, YAZD UNIVERSITY, YAZD, IRAN.

2 GURU NANAK DEV UNIVERSITY, AMRISTAR, INDIA

E-MAILS: M.AHMADI@STU.YAZD.AC.IR, HMAZAHERI@YAZD.AC.IR,

TDNARANG1948@YAHOO.CO.IN

(Received: 9 August 2017, Accepted: 16 May 2018)

Abstract. In this paper, we introduce generalized cyclic ϕ-contraction maps

in metric spaces and give some results of best proximity points of such map-

pings in the setting of a uniformly convex Banach space. Moreover, we obtain

convergence and existence results of proximity points of the mappings on re-

flexive Banach spaces.
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1. Introduction

As a generalization of Banach contraction principle, Kirk and et al [7] proved the

following Theorem.

Theorem 1.1. Let A and B be non-empty closed subsets of a compelet metric space

X := (X, d). Suppose that T : A ∪B → A ∪B is a cyclic map ( i.e. T (A) ⊆ B and
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T (B) ⊆ A) such that d(Tx, Ty) ≤ kd(x, y) for some k ∈ (0, 1) and for all x ∈ A
and y ∈ B. Then T has a unique fixed point in A ∩B.

In 2011, Karaṕınar and Erhan [6], generalized Theorem1.1 as follows.

Theorem 1.2. Let A and B be non-empty closed subsets of a compelet metric

space X. Suppose that T : A ∪ B → A ∪ B is a cyclic map such that d(Tx, Ty) ≤
k{d(x, y) + d(Tx, x) + d(Ty, y)} for some k ∈ (0, 13 ) and for all x ∈ A and y ∈ B.
Then T has a unique fixed point in A ∩B.

Let A and B be non-empty subsets of a metric space X and T : A∪B → A∪B
be a cyclic map. Then

(i) T is a cyclic contraction [4] if

d(Tx, Ty) ≤ kd(x, y) + (1− k)d(A,B)

for some k ∈ (0, 1) and for all x ∈ A and y ∈ B, where

d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

(ii) T is a generalized cyclic contraction [5] if

d(Tx, Ty) ≤ (k/3){d(x, y) + d(Tx, x) + d(Ty, y)}+ (1− k)d(A,B)

for some k ∈ (0, 1) and for all x ∈ A and y ∈ B,
(iii) T is a cyclic ϕ−contraction [1] if ϕ : [0,+∞)→ [0,+∞) is a strictly increasing

map and

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(d(A,B))

for all x ∈ A and y ∈ B.

Definition 1.1. [1] Let A and B be non-empty subsets of a normed space X,

T : A ∪B → A ∪B be a cyclic map. We say that T satisfies the proximal property

if for {xn}n≥0 ∈ A ∪B,

xn
w→ x ∈ A ∪B, ‖xn − Txn‖ → d(A,B) =⇒ ‖x− Tx‖ = d(A,B).

Definition 1.2. A Banach space X is said to be

(i) uniformly convex if there exists a stricly increasing function δ : (0, 2] → [0, 1]

such that the following implication holds for all x1, x2, p ∈ X,R > 0 and r ∈ [0, 2R] :

‖xi − p‖ ≤ R, i = 1, 2 and ‖x1 − x2‖ ≥ r ⇒ ‖(x1 + x2)/2− p‖ ≤ (1− δ(r/R))R
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(ii) strictly convex if the following impilication holds for all x1, x2, p ∈ X and R > 0

‖xi − p‖ ≤ R, i = 1, 2 and x1 6= x2 ⇒ ‖(x1 + x2)/2− p‖ < R.

The following Theorems extend Theorem 1.1 and Theorem 1.2 to include the

case A ∩B = ∅.

Theorem 1.3. [4] Let A and B be non-empty closed and convex subsets of a uni-

formly convex Banach space X. Let T : A∪B → A∪B be a cyclic contraction map,

for x0 ∈ A, define xn+1 = Txn for each n ≥ 0. Then there exists a unique x ∈ A
such that x2n → x and ‖x− Tx‖ = d(A,B).

Theorem 1.4. [5] Let A and B be non-empty closed and convex subsets of a uni-

formly convex Banach space X. Let T : A ∪ B → A ∪ B be a generalizied cyclic

contraction map. Then there exists a unique best proximity point x ∈ A for T.

Best proximity point theory of cyclic contraction maps has been studied by many

authors see [2, 3, 8] and references therein. In 2009, Al-Thagafi and Shahzad [1],

introduced cyclic ϕ−contraction maps and proved Convergence and existence re-

sults of best proximity points for such maps. In 2012, Karaṕınar [5], obtaiend best

proximity points for cyclic maps. In 2010 Rezapour and et al [9], have elicited a

best proximity point theorem for cyclic ϕ−contractions on reflexive Banach spaces.

In this paper, we shall introduced the concept of generalized cyclic ϕ−contraction

map, which contains the generalized cyclic contractions in [5]. Then, we give ex-

istence and convergence results of best proximity points for such maps in metric

spaces, uniformly convex Banach spaces and reflexive Banach spaces.

2. Main results

We introduce the following generalized cyclic ϕ−contraction map in metric spaces.

Definition 2.1. Let A and B be non-empty subsets of a metric space X. The cyclic

mapping T : A ∪ B → A ∪ B is said to be a generalized cyclic ϕ−contraction, if

ϕ : [0,+∞)→ [0,+∞) is a strictly increasing map and

d(Tx, Ty) ≤ (1/3){d(x, y) + d(Tx, x) + d(Ty, y)}

− ϕ(d(x, y) + d(Tx, x) + d(Ty, y)) + ϕ(3d(A,B)),

for all x ∈ A and y ∈ B.
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Example 2.1. A generalized cyclic contraction map is generalized cyclic ϕ− con-

traction with ϕ(t) = (1− k)t/3 for t ≥ 0 and 0 < k < 1.

Example 2.2. Let X = R with the usual metric. For A = B = [0, 1], define

T : A ∪ B → A ∪ B by T (x) = x
3(1+x) . Clearly T is a cyclic map. If ϕ(t) = t2

3+3t

for t ≥ 0, then T is a generalized cyclic ϕ−contraction map but is not generalized

cyclic contraction.

Example 2.3. Let X = R with the usual metric. For A = [0, 1] and B = [−1, 0],

define T : A ∪B → A ∪B by

T (x) =


−x

3(1+x) x ∈ A

−x
3(1−x) x ∈ B.

Clearly T is a cyclic map. If ϕ(t) = t2

3+3t for t ≥ 0, then T is a generalized cyclic

ϕ−contraction map but is not generalized cyclic contraction.

Lemma 2.1. Let A and B be non-empty subsets of a metric space X and let

T : A∪B → A∪B be generalized cyclic ϕ−contraction map. For x0 ∈ A∪B, define

xn+1 = Txn for each n ≥ 0. Then

(a) −ϕ(d(x, y) + d(Tx, x) + d(Ty, y)) + ϕ(3d(A,B)) ≤ 0 for all x ∈ A and

y ∈ B,
(b) d(Tx, Ty) ≤ (1/3){d(x, y) + d(Tx, x) + d(Ty, y)}, for all x ∈ A and y ∈ B,
(c) d(xn+2, xn+1) ≤ d(xn+1, xn) for all n ≥ 0.

We prove the following results which will be needed in what follows.

Proposition 2.1. Let A and B be non-empty subsets of a metric space X and let

T : A ∪ B → A ∪ B be a generalized cyclic ϕ−contraction map. For x0 ∈ A ∪ B,
define xn+1 = Txn for each n ≥ 0, then d(xn, xn+1)→ d(A,B) as n→∞.

Proof. Let dn = d(xn, xn+1). It follows from Lemma 2.1(c), that {dn} is decreas-

ing and bounded, so limn→∞ dn = t0. Since T is a generalized cyclic ϕ− contraction

map, we obtain

dn+1 ≤
1

3
{2dn + dn+1} − ϕ(2dn + dn+1) + ϕ(3d(A,B)).
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Hence,

ϕ(3d(A,B)) ≤ ϕ(2dn + dn+1) ≤ 2

3
dn −

2

3
dn+1 + ϕ(3d(A,B)).

Thus

ϕ(3d(A,B)) ≤ lim
n→∞

ϕ(2dn + dn+1) ≤ ϕ(3d(A,B)),

which shows that

(1) lim
n→∞

ϕ(2dn + dn+1) = ϕ(3d(A,B)).

Since ϕ is strictly increasing and dn ≥ dn+1 ≥ t0 ≥ d(A,B), we have

lim
n→∞

ϕ(2dn + dn+1) ≥ ϕ(3t0) ≥ ϕ(3d(A,B)).

From (1), we get

lim
n→∞

ϕ(2dn + dn+1) = ϕ(3t0) = ϕ(3d(A,B)).

As ϕ is strictly increasing, we have t0 = d(A,B). �

Theorem 2.1. Let A and B be non-empty subsets of a metric space X and let

T : A ∪B → A ∪B be a generalized cyclic ϕ−contraction map. For x0 ∈ A, define

xn+1 = Txn for each n ≥ 0. If {x2n} has a convergent subsequence in A, then there

exists x ∈ A such that d(x, Tx) = d(A,B).

Proof. Let {x2nk
} be a subsequence of {x2n} with x2nk

→ x ∈ A. Since

d(A,B) ≤ d(x, x2nk−1) ≤ d(x, x2nk
) + d(x2nk

, x2nk−1),

for each k ≥ 1, it follows from Proposition 2.1 that limk→∞ d(x2nk−1, x)→ d(A,B).

Since

d(x2nk
, Tx) ≤ (1/3){d(x2nk−1, x2nk

) + d(x2nk−1, x) + d(x, Tx)}

≤ (1/3){d(x2nk−1, x2nk
) + d(x2nk−1, x) + d(x, x2nk

) + d(x2nk
, Tx)}.

Letting k →∞,

(2/3) lim
k→∞

d(x2nk
, Tx) ≤ (2/3)d(A,B),

it follows that, limk→∞ d(x2nk
, Tx) = d(A,B). So d(x, Tx) = d(A,B). �
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Lemma 2.2. Let A and B be non-empty subsets of a uniformly convex Banach

space X such that A is convex and let T : A ∪ B → A ∪ B be a generalized cyclic

ϕ−contraction map. For x0 ∈ A, define xn+1 = Txn for each n ≥ 0. Then

‖x2n+2 − x2n‖ → 0 and ‖x2n+3 − x2n+1‖ → 0 as k →∞.

Proof. To prove that ‖x2n+2 − x2n‖ → 0 as k →∞, assume the contrary. Then

there exists ε0 > 0 such that for each k ≥ 1, there exists nk ≥ k so that

(2) ‖x2nk+2 − x2nk
‖ ≥ ε0.

Choose 0 < γ < 1 such that d(A,B) < ε0
γ and choose ε such that

0 < ε < min

{
ε0
γ
− d(A,B),

d(A,B)δ(γ)

1− δ(γ)

}
.

By Proposition 2.1, there exists N1 such that

(3) ‖x2nk+2 − x2nk+1‖ ≤ d(A,B) + ε,

for all nk ≥ N1. Also, there exists N2 such that

(4) ‖x2nk
− x2nk+1‖ ≤ d(A,B) + ε

for all nk ≥ N2. Let N = max{N1, N2}. From (2)-(4) and the uniform convexity of

X, we get

‖(x2nk+2 + x2nk
)/2− x2nk+1‖ ≤

(
1− δ

(
ε0

d(A,B) + ε

))
(d(A,B) + ε),

for all nk ≥ N. As (x2nk+2 + x2nk
)/2 ∈ A, the choice of ε implies that

‖(x2nk+2 + x2nk
)/2− x2nk+1‖ < d(A,B),

for all nk ≥ N, a contradiction. A similar argument shows ‖x2n+3− x2n+1‖ → 0 as

k →∞. �

Theorem 2.2. Let A and B be non-empty subsets of a uniformly convex Banach

space X such that A is closed and convex and let T : A∪B → A∪B be a generalized

cyclic ϕ−contraction map. For x0 ∈ A, define xn+1 = Txn for each n ≥ 0. Then

there exists a unique x ∈ A such that x2n → x, T 2x = x and ‖x− Tx‖ = d(A,B).

Proof. First, we show for each ε > 0, there exists a positive integer N0 such that

for all m > n ≥ N0,

(5) ‖x2m − x2n+1‖ < d(A,B) + ε.
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Suppose the contrary. So there exists ε0 > 0 such that for each k ≥ 1. there is

mk > nk ≥ k satisfying

(6) ‖x2mk
− x2nk+1‖ ≥ d(A,B) + ε0

and

(7) ‖x2(mk−1) − x2nk+1‖ < d(A,B) + ε0.

Now from (6) and (7), we get

d(A,B) + ε0 ≤ ‖x2mk
− x2nk+1‖ ≤ ‖x2mk

− x2(mk−1)‖+ ‖x2(mk−1) − x2nk+1‖

< ‖x2mk
− x2(mk−1)‖+ d(A,B) + ε0.

Letting k →∞, Lemma 2.2 implies

(8) lim
k→∞

‖ x2mk
− x2nk+1‖ = d(A,B) + ε0,

it follows from Lemma 1.2(b), and the generalized cyclic ϕ−contraction property of

T that

‖x2mk
− x2nk+1‖ ≤ ‖x2mk

− x2mk+2 + ‖x2mk+2 − x2nk+3‖+ ‖x2nk+3 − x2nk+1‖

≤ ‖x2mk
− x2mk+2‖+ (1/3){‖x2mk+1 − x2nk+2‖

+ ‖x2mk+1 − x2mk+2‖+ ‖x2nk+2 − x2nk+3‖}+ ‖x2nk+3 − x2nk+1‖

≤ ‖x2mk
− x2mk+2‖+ (1/3){(1/3){‖x2mk

− x2nk+1‖

+ ‖x2mk
− x2mk+1‖+ ‖x2nk+2 − x2nk+1‖}

+ (1/3){‖x2mk+1 − x2mk+2‖+ ‖x2nk+2 − x2nk+3‖}

+ ‖x2nk+3 − x2nk+1‖.

Letting k →∞, by using (8), Lemma 2.2 and Proposition 2.1, we get

d(A,B) + ε0 ≤ (1/9)(d(A,B) + ε0) + (2/9)d(A,B) + (2/3)d(A,B),

so

d(A,B) + ε0 ≤ d(A,B) + (1/9)ε0,

this is a contradiction. Now, we show {x2n} Cauchy sequence in A. If d(A,B) = 0,

then let ε0 > 0 be given. By Proposition 2.1, there exists N1 such that

‖x2n − x2n+1‖ < ε
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for every n ≥ N1. From (5), there exists N2 such that

‖x2m − x2n+1‖ < ε

for every m > n ≥ N2. Let N = max{N1, N2}. It follows that

‖x2m − x2n‖ ≤ ‖x2m − x2n+1‖+ ‖x2n − x2n+1‖ < 2ε

for all m > n ≥ N . So {x2n} is a Cauchy sequence in A. So we assume that

d(A,B) > 0. To show that {x2n} is a Cauchy sequence in A, we assume the contrary.

Then there exists ε0 > 0 such that for each k ≥ 1, there exists mk > nk ≥ k so that

(9) ‖x2mk
− x2nk

‖ ≥ ε0.

Choose 0 < γ < 1 such that d(A,B) < ε0
γ and choose ε such that

0 < ε < min

{
ε0
γ
− d(A,B),

d(A,B)δ(γ)

1− δ(γ)

}
.

By Proposition 2.1, there exists N1 such that

(10) ‖x2nk
− x2nk+1‖ ≤ d(A,B) + ε,

for all nk ≥ N1. From (5), there exists N2 such that

(11) ‖x2mk
− x2nk+1‖ ≤ d(A,B) + ε,

for all mk > nk ≥ N2. Let N = max{N1, N2}. From (9)-(11) and the uniform

convexity of X, we get

‖(x2mk
+ x2nk

)/2− x2nk+1‖ ≤
(

1− δ
(

ε0
d(A,B) + ε

))
(d(A,B) + ε),

for all mk > nk ≥ N. As (x2nk+2 + x2nk
)/2 ∈ A, the choice of ε implies that

‖(x2nk+2 + x2nk
)/2− x2nk+1‖ < d(A,B),

for all mk > nk ≥ N, a contradiction. Thus {x2n} Cauchy sequence in A. The

completeness of X and the closedness of A imply that x2n → x as n → ∞. By

Theorem 2.1, ‖x− Tx‖ = d(A,B). Now from Lemma 2.1(b), we have

‖T 2x− Tx‖ ≤ (1/3){2‖Tx− x‖+ ‖T 2x− Tx‖}.
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Hence ‖T 2x − Tx‖ = d(A,B), therefore T 2x = x. Next, suppose y ∈ A and x 6= y

such that ‖y − Ty‖ = d(A,B) with T 2y = y. By Lemma 2.1(b)

‖Tx− y‖ ≤ (1/3){‖x− Ty‖+ ‖Tx− x‖+ ‖y − Ty‖}

≤ (1/3){(1/3){‖Tx− y‖+ ‖Tx− x‖+ ‖y − Ty‖}

+ ‖Tx− x‖+ ‖y − Ty‖}.

So

(8/9)‖Tx− y‖ ≤ (4/9){‖Tx− x‖+ ‖y − Ty‖},

which implies that ‖Tx − y‖ = d(A,B). It follows from convexity of A and the

strict convexity of X that

‖(x+ y)/2− Tx‖ = ‖(x− Tx)/2 + (y − Tx)/2‖ < d(A,B),

a contradiction. Thus x = y. �

Now, we show existence of a best proximity point for generalized cyclic ϕ−contraction

map in reflexive Banach space.

Proposition 2.2. Let A and B be non-empty subsets of a metric space X, T :

A ∪ B → A ∪ B be a generalized cyclic ϕ−contraction map, x0 ∈ A ∪ B, and

xn+1 = Txn for each n ≥ 0. Then the sequences {x2n} and {x2n+1} are bounded.

Proof. Suppose that x0 ∈ A (the proof when x0 ∈ B is similar). From Proposi-

tion 2.1, either {x2n} and {x2n+1} are bounded or both sequences are unbounded.

Fix n1 ∈ N and define

en,k = d(x2n, x2(n1+k)+1)

for all n, k ≥ 1. Since {x2n+1} is unbounded, lim supk→∞ en,k =∞ for every n ≥ 1.

Therefore we choose a strictly increasing subsequence {e1,k1i }i≥1 of the sequence

{e1,k}k≥1. Since

e1,k1i ≤ d(x2, x4) + e2,k1i ,

we have lim supi→∞ e2,k1i =∞. Again, we can choose strictly increasing subsequence

{e2,k2i }i≥1 of the sequence {e2,k1i }i≥1 such that lim supi→∞ e2,k2i = ∞. By contin-

uing this process, for every n ∈ N, we can choose strictly increasing subsequence

{en,kni }i≥1 of the sequence {en,kn−1
i
}i≥1 such that lim supi→∞ en,kni = ∞. By the

construction, if we consider the sequence {kii}i≥1, then lim i→∞k
i
i =∞, {en,kii}i≥1

is a strictly increasing subsequence of {en,kni }i≥1 and lim supi→∞
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en,kii = ∞. for every n ≥ 1. We define n2 = n1 + k22 − k11, by induction define the

sequence {nm}m≥1 with nm = n1 + kmm − k11. the sequence {nm}m≥1 is strictly in-

creasing and lim supm→∞ nm =∞. By Lemma 2.1(c), {d(x2nm , x2(nm+k11)+1)}m≥1
is a decreasing sequence. By the construction of the sequence {nm}m≥1, {d(x2nm

,

x2(n1+kmm)+1)}m≥1 is a decreasing sequence. Let m ≥ 1, since enm,k11
≤ enm,kmm

and

decreasing the sequence {d(x2nm , x2(n1+kmm)+1)}m≥1 we have

(12) d(x2nm
, x2(n1+k11)+1) ≤ d(x2n1

, x2(n1+k11)+1),

for all m ≥ 1. By the construction of the sequence {nm}m≥1, inequality (12) and

Lemma 2.1(c), we obtain

d(x2(n1+kmm)+1, x2(n1+k11)+1) ≤ d(x2nm
, x2(n1+k11)+1) + d(x2nm

, x2(n1+kmm)+1)

≤ d(x2n1 , x2(n1+k11)+1) + d(x2nm , x2(nm+k11)+1)

≤ d(x2n1
, x2(n1+k11)+1) + d(x2nm−1, x2(nm+k11)

)

≤ d(x2n1
, x2(n1+k11)+1) + d(x0, x2k11+1),

for all m ≥ 1. Thus

d(x2(n1+kmm)+1, x2(n1+k11)
) ≤ d(x2(n1+kmm)+1, x2(n1+k11)+1) + d(x2(n1+k11)+1, x2(n1+k11)

)

≤ d(x2n1
, x2(n1+k11)+1) + d(x0, x2k11+1)

+ d(x2(n1+k11)+1, x2(n1+k11)
),

for all m ≥ 1. That is a contradiction, because lim supi→∞ en,kii =∞ for all n ≥ 1.

This completes the proof. �

Next, we give best proximity pair for weakly closed subsets of a reflexive Banach

space.

Theorem 2.3. Let A and B be non-empty weakly closed subsets of a reflexive

Banach space X, T : A ∪ B → A ∪ B be a generalized cyclic ϕ−contraction map.

Then there exists (x, y) ∈ A×B such that

‖x− y‖ = d(A,B).

Proof. If d(A,B) = 0, by Theorem 1.2 the result follows. So we assume that

d(A,B) > 0. For x0 ∈ A, define xn+1 = Txn for each n ≥ 0. The sequences {x2n}
and {x2n+1} are bounded from Proposition 2.2. Since X is reflexive and A is weakly

closed, the sequence {x2n} has a subsequence {x2nk
} such that x2nk

w→ x ∈ A. Also
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B is weakly closed, hence x2nk+1
w→ y ∈ B as k → ∞. Since x2nk

− x2nk+1
w→

x − y 6= 0 as k → ∞, there exists a bounded liner functional f : X → [0,∞) such

that ‖f‖ = 1 and f(x− y) = ‖x− y‖. For all k ≥ 1, we have

|f(x2nk
− x2nk+1)| ≤ ‖f‖‖x2nk

− x2nk+1‖ = ‖x2nk
− x2nk+1‖.

Since limk→∞ |f(x2nk
− x2nk+1)| = ‖x− y‖, by appling Proposition 2.1, we give

‖x− y‖ = lim
k→∞

|f(x2nk
− x2nk+1)| ≤ lim

k→∞
‖x2nk

− x2nk+1‖ = d(A,B),

and this compeletes the proof. �

Theorem 2.4. Let A and B be non-empty subsets of a reflexive Banach space

X such that A is weakly closed and T : A ∪ B → A ∪ B be a generalized cyclic

ϕ−contraction map. Then there exists x ∈ A such that ‖x−Tx‖ = d(A,B) provided

that one of the following conditions is satisfied

(i) T is weakly continuous on A.

(ii) T is satisfies the proximal property.

Proof. If d(A,B) = 0, the result follows from Theorem 1.2. So we assume that

d(A,B) > 0. For x0 ∈ A, define xn+1 = Txn for each n ≥ 0. By Proposition 2.2

the sequence {x2n} is bounded. Since X is reflexive and A is weakly closed, the

sequence {x2n} has a subsequence {x2nk
} such that x2nk

w→ x ∈ A.

From (i), x2nk+1
w→ Tx ∈ B as k →∞. So x2nk

− x2nk+1
w→ x− Tx 6= 0 as k →∞.

Now the proof continues similar to that of Theorem 2.3.

From (ii), by Proposition 2.1, ‖x2nk
−Tx2nk

‖ → d(A,B) as k →∞. Thus ‖x−Tx‖ =

d(A,B). �

In following Theorems, we consider reflexive and strictly convex Banach space

and obtain best proximity point for generalized cyclic ϕ−contraction map.

Theorem 2.5. Let A and B be non-empty closed and convex subsets of a reflexive

and strictly convex Banach space X such that T : A ∪ B → A ∪ B be a generalized

cyclic ϕ−contraction map. If (A− A) ∩ (B − B) = {0}, then there exists a unique

x ∈ A such that ‖x− Tx‖ = d(A,B).

Proof. If d(A,B) = 0, by Theorem 1.2 the result follows. So we assume that

d(A,B) > 0. Since A is closed and convex, it is weakly closed. By Theorem 2.3,

there exists (x, y) ∈ A × B with ‖x − y‖ = d(A,B). Suppose that there exists
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(a, b) ∈ A × B with ‖a − b‖ = d(A,B). Since (A − A) ∩ (B − B) = {0}, thus

x− y 6= a− b. By the strict convexity of X, as convexity of A and B, we have

‖(x+ a)/2− (y + b)/2‖ = ‖(x− y)/2 + (a− b)/2‖ < d(A,B),

which is a contraction. This show (x, y) is unique. �

Theorem 2.6. Let A and B be non-empty subsets of a reflexive and strictly convex

Banach space X such that A is closed and convex and T : A ∪ B → A ∪ B be a

generalized cyclic ϕ−contraction map. Then there exists a unique x ∈ A such that

‖x− Tx‖ = d(A,B) provided that one of the following conditions is satisfied

(i) T is weakly continuous on A.

(ii) T is satisfies the proximal property.

Proof. If d(A,B) = 0, the result follows from Theorem 1.2. So we assume that

d(A,B) > 0. Since A is closed and convex, it is weakly closed. By Theorem 2.4,

there exists x ∈ A such that ‖x− Tx‖ = d(A,B). �
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