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Abstract. One of the most famous problems of classical geometry is the Apol-

lonius’ problem asks construction of a circle which is tangent to three given

objects. These objects are usually taken as points, lines, and circles. This well

known problem was posed by Apollonius of Perga ( about 262 - 190 B.C.) who

was a Greek mathematician known as the great geometer of ancient times after

Euclid and Archimedes. The Apollonius’ problem can be reduced specifically

to the question “Is there the circle that touches all three excircles of given

triangle and encompasses them? ” when all three objects are circles. In liter-

ature, altough there are a lot of works on the solution of this question in the

Euclidean plane, there is not the work on this question in different metric ge-

ometries. In this paper, we give that the conditions of existence of Apollonius

taxicab circle for any triangle.
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1. Introduction

Euclidean distance is the most common use of distance. In most cases when

people said about distance, they will refer to Euclidean distance. The Euclidean

distance between two points in either the plane or 3−dimensional space is defined

as the length of the segment between two points. Although it is the most popular

distance function, it is not practical when we measure the distance which we actually

move in the real world. We live on a spherical Earth rather than on a Euclidean

3−space. We must think of the distance as though a car would drive in the urban

geography where physical obstacles have to be avoided. So, one had to travel

through horizontal and vertical streets to get from one location to another [8].

To compensate disadvantage of the Euclidean distance, the taxicab geometry was

first introduced by K. Menger [15] and has developed by E. F. Krause [14] using

the taxicab metric dT of which paths composed of the line segments parallel to

coordinate axes. Also, Z. Akca and R. Kaya [1] expand the taxicab distance in R3.

Later, researchers have wondered whether there are alternative distance functions

of which paths are different from path of Euclidean metric. For example, G. Chen

[3] developed Chinese checker distance dCC in the R2 of which paths are similar to

the movement made by Chinese checker . Afterwards, Ö. Gelişgen, R. Kaya and M.

Özcan [9] defined Chinese checker distance in the R3 .

Another example, S. Tian [19] gave a family of metrics, alpha distance dα for

α ∈ [0, π/4], which includes the taxicab and Chinese checker metrics as special

cases. Then, Ö. Gelişgen and R. Kaya extended the dα to three and n dimensional

spaces, respectively [10], [11], [12]. Afterwards, H. B. Çolakoğlu [4] extended for

α ∈ [0, π/2).

When we examine the common features of the metrics dM , dT , dCC and dα, we

see that these metrics whose paths are parallel to at least one of the coordinate

axes. Therefore, it is a logical question ” Are there metric or metrics of which paths

are not parallel to the coordinate axes. ” H. B. Çolakoğlu and R. Kaya [5] give

definition of the generalized m−distance function which includes the maximum,

taxicab, Chinese checker and alpha metrics as follows.

For each real numbers a, b and m such that a ≥ b ≥ 0 6= a, the distance function

dm between points P = (xp, yp) and Q = (xq, yq) is defined by

dm (P,Q) = (a∆PQ + bδPQ)�
√

1 +m2
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where ∆PQ = max {|(xp − xq) +m (yp − yq)| , |m (xp − xq)− (yp − yq)|} and

δPQ = min {|(xp − xq) +m (yp − yq)| , |m (xp − xq)− (yp − yq)|}. It is the most

important property of m−metric that its paths are not parallel to the coordinate

axes in the real plane (see Figure 1).

Figure 1. The paths of m-distance dm

dm = dT for a = b = 1 and m = 0

dT (P,Q) = |xp − xq|+ |yp − yq| ,

dm = dM for a = 1, b = 0 and m = 0

dM (P,Q) = max {|xp − xq| , |yp − yq|} ,

dm = dCC for a = 1, b =
(√

2− 1
)

and m = 0

dCC (P,Q) = max {|xp − xq| , |(yp − yq)|}+ bmin {|xp − xq| , |(yp − yq)|} ,

dm = dα for a = 1, b = (secα− tanα) and m = 0 (α ∈ [0, π/2)) ,

dα (P,Q) = max {|xp − xq| , |(yp − yq)|}+ bmin {|xp − xq| , |(yp − yq)|} .

H. G. Park, K. R. Kim, I. S. Ko and B. H. Kim [17] define the polar taxicab distance

dPT (P,Q) =


min {r1, r2} × |θ1 − θ2|+ |r1 − r2| , 0 ≤ |θ1 − θ2| ≤ 2

r1 + r2 , 2 ≤ |θ1 − θ2| ≤ π
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in the R2 of which paths composed of arc length in circle and line segments, where

P = (r1, θ1) and Q = (r2, θ2) are points in a plane expressed by polar coordinates.

The polar taxicab metric has very important applications in urban geography bea-

cuse cities formed not only linear streets but also curvilinear streets. Also the

distance function dPT have applications in navigation systems [16]. Finally, consid-

ering distance of air travel or travel over water in terms of Euclidean distance, these

travels are made through the interior of spherical Earth which is impossible. Using

the idea given in [17], T. Ermiş and Ö. Gelişgen [8] define a new alternative metric

on spherical surfaces due to disadvantage and disharmony of Euclidean distance on

earth’ s surface. This metric composed of arc length on sphere and length of line

segments has been denoted dCL . Also another alternative metric on sphere was

defined by A. Bayar and R. Kaya [2].

As mentioned above, the distance geometries have different distance functions.

So these geometries have different distance properties. It seems interesting to study

the different metric analogues of the topics that include the concept of distance in

the Euclidean geometry. In this paper, we study on a taxicab version of Apollonius’ s

circle.

2. APOLLONIUS CIRCLE IN TAXICAB GEOMETRY

Minkowski geometry is a non-Euclidean geometry in a finite number of dimen-

sions that is different from elliptic and hyperbolic geometry (and from the Minkowski-

an geometry of space-time). Here the linear structure is the same as the Euclidean

one but distance is not uniform in all directions. Taxicab plane geometry is one of

the geometries of this type. Namely, the taxicab plane R2
T is almost the same as

the Euclidean analytical plane R2. The points and the lines are the same, and the

angles are measured in the same way. However, the distance function is different

[13]. Also, the isometry group of taxicab plane is the semi direct product of D(4)

and T (2) where D(4) is the symmetry group of Euclidean square and T (2) is the

group of all translations in the plane [18]. So, in the rest of the article, the vertex

C of given triangle
4

ABC can be taken at origin since all translations of the analyti-

cal plane are isometries of the taxicab plane. Notice that this assumption about the

position of the triangle does not loose the generality. Also, the other two vertices

of triangle
4

ABC will be labeled at counterclokwise direction in this paper.
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Let l be a line with slope m in the taxicab plane. l is called a gradual line, a

steep line, a separator if |m| < 1, |m| > 1, |m| = 1, respectively. In particularly, a

gradual line is called horizontal if it is parallel to x−axis, and a steep line is called

vertical if it is parallel to y−axis [6].

Let M be a point in the taxicab plane, and r be a positive real number. The set

of points {X : dT (M,X) = r} is called taxicab circle, the point M is called center

of the taxicab circle, and r is called the length of the radius or simply radius of

the taxicab circle. Every taxicab circle in the taxicab plane is an Euclidean square

having sides with slopes ±1. Also, in Euclidean geometry, it is well-known that the

number of intersection points of a circle and a line is 0, 1 or 2. In the taxicab plane,

this number is 0, 1, 2 or ∞. So far, we have considered that a circle touches (is

tangent to) each of the three sides of the triangle at only one point. In this section

we will reconsider the concept of a circle tangent to a triangle by using following

definition. A steep or a gradual line is tangent to a taxicab circle if the taxicab

circle and the steep or gradual line have common only one point. But sides of a

taxicab circle always lie on separator lines. If slope of the a side of a triangle is +1

or −1 then that side coincides with a side of the taxicab circle along a line segment.

Additionally to like Euclidean cases, it has been stated in [7] that we consider the

concept of tangent along a line segment if a line segment completely or partially lie

on one side of the taxicab circle.

Figure 2. Tangential Cases in the Euclidean Circle and Taxicab Cirle

In plane, the triangles can be classified as seventeen groups according to slopes

of the sides of triangles [7]:

• All sides of the triangle lie on gradual (steep) lines.
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• Two sides of the triangle lie on gradual (steep) lines, the other side lies on a

steep (gradual) line.

• Two sides of the triangle lie on separator lines, the other side lies on a gradual

(steep) or a horizontal (vertical) line.

• A side of the triangle lies on a separator line, two sides of the triangle lie on

gradual (steep) lines.

• A side of the triangle lies on a separator line, the other side lies on a gradual

line and the third side lies on a steep line.

• A side of the triangle lies on a vertical line, the other side lies on a horizontal

line and third side lies on a gradual (steep) line or separator line.

• A side of the triangle lies on a vertical (horizontal) line, two sides of the triangle

lie on gradual (steep) lines.

• A side of the triangle lies on a vertical (horizontal) line, the other side lies on

a gradual line and the third side lies on a steep line.

According to this classification, we give the cases that there is never Apollonius

taxicab circle in Teorem 2.1. After that, the conditions for existence of Apollonius

taxicab circle in Teorem 2.2 are given. Finally, it is shown the cases that there is

always Apollonius taxicab circle in Theorem 2.3. Notice that, ma, mb and mc

denote slopes of sides BC, AC, AB of any triangle
4

ABC, respectively, in the rest

of this paper.

Theorem 2.1. Let
4

ABC be any triangle in taxicab plane. Then,

there is never Apollonius circle iff



•
|ma| ≤ 1, |mb| ≤ 1, |mc| < 1

( as subcase |ma| < 1, |mb| < 1, mc = 0)

•
|ma| ≥ 1, |mb| ≥ 1, |mc| > 1

( as subcase |ma| > 1, |mb| > 1, mc →∞ )

Proof. For |ma| < 1, |mb| < 1, |mc| < 1, we know that the taxicab circle compose

of the line segments which lie on lines with slopes ±1. Now, consider the taxicab

circle on the longest side the triangle
4

ABC. This taxicab circle is not excircle of

triangle
4

ABC because this circle touches at most two sides of the triangle
4

ABC. So,

we can not construct Apollonius taxicab circle (see Figure 3). The other subcases

can be similarly explained.
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Figure 3.

�

Theorem 2.2. Let
4

ABC be any triangle in taxicab plane. Then, we define the

functional relation ρ (ma,mb,mc) = ma +mb −mc (2− 3ma + 3mb);

i) For |ma| < 1, |mb| < 1, |mc| > 1,

there is Apollonius taxicab circle ⇔


ρ (ma,mb,mc) < 0 such that mc < −1

ρ (ma,mb,mc) > 0 such that mc > 1

Specially, there is Apollonius taxicab circle for |ma| < 1, |mb| < 1, mc → ∞, iff

2− 3ma + 3mb < 0.

ii) For |ma| > 1, |mb| > 1, |mc| < 1,

there is Apollonius taxicab circle ⇔


ρ
(
−m−1

a ,−m−1
b ,m−1

c

)
> 0, mamb < 0

ρ
(
−m−1

a ,−m−1
b ,m−1

c

)
< 0, mamb > 0

Specially, there is Apollonius taxicab circle for |ma| > 1, |mb| > 1, mc = 0 iff

2mamb − 3ma + 3mb < 0.
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Proof. i) For |ma| < 1, |mb| < 1, mc > 1, let the vertex C of given triangle
4

ABC

be taken at origin and the other vertices be labeled at counterclokwise direction

(see Figure 4).

Figure 4.

Consider taxicab excircle on side BA of the triangle
4

ABC. Actually, there is

always this taxicab excircle, because slopes of sides BC, AC and AB are gradual,

gradual and steep, respectively. For λ ∈ R+, vertices T2 and T4 of taxicab excircle

on side BA can be coordinated (λ, λmb) and (λ, λma) , respectively. If T2 = (λ, λmb)

and T4 = (λ, λma) , then radius of the taxicab excircle r is obtained as
λma − λmb

2
.

So,

T1 =

(
λ

[
2−ma +mb

2

]
, λ

[
ma +mb

2

])
,

T3 =

(
λ

[
2 +ma −mb

2

]
, λ

[
ma +mb

2

])
are calculated. Since the point T1 is on the line y = mc (x− xa) + ya, value of λ is

founded as
2ya − 2xamc

ma +mb +mamc −mbmc − 2mc
. If the system of linear equations

consisting of equations of lines y = x and y = mc (x− xa) + ya is solved, then

the solution is found as D =

(
ya − xamc

1−mc
,
ya − xamc

1−mc

)
. Similary, if the system of

linear equations consisting of equations of lines y = −x and y = mc (x− xa) + ya

is solved, then the solution is found as E =

(
xamc − ya

1 +mc
,−xamc − ya

1 +mc

)
. The line
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pass through the point D with slope −1 will be denoted by lD−1
such that equation

of lD−1
is y = −x+

2 (ya − xamc)

1−mc
. Similarly, equation of the line lE1

pass through

the point E with slope 1 is y = x− 2 (xamc − ya)

1 +mc
. To construct Apollonius taxicab

circle of the triangle
4

ABC, it is clear that the point T3 must not be in the region

are bounded by lines x = 0, lE1 and lD−1 . To optimize the point T3 outside this

region, the point T3 must be subject to constraint;

(2.1)

λ (2 +ma −mb)

2
+

2 (ya − xamc)

1−mc
< λ

[
ma +mb

2

]

λ

[
ma +mb

2

]
<
λ (2 +ma −mb)

2
− 2 (xamc − ya)

1 +mc
.

Consequently, the inequality ma + mb − mc (2− 3ma + 3mb) > 0 is obtained by

inequalities (2.1). The other subcases can be similarly computed.

ii) If ma, mb, mc replace with −m−1
a , −m−1

b , m−1
c in the functional relation

ρ (ma,mb,mc), then this functional relation can be shown as ρ
(
−m−1

a ,−m−1
b ,m−1

c

)
.

So, the proof of the case ii can be given as analogous to the proof of the previous

case. �

The following corollary is a special case of Theorem 2.2. The conditions for

existence of Apollonius taxicab circle are given by a simpler relation.

Corollary 2.1. Let
4

ABC be any triangle such that a side of the triangle lies on a

vertical line, the other side lies on a horizontal line and third side lies on a gradual

or steep line. Also, slope of the side on gradual line is denoted by mg, and slope of

the side on steep line is denoted by ms.

There is Apollonius taxicab circle iff

−1 < mg < −1/2 for mg < 0

or

1/2 < mg < 1 for mg > 0.

Similarly,

There is Apollonius taxicab circle iff

−2 < ms < −1 for ms < 0

or

1 < ms < 2 for ms > 0.
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Proof. Let
4

ABC be any triangle such that a side of the triangle lies on a vertical

line, the other side lies on a horizontal line and third side lies on a gradual line. Also,

let the vertex C of given triangle
4

ABC be taken at origin and the other vertices be

labeled at counterclokwise direction (see Figure 5). For mg = ma > 0,

Figure 5.

consider taxicab excircle on side BA of the triangle
4

ABC. For λ and xa ∈ R+,

vertex T1 of taxicab excircle on side BA can be coordinated by (xa, λ). Therefore,

radius of the taxicab excircle r is λ. So, T2 = (λ+ xa, 0) , T3 = (2λ+ xa, λ) and

T4 = (λ+ xa, 2λ). Since the point T4 is on the line y = max, value of λ is founded

as
xama

2−ma
. Also, D = (xa, xa) and E = (xa,−xa). The line pass through the

point D with slope −1 will be denoted by lD−1 such that equation of lD−1 is

y = −x + 2xa. Similarly, equation of the line lE1
pass through the point E with

slope 1 is y = x − 2xa. To construct Apollonius taxicab circle of the triangle
4

ABC, it is clear that the point T3 must not be in the region are bounded by lines

x = xa, lE1 and lD−1 . To optimize the point T3 outside this region, the point T3

must be subject to constraint;

(2.2)

− (xa + 2λ) + 2xa < λ

λ < (xa + 2λ)− 2xa

Consequently, the inequality 1/2 < mg is obtained by inequalities (2.2). �
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Theorem 2.3. Let
4

ABC be any triangle in taxicab plane. Then,

there is always Apollonius taxicab circle iff for |ma| = 1, |mb| < 1, |mc| > 1 .

Proof. For |ma| = 1, |mb| < 1, |mc| > 1 , (see Figure 6), consider three taxicab

excircles on the side with slope 1 ( or −1 ) the triangle
4

ABC. Because any taxicab

circle compose of the line segments which lie on lines with slopes±1, there are always

these taxicab excirles lying outside the triangle, tangent to the side with slope ∓1

and tangent to the extensions of the other two sides. Due to similar reason, it is

clear that there will be a taxicab circle enclosing three taxicab excircles.

Figure 6.

�

3. Conclusion

There are several different alternative definitions of the circle of Apollonius in

the literature [20]. For a given triangle, the Apollonius circle is the circle tangent

internally to each of the three excircles. Using this definition of Apollonius circle

based on any triangle, we have shown that conditions of existence of Apollonius

circle in taxicab plane geometry. Moreover, these conditions are given in terms of

the slopes of the sides of the triangle. Using a simple geometric approach based

on slopes of the sides of any triangle, conditions of existence of Apollonius circle

can be given in different metric plane geometry ( e.g. plane geometries equipped

with dM , dCC , dα, dm and dPT ). So, this is an open problem in different distance

geometries.
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