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Abstract. In this work, we propose several simple but accurate finite differ-

ence schemes to approximate the solutions of the nonlinear Fisher equation,

which describes an interaction between logistic growth and diffusion process

occurring in many biological and chemical phenomena. All schemes are based

upon the time-splitting finite difference approximations. The operator splitting

transforms the original problem into two subproblems: nonlinear logistic and

linear diffusion, each with its own boundary conditions. The diffusion equation

is solved by three well-known stable and consistent methods while the logistic

equation by a combination of method of lagging and a two-step approximation

that is not only preserve positivity but also boundedness. The new proposed

schemes and the previous standard schemes are tested on a range of prob-

lems with analytical solutions. A comparison shows that the new schemes are

simple, effective and very successful in solving the Fisher equation.

AMS Classification: 65F05, 65K05.
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1. Introduction

The Fisher equation is a nonlinear model equation which arises in a wide va-

riety of problems involving diffusion and reaction. The Fisher equation has been

introduced in 1937 by Fisher [6] and, simultaneously, by Kolmogorov et al. [12]
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for studying wave propagation phenomena of a gene in a population and logistic

growth-diffusion phenomena. This equation as a prototype for reaction-diffusion

equations is also appeared in a number of areas of science and engineering, among

others, for the evolution of a neutron population in a nuclear reactor, the theory

of combustion, diffusion and mass transfer, nonlinear diffusion, chemical kinetics,

ecology, chemical wave propagation, see [5],[16] and reference therein.

To be more specific, we will study the mathematical model that involving reaction

and diffusion in the second-order nonlinear partial differential equation of the form

∂u

∂t
= L(u) := D

∂2u

∂x2
+ F (u), (x, t) ∈ Ω := R× (0,∞),(1a)

with initial condition

u(x, 0) = u0(x), x ∈ R,(1b)

where u0(x) is a given real valued function and must be chosen as

0 ≤ u0(x) ≤ 1, x ∈ R.

The latter restriction motivates by the fact that the Fisher equation describes the

nonlinear evolution of a population in a one-dimensional habitat and the habitat

can support only a certain maximum population per unit length, where the unity is

used for convenience and physically the population density or concentration cannot

be negative. The nonnegative constant D is called the diffusion coefficient and the

nonlinear function F describes the reaction of the system. Particularly, choosing the

nonlinear term F (u) equal to Ku(1 − u) in (1a) yields the Fisher equation, where

K(> 0) is a constant parameter. In this work, two kinds of boundary conditions

are supplemented with the initial-value problem (1a)- (1b):

lim|x|→+∞ u(x, t) = 0,(1c)

limx→−∞ u(x, t) = gl(t), limx→+∞ u(x, t) = gr(t).(1d)

Note that it is natural that in practice and computational setting the physical

domain (−∞,+∞) will be replaced by a finite interval [xl, xr]. We emphasize that

from the property of boundedness of u0(x) ∈ [0, 1] one can conclude the boundedness

of 0 ≤ u(x, t) ≤ 1, see cf. [17].

The properties of Fisher equation have been studied from both theoretical and

numerical point of views by many researchers. It is shown in [5] that the Fisher

equation describes a balance between linear diffusion and nonlinear local multiplica-

tion, and it admits shock-type solutions. It has been shown that by Kolmogorov et

al. [12] that with appropriate initial and boundary conditions, the Fisher equation

will support travelling waves of the form u = u(z), z = x− ct moving in the positive

x-direction, provided that the speed c ≥ 2
√
KD. Many reaction-diffusion equations

admit travelling wave solutions, which have important applications in chemistry,
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biology and medicine. The study of travelling wave solution of Fisher’s equation

has been studied by many authors [2, 11, 13]. Moreover, in [23] an analytical study

of Fisher’s equation is considered by employing Adomian decomposition method.

From numerical perspective, various computational techniques such as finite dif-

ference, spectral, and finite element methods have been developed in the past to

solve the nonlinear equation (1a) numerically. The works [7],[18] used the pseu-

dospectral method accurately to discretize spatial derivatives for numerically solving

the Fisher equation. The paper [24] presented an interesting and precise numerical

study of the Fisher equation by a Petrov-Galerkin finite element method. In [8],

the authors investigated the solution of the Fisher’s equation by the exponential B-

spline Galerkin method. In the context of finite difference schemes, various explicit

and implicit algorithms have been reported in [7, 19, 3, 14, 4]. In this work, we are

concerned with developing a number of simple finite difference methods that are

based on operator splitting strategy.

The rest of this paper is divided into three sections: In Section 2, we first in-

troduce some notations that will be used later on. Then, we briefly describe the

main ideas of operator splitting techniques for solving the time-dependent reaction-

diffusion problems by decomposing them into a linear and nonlinear subproblems.

This consists of introducing two popular splitting schemes i.e., sequential and Strang

splitting strategies, which are shortly illustrated from the viewpoint of the local

splitting errors. Hence, we introduce various numerical techniques to approximate

the solutions of linear and nonlinear subproblems individually such that by combin-

ing them the solution of the Fisher equation (1) is constructed. In addition, for the

methods proposed to deal with the nonlinear subproblem, we establish the fact that

each method is consistent and capable of preserving the positivity and boundedness

under some reasonable parameter constraints. In computational Section 3, the per-

formance and accuracy of proposed numerical schemes are verified by performing

several simulations on two standard test problems with analytical exact solutions.

Finally, the manuscript ends with a summary of the main conclusions in Section 4.

2. Numerical Schemes

In this part, we shall propose several finite difference methods for the Fisher

equation in (1). To do this we first introduce some basic notation. We begin by first

partitioning the spatial domain (xl, xr) into M subintervals with grid points xj =

xl+j∆x, for j = 0, . . . ,M so that x0 = xl and xM = xr. Here, by ∆x = xj+1−xj we

denote the uniform spatial mesh width of size ∆x = xr−xl

M . Similarly, we subdivide

the time interval (0, T ] into N subintervals with the uniform time step ∆t = tn+1−
tn, where tn = n∆t for n = 0, 1, . . . , N . On the computational grid (xj , tn) we

use the quantity Unj represents the computed finite difference approximation to the

exact solution u(xj , tn) of (1). The following notations shall be used throughout
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the paper

r =
D∆t

∆x2
, s = K∆t.

The main idea of operator splitting technique for the nonlinear equations is to

decompose a problem into linear and nonlinear subproblems [9, 22]. Hence, one

needs to solve each subproblem separately for small time steps ∆t, and then con-

catenate the solutions at the end of each time step. To solve the Fisher equation

numerically, we use this idea to decompose the differential operator L in (1a) into

a sum of two simpler differential operators as

(2) L(u) = (L1 + L2)(u),

where L1(u) = D ∂2u
∂x2 is the linear operator while L2(u) = F (u) is the nonlinear

operator. To proceed, we require to approximate the exact solution of (2) by solving

the linear and nonlinear subproblems

ut = L1(u),(3a)

ut = L2(u),(3b)

in a given sequential order. Note that this order can also be reversed and there is

no clear indications with respect to the proper choice of this ordering exist in the

literature. Now, each subproblems can be discretized independently using different

methods.

In this work we are mainly aimed at the first order operator splitting method

which is also known as sequential splitting. However, to obtain more accurate

results the second order splitting methods such as Strang method can be easily

applied to our model problem. The evolution of time in the first-order operator

splitting methods consists of two steps that mathematically can be expressed as

(4) u(x, t+ ∆t) =
(
L∆t

2 ◦ L∆t
1

)
u(x, t) +O(∆t2),

where L∆t
1 and L∆t

2 are solution operators corresponding to (3a) and (3b) respec-

tively. This implies that in the first step, an intermediate solution is computed by

proceeding the solution according to the linear diffusion equation (3a) using the

initial condition of the original problem. Then, in the second step, applying the ob-

tained solution at time ∆t as an initial condition, the solution is advanced according

to the nonlinear equation (3b).

In the second-order operator splitting methods, the advancement in time is car-

ried out in three steps. This particular method is also called the standard Strang

splitting. In this version the solution takes the form

(5) u(x, t+ ∆t) =
(
L∆t/2

1 ◦ L∆t
2 ◦ L

∆t/2
1

)
u(x, t) +O(∆t3).

So for the second-order version of the method, as a first step, we solve (3a) using

the initial condition of the original problem, and then, utilize the obtained solution
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as an initial condition to solve (3b), at last use the solution as the initial condition,

solve (3a) and obtain the approximate solution.

It is theoretically proven (cf. [10]) that second-order accuracy of the method (5)

is guaranteed when the two parts are solved with at least second-order accuracy. In

this work, we solve the nonlinear subequation (3a) by using a combined method of

lagging and the MacCormack scheme, which are second and first-order schemes in

time respectively. Thus, to achieve a second-order accuracy with (5) we require that

the linear subequation (3b) is solved by a second-order method. For this purpose, we

will use for instance the alternating-direction methods, Crank-Nicolson for solving

the linear counterpart. However, we will also utilize simple first-order methods like

FTCS (forward in time and central in space) for the diffusion equation, which may

only be first-order in time. Clearly, in this case one achieves only the first-order

accuracy in time and our splitting will be based upon the first-order version (4).

To solve the linear diffusion equation (3a) several numerical procedures may be

applied. Among other, the following schemes are considered in this work:

A) Laasonen method or forward in time and implicit central in space

(FTICS):.

−r Un+1
j−1 +

(
1 + 2r

)
Un+1
j − r Un+1

j+1 = Unj .

This is an implicit, first-order accurate with truncation error O(∆t + ∆x2), and

unconditionally stable scheme [25].

B) Crank-Nicolson (CN) method:

−r
2
Un+1
j−1 +

(
1 + r

)
Un+1
j − r

2
Un+1
j+1 = −r

2
Unj−1 +

(
1− r

)
Unj −

r

2
Unj+1.

This is an implicit, second-order accurate with truncation error O(∆t2 + ∆x2), and

unconditionally stable scheme [25]. It should be note that when using the two above

schemes for solving the diffusion equation, in each time step the solution procedure

involves only solving tridiagonal matrices. Next, we introduce a seemingly implicit

scheme that has not such property and indeed is an explicit method.

C) Alternating-directional explicit (ADE) methods: The left to right (L→R)

and right to left (R→L) numerical schemes for the diffuion equation (3a) due to

Saulyev [20],[21] are respectively defined as(
1 + r

)
Un+1
j = r Un+1

j−1 +
(
1− r

)
Unj + r Unj+1,(6a) (

1 + r
)
Un+1
j = r Un+1

j+1 +
(
1− r

)
Unj + r Unj−1.(6b)

We emphasize that both the L→R and R→L formulae are seemingly implicit in

nature but can be solved in an explicit manner from left (right) to right (left)

using the imposed boundary condition on the left (right) to get started. Based
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upon the L→R and R→L approximations, the first ADE scheme was proposed by

Saulyev as follows [21]:(
1 + r

)
Un+1
j = r Un+1

j−1 +
(
1− r

)
Unj + r Unj+1,(7a) (

1 + r
)
Un+2
j = r Un+2

j+1 +
(
1− r

)
Un+1
j + r Un+1

j−1 .(7b)

This is second-order accurate with truncation error O(∆t2+∆x2+∆t2/∆x2), and is

an unconditionally stable scheme. Note that if r is constant, the scheme is formally

first-order due to the presence of the inconsistent term O(∆t/∆x)2. To get ride of

this inconsistence term, the second ADE version is proposed in [1], in which the

computations are performed simultaneously in both L→R and R→L directions and

the resulting solutions are averaged to obtain the ultimate Un+1
j = 1

2

(
pn+1
j + qn+1

j

)
:

(
1 + r

)
pn+1
j = r pn+1

j−1 +
(
1− r

)
pnj + r pnj+1,(8a) (

1 + r
)
qn+1
j = r qn+1

j+1 +
(
1− r

)
qnj + r pn+1

j−1 .(8b)

This scheme is also unconditionally stable and its truncation error is O(∆t2 +∆x2).

In fact, when averaging is used the term O(∆t/∆x)2 cancel out an the resulting

method becomes second-order.

On the other hand, to solve the nonlinear part (3b) numerically, the following

schemes are employed:

D) Forward in time and combination of method of lagging (FTLag(θ)):

For devising the first numerical method for the nonlinear equation (3a), the time

derivative is approximated by the usual forward-difference expression(
∂u

∂t

)n
j

≈
Un+1
j − Unj

∆t
.

To approximate the nonlinear term F (u), we exploit the method of lagging to

convert this nonlinear term into a linear term. In this approach, one term in the

multiplication term Ku(1−u) is calculated at the time level tn while the other one

is calculated at the time level tn+1. For this purpose, we propose the following two

approximations (
u(1− u)

)n
j
≈ Un+1

j (1− Unj ),(9a) (
u(1− u)

)n
j
≈ Unj (1− Un+1

j ).(9b)

Now, by introducing the parameter θ ∈ [0, 1] and plugging the above finite difference

approximations into the Fisher equation, one gets

Un+1
j − Unj

∆t
= θKUn+1

j (1− Unj ) + (1− θ)KUnj (1− Un+1
j ).(10)
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After an easy calculation one can derive Un+1
j from (10) explicitly in term of Unj as

Un+1
j =

1 + s(1− θ)
1− s(θ − Unj )

Unj , θ ∈ [0, 1].

The next proposition establish conditions on the parameter s under which the prop-

erty of positivity is satisfied:

Proposition 2.1. Assume that Unj be non-negative real numbers such that 0 ≤
Unj ≤ 1.

i) If θ = 0, then (10) provides a non-negative approximation Un+1
j to solutions

of (3b) so that 0 ≤ Un+1
j ≤ 1.

ii) If 0 < θ ≤ 1, then (10) provides a non-negative approximation Un+1
j to

solutions of (3b) so that 0 ≤ Un+1
j ≤ 1+s(1−θ)

1−sθ Unj under restriction 0 < s <
1
θ .

Proof: The proof for θ = 0 is straightforward; just by taking θ = 0 in (10) and

using the fact 0 ≤ Unj ≤ 1 we get

0 ≤ Un+1
j =

1 + s

1 + sUnj
Unj =

Unj + sUnj
1 + sUnj

≤
1 + sUnj
1 + sUnj

= 1.

To prove ii), starting from 0 ≤ Unj ≤ 1 after some calculations one concludes that

1

1 + s(1− θ)
≤ 1

1− s(θ − Unj )
≤ 1

1− sθ
, 0 < θ ≤ 1.

From the last relation we immediately obtain that

0 ≤ Unj ≤ Un+1
j ≤ 1 + s(1− θ)

1− sθ
Unj , 0 < θ ≤ 1.

Therefore to have positivity of Un+1
j one needs to have 1− sθ > 0 which completes

the proof.

Let us investigate the accuracy and consistency of the propose scheme (10). By

definition, cf. [25], a finite difference approximation of a PDE is consistent if the

finite difference equation approaches the PDE as the mesh size tends to zero. To

this end, we consider the local truncation error (L.T.E.) associated with the finite

difference equation (10). Assuming that the exact solution u is sufficiently smooth

and using the notation unj = u(xj , tn) the L.T.E. can be written as

(11) L.T.E. =
un+1
j − unj

∆t
− θKun+1

j (1− unj )− (1− θ)Kunj (1− un+1
j ).

Now, by expanding each un+1
j in a Taylor series expansion about unj and substituting

in (11) followed by an rearrangement we get

L.T.E. =
(∂u
∂t

(xj , tn)−Kunj (1− unj )
)
−K∆t

∂u

∂t
(xj , tn)

(
θ − unj

)
+

∆t

2

∂2u

∂t2
(xj , tn) +K

∆t2

2

∂2u

∂t2
(xj , tn)

(
unj − θ

)
.

(12)
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Since u is the exact solution of ∂u
∂t = Ku(1− u), the first term in (12) is vanished.

Differentiation with respect to t from the exact solution we obtain ∂2u
∂t2 = K ∂u

∂t (1−
2u). Replacing ∂2u

∂t2 in the third term of (12) and combining with the second term

we finally arrive at

(13) L.T.E. = K ∆t
(1

2
− θ
) ∂u
∂t

(xj , tn) +K
∆t2

2

∂2u

∂t2
(xj , tn)

(
unj − θ

)
.

Therefore, we have proved the following proposition:

Proposition 2.2. Suppose that Unj generated by numerical scheme (10). Then, the

truncation error of this scheme satisfies

L.T.E. =


O(∆t2), θ =

1

2
,

O(∆t), θ 6= 1

2
.

E) Modified MacCormack method (MMac): The traditional MacCormack

scheme[15] is known to be explicit and second-order accurate in both space and

time, and has been proved its efficiency and accuracy to hyperbolic and parabolic

equations. The popularity of MacCormack’s explicit method is due in part to its

simplicity and ease of implementation.

The standard algorithm based on MacCormack original scheme consists of a

two-stage procedure known as the predictor-corrector method. This scheme for the

nonlinear subequation (3b) takes the form

(14) Un+1
j =

1

2
(U?j + U??j ),

where the predicted and corrected values U?j and U??j are obtained via the following

difference schemes

U?j = Unj + ∆t Fnj = Unj + sUnj
(
1− Unj

)
,(15a)

U??j = Unj + ∆t F ?j = Unj + sU?j
(
1− U?j

)
,(15b)

with Fnj = F (Unj ) and F ?j = F (U?j ). We refer to this scheme as explicit MacCor-

mack method (EMac). A similar result as Proposition 2.1 can be proved for the

two-stage scheme (15).

Proposition 2.3. Assume that Unj be non-negative real numbers such that 0 ≤
Unj ≤ 1. If 0 < s ≤ 1, then (15) provides a non-negative approximation Un+1

j to

solutions of (3b).

Proof: Since 0 ≤ Unj ≤ 1, then clearly 0 ≤ 1 − Unj ≤ 1 and U?j ≥ 0. Thus, one

can immediately prove that

1− s ≤ 1− sUnj ≤ 1.

It is an easy task to show that

1− U?j = (1− Unj )(1− sUnj ).
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This implies that under condition s ≤ 1 we have that 1−U?j ≥ 0 and consequently

U??j ≥ 0.

To show that (15) is an consistent scheme, we first combine the two stages (15a)-

(15b) into one and rewrite (15) as

Un+1
j = Unj + sUnj (1− Unj ) +

s2

2
Unj (1− Unj )

(
1− sUnj (1 + s(1− Unj ))

)
.

It is not a difficult task to show that this scheme is a consistent first-order method.

Indeed, we have

L.T.E. =
(∂u
∂t

(xj , tn)−Kunj (1− unj )
)

+
∆t

2

(∂2u

∂t2
(xj , tn)−K2unj (1− unj )

)
+O(∆t2) = O(∆t).

Although applying the explicit MacCormack scheme (15a)-(15b) to (3b) is a

positivity preserving method, but not necessarily guaranteed the boundedness, i.e.,

0 ≤ Un+1
j ≤ 1. Next, we combine the idea of the method of lagging with the

MacCormack procedure to propose a scheme that is not only a positivity preserving

method but also guarantees that 0 ≤ Un+1
j ≤ 1 if we started with 0 ≤ Unj ≤ 1.

Therefore, we modify (15a)-(15b) appropriately to obtain (MMac)

U?j = Unj + sUnj
(
1− U?j

)
,(16a)

U??j = Unj + sU?j
(
1− U??j

)
.(16b)

Solving equations (16a)-(16b) in terms of U?j and U??j respectively we find that

(17) U?j =
(1 + s)Unj
1 + sUnj

, U??j =
Unj + sU?j
1 + sU?j

.

Starting with the assumption that 0 ≤ Unj ≤ 1, we immediately conclude that

from (17) that

0 ≤ U?j ≤ 1 =⇒ 0 ≤ U??j ≤ 1 =⇒ 0 ≤ Un+1
j =

U?j + U??j
2

≤ 1.

It is remained to show that (15) is consistent. For this purpose, we add (16a)

and (16b) together and apply (14) to obtain

(18)
Un+1
j − Unj

∆t
=
K

2

(
Unj (1− U?j ) + U?j (1− U??j )

)
.

Using the facts that

1− U?j =
1− Unj
1 + sUnj

, 1− U??j =
1− Unj
1 + sU?j

, (1 + sUnj )(1 + sU?j ) = 1 + s(s+ 2)Unj ,

we can rewrite (18) as follows

Un+1
j − Unj

∆t
=
K

2
Unj (1− Unj )

( 1

1 + sUnj
+

s+ 1

1 + s(s+ 2)Unj

)
.
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Therefore, by expanding the terms in the last equation the L.T.E. for the scheme (15)

is simplified into

L.T.E. =
∂u

∂t
(xj , tn) +

∆t

2

∂2u

∂t2
(xj , tn) + . . .

− K

2
unj (1− unj )

(
1− sunj + . . .+ (s+ 1)

(
1− s(s+ 2)unj + . . .

))
=
(∂u
∂t

(xj , tn)−Kunj (1− unj )
)

+
∆t

2

(∂2u

∂t2
(xj , tn)−K2unj (1− unj )

)
= O(∆t).

Thus, the second version of MacCormack is also a first-order method.

To summarize, we consider the performance of the following schemes as combina-

tions of previously proposed numerical methods applied to the linear and nonlinear

subproblems (3a) and (3b) respectively:

1. FTICS and FTLag(θ): FTICS-FTLag(θ),

2. FTICS and EMac/MMac: FTICS-EMac/MMac,

3. CN and FTLag(θ): CN-FTLag(θ),

4. CN and EMac/MMac: CN-EMac/MMac,

5. ADE and FTLag(θ): ADE-FTLag(θ),

6. ADE and EMac/MMac: ADE-EMac/MMac.

3. Numerical experiments

In this section, we present some results of computations using the proposed

combined finite difference schemes described in the preceding sections to test their

accuracy and efficiency when applied to the Fisher equation. To measure the accu-

racy of the numerical algorithms, we compute the difference between the analytic

and numerical solutions. For this purpose, we calculate the discrete L∗-norm error,

i.e.,

E∗ := E∗(∆x,∆t) = ‖UUUh − uuuexact‖∗,

where ∗ stands for L1, L2 or L∞ norm. We also compute the relative differences in

these classical norms as

ρ∗ =
E∗

‖uuuexact‖∗
.

In order to asses the numerical scheme more qualitatively, the convergence orders

in temporal and spatial directions are defined respectively as

log2

(
E∗(∆x, 2∆t)

E∗(∆x,∆t)

)
, log2

(
E∗(2∆x,∆t)

E∗(∆x,∆t)

)
.

To test the validity and accuracy of proposed methods, two kinds of initial val-

ues according to (1c) and (1d) are considered. These two examples have non-zero

boundary conditions with exact solutions. To compare our results with methods

available in the standard literature, we also develop three different well-known or

existing computational procedures to compare our simulations against the numer-

ical results obtained by these methods. More precisely, we employ the following

numerical methods for comparison purposes
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• FTCS: Forward in time and central in space [19]

(19)
Un+1
j − Unj

∆t
= D

Unj−1 − 2Unj + Unj+1

∆x2
+ Fnj .

• FTICS: Forward in time and implicit central in space [3]

(20)
Un+1
j − Unj

∆t
= D

Un+1
j−1 − 2Un+1

j + Un+1
j+1

∆x2
+KUn+1

j (1− Unj ).

• EPPFD(θ): Explicit positivity-preserving finite difference scheme [14]

(21)

(1−θ)
Un+1
j − Unj

∆t
+θ

Un+1
j − Un−1

j

2∆t
= D

Unj−1 − (Un+1
j + Un−1

j ) + Unj+1

∆x2
+
Fnj+1 + Fnj−1

2
.

Example 3.1. We first consider the Fisher equations (1a) on the computational

domain [0, 1] with the continuous initial profile and boundary conditions given by

u0(x) =
1

(1 + ex)2
, gl(t) =

1

(1 + e−5t)2
, gr(t) =

1

(1 + e1−5t)2
,

as considered in [3, 4]. The diffusion coefficient is D = 1.0, K = 6.0. The analytical

solution of the Fisher equation in this case takes the form

u(x, t) =
1

(1 + ex−5t)2
.

The simulation results for this example can be found in Table 1-2 and in Fig. 2-

3 for different values of ∆x and ∆t and final time T . In Table 1, we summa-

rize the numerical results at T = 0.01 obtained by the sequential splitting pro-

cedure (4) using ∆t = 0.001 for a different choices of the number of spatial grid

points M = 25, 50, 100, and 200. In this Table, we compare the performance of

different schemes ADE/CN/FTICS-FTLag(θ) for special values of θ = 0, 1
2 , 1, and

ADE/CN/FTICS-EMac/MMac in the L2 norm. The corresponding results based

on the Strang splitting procedure (5) are reported in Table 2. Note that in the ADE

we utilize the second version (8a)-(8b) which is based on the averaging.

It can be seen from Table 1 that among numerical methods based on first-order

splitting strategy, the performance of the second class CN-FTLag(θ)/EMac/MMac

is superior compared to two other classes i.e., ADE-FTLag(θ)/EMac/MMac and

FTICS-FTLag(θ)/EMac/MMac. In each class, almost the same accuracy is achieved

for all schemes in the class and a more closely result is obtained when using

FTLag( 1
2 ) and EMac for approximating the nonlinear part (3b). In the scheme

FTLag(θ), we only used three particular cases θ = 0, 1
2 , 1. For these values of θ,

the numerical experiments in Table 1 show that choosing various ∆x has a direct

influence on the performance. For instance, for θ = 1 the smaller errors are ob-

tained correspond to M = 25, 50 while for θ = 0 the same behaviour observed with

M = 100, 200. To see whether there exits a special value of θ that yields the best

performance of the FTLag(θ), we examine the behaviour of this scheme for different

values of θ ∈ [0, 1]. Dividing the interval [0, 1] into 100 subintervals with θi = i/100
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Method M = 25 M = 50 M = 100 M = 200

ADE-FTLag(0) 7.6871E-4 7.1868E-4 7.1625E-4 8.1713E-4

ADE-FTLag( 1
2 ) 7.7665E-4 7.2748E-4 7.2632E-4 8.2883E-4

ADE-FTLag(1) 7.8513E-4 7.3682E-4 7.3685E-4 8.4078E-4

ADE-EMac 7.7663E-4 7.2746E-4 7.2630E-4 8.2881E-4

ADE-MMac 7.7497E-4 7.2564E-4 7.2431E-4 8.2671E-4

CN-FTLag(0) 4.8658E-4 5.4367E-4 3.8962E-4 3.3022E-4

CN-FTLag( 1
2 ) 4.8064E-4 5.3969E-4 3.9014E-4 3.3692E-4

CN-FTLag(1) 4.7555E-4 5.3652E-4 3.9185E-4 3.4485E-4

CN-EMac 4.8065E-4 5.3969E-4 3.9014E-4 3.3690E-4

CN-MMac 4.8220E-4 5.4089E-4 3.9043E-4 3.3578E-4

FTICS-FTLag(0) 6.9492E-4 6.4291E-4 4.6394E-4 4.6394E-4

FTICS-FTLag( 1
2 ) 6.9159E-4 6.4141E-4 4.6773E-4 4.7135E-4

FTICS-FTLag(1) 6.8889E-4 6.4061E-4 4.7249E-4 4.8033E-4

FTICS-EMac 6.9159E-4 6.4141E-4 4.6772E-4 4.7133E-4

FTICS-MMac 6.9268E-4 6.4215E-4 4.6732E-4 4.6986E-4

Table 1. Comparison of L2 error norms for different finite differ-

ence schemes based on sequential splitting for Example 3.1 with

D = 1.0,K = 6.0,∆t = 0.001 when ∆x = 0.04, 0.02, 0.01, 0.005

evaluated at time T = 0.01.

for i = 0, . . . , 100, the behaviour of different methods ADE/CN/FTICS-FTLag(θi)

measured in the L2 norm. The results correspond to CN-FTLag(θi) are visualized

in Fig. 1 for various M = 25, 50, 100, 200 with the same values of ∆t, T as above.

The same behaviour for the scheme FTICS-FTLag(θi) is observed, which also seen

from the Table 1. However, for the method ADE-FTLag(θi) the story is different

so that for all values of M the error is always an increasing function of θ.

As a consequence, among all proposed schemes based on the sequential splitting,

the performance of CN-FTLag(0) is superior for a moderate problem size and hence

used for the next computations. Fig. 2 contains two graphs. The right one illustrates

the numerical solutions (dashed, dotted, and dashdotted lines) along with the exact

solutions (solid lines) for example 3.1 generated using CN-FTLag(0) scheme from

t = 0 to T = 1 with ∆t = 0.001. These solutions are depicted at time steps

∆t, 50∆t, . . . , T . While on the left plot, we investigate the behaviour of errors with

respect to time in three different norms L1, L2, and L∞. It can be seen from Fig. 2

that the numerical solutions are very close to the exact ones.

Let us now consider the performance of numerical schemes discussed in Table 1

but with a different based splitting procedure i.e. Strang splitting (5). With the
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Figure 1. L2 error norm of CN-FTLag(θ) for Example 3.1 with

different M = 25, 50, 100, 200 from left to right versus the parame-

ter θ.
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Figure 2. L1, L2, L∞ error norms of CN-FTLag(0) at time t = 1

(left), numerical and exact (solid lines) solutions at different times

t = s∆t, for s = 1, 50, . . . , 1000 (right).

same problem configurations as for the sequential splitting in Table 1, we report

the L2 error norms for the Strang splitting at time T = 0.01 in Table 2. The exper-

imental results in Table 2 reflect that contrary to the sequential splitting, the best

accurate numerical schemes in terms of smallest magnitude of L2 errors based on

the Strang splitting is the ADE-FTLag(θ)/EMac/MMac type methods. Again, the

results obtained show that in each class the ADE/CN/FTICS-FTLag( 1
2 ) schemes

and the ADE/CN/FTICS-EMac techniques produced errors of similar magnitude.

In the scheme ADE-FTLag(θ), we found that there exists a particular value of

θ ∈ [0, 1] that yields the best performance. We take M = 25, 50, 100, 200 and

investigate the performance of this scheme as a function of the parameter θ. The

results are depicted in Fig. 3. In all plots, we take ∆t = 0.001, T = 0.01. Looking
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Method M = 25 M = 50 M = 100 M = 200

ADE-FTLag(0) 3.1773E-4 3.2354E-4 3.2444E-4 3.3735E-4

ADE-FTLag( 1
2 ) 3.2607E-4 3.3189E-4 3.3290E-4 3.4628E-4

ADE-FTLag(1) 3.3558E-4 3.4139E-4 3.4244E-4 3.5609E-4

ADE-EMac 3.2605E-4 3.3188E-4 3.3288E-4 3.4626E-4

ADE-MMac 3.2429E-4 3.3011E-4 3.3112E-4 3.4450E-4

CN-FTLag(0) 5.8408E-4 7.4740E-4 5.2231E-4 3.1648E-4

CN-FTLag( 1
2 ) 5.7784E-4 7.4243E-4 5.1923E-4 3.1707E-4

CN-FTLag(1) 5.7229E-4 7.3801E-4 5.1699E-4 3.1908E-4

CN-EMac 5.7785E-4 7.4244E-4 5.1923E-4 3.1707E-4

CN-MMac 5.7944E-4 7.4379E-4 5.2019E-4 3.1718E-4

FTICS-FTLag(0) 6.5695E-4 6.9476E-4 4.4671E-4 2.5475E-4

FTICS-FTLag( 1
2 ) 6.5171E-4 6.9037E-4 4.4462E-4 2.5778E-4

FTICS-FTLag(1) 6.4710E-4 6.8659E-4 4.4354E-4 2.6252E-4

FTICS-EMac 6.5171E-4 6.9037E-4 4.4462E-4 2.5777E-4

FTICS-MMac 6.5315E-4 6.9164E-4 4.4541E-4 2.5745E-4

Table 2. Comparison of L2 error norms for different finite dif-

ference schemes based on Strang splitting for Example 3.1 with

D = 1.0,K = 6.0,∆t = 0.001 when ∆x = 0.04, 0.02, 0.01, 0.005

evaluated at time T = 0.01.
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Figure 3. L2 error norm of ADE-FTLag(θ) for Example 3.1

with different M = 25, 50, 100, 200 from left to right versus the

parameter θ.
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at Fig. 3 reveals that the special θ = 0 gives the most accurate results in the ADE-

FTLag(θ) based on the Strang splitting. This conclusion can also be deduced from

Table 2. On the other hand, our experiments for CN/FTICS-FTLag(θ) (and also

are visible in Table 2) show that these two methods are decreasing functions of θ

for M = 25, 50, 100 while by selecting M = 200 they are increased in terms of θ.

Example 3.2. In the second and last test problem, we consider the Fisher equation

with D = 1.0, K = 2.0. It is known that this equation admits the following travelling

wave solution

u(x, t) =
1(

1 + 4 exp(
√

K
6 x−

5K
6 t)

)2 , x ∈ R,

which is taken from [14]. The initial condition is obtained by setting t = 0 and

satisfies u0(x) ∈ [0, 1]. In this case, we take the boundary conditions as

u(−20, t) = 1, u(40, t) = 0, t > 0,

to ensure that there enough space for wave to propagate. For the simulations, we

set ∆x = 1 or M = 60, ∆t = 0.1, and the final time is T = 8 for computations.

To justify our numerical results, we compare them with the results of numeri-

cal procedures described in (19)- (21). Compared with other numerical methods

in the class of finite difference schemes, numerical study given in [14] is more sat-

isfactory with regard to its accuracy and stability. The performance of all three

classes of finite difference schemes based on both the sequential and Strang split-

ting procedures (4) and (5) are carried out. Due to the large number of schemes

obtained by specifying θ in the FTLag(θ) and to save space, we only report the

results correspond to the values of this parameter that have smallest errors.

Table 3 presents the relative differences ρ1, ρ2, ρ∞ using the three norms L1, L2,

and L∞ introduced in the beginning of this subsection. These results are obtained

at time T = 8 and all are based on the sequential as well as the Strang splitting

procedures (4) and (5). The results in Table 3 show that, indeed, a slightly ac-

curate result is obtained if one uses the Starng splitting, even though it is more

time-consuming instead. Among others, the schemes ADE/CN/FTICS-FTLag(θ)

for the special values of parameter θ give the best outcomes. For these schemes the

smallest errors are corresponded to the values of θ equal to 0.25/0.31, 0.33/0.35,

and 0.31/0.34 respectively for the sequential and Strang splitting procedures. More-

over, the computational results achieved by our proposed method are more accurate

approximations to the numerical results obtained through schemes (19)-(20).

Next, for fixed values ∆t = 0.1 and ∆x = 1 we plot the numerical solutions

obtained by the schemes ADE/CN/FTICS-FTLag(θ) as the most accurate methods

in Table 3 and compared them with the existing methods (19)-(21) at two different

times t = 4 and t = 8 in Fig. 4. The initial profile at time t = 0 as well as the
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Method Sequential splitting Strang splitting

ρ1 ρ2 ρ∞ ρ1 ρ2 ρ∞

ADE-FTLag(0.31/0.34) 9.2744E-2 2.5481E-2 9.9985E-3 9.6112E-2 2.7106E-2 1.1313E-2

ADE-EMac 4.7657E-1 1.6170E-1 8.6090E-2 3.6783E-1 1.2556E-1 6.2756E-2

ADE-MMac 3.3216E-1 1.1778E-1 6.1013E-2 2.5401E-1 8.6673E-2 4.6264E-2

CN-FTLag(0.33/0.35) 7.8178E-2 2.1438E-2 8.5299E-2 8.9857E-2 2.4865E-2 1.0584E-2

CN-EMac 4.1294E-1 1.4031E-1 7.0007E-2 3.5225E-1 1.2031E-1 6.0147E-2

CN-MMac 2.7727E-1 9.7687E-2 5.0871E-2 2.4191E-1 8.2061E-2 4.3951E-2

FTICS-FTLag(0.25/0.31) 3.3911E-3 5.9386E-3 1.4432E-2 2.9777E-3 5.2524E-3 1.3563E-2

FTICS-EMac 1.7160E-2 3.7092E-2 1.1368E-1 1.2262E-2 2.6680E-2 8.1989E-2

FTICS-MMac 1.2992E-2 2.9483E-2 9.2383E-2 8.7594E-3 1.9800E-2 6.3429E-2

ρ1 ρ2 ρ∞

FTCS (19) 5.1371E-2 1.1532E-1 3.5534E-2

FTICS (20) 1.1335E-1 2.2534E-1 6.1894E-1

EPPFD(0.4) (21) 7.5457E-1 1.5046E-1 4.2492E-1

Table 3. Comparison of relative L1/L2/L∞ error norms for differ-

ent finite difference schemes based on sequential/Strang splitting

for Example 3.2 with D = 1.0,K = 2.0,∆t = 0.1, and ∆x = 1

evaluated at time T = 8.

corresponding exact solutions are also represented in Fig. 4. All plots are obtained

using the sequential slitting procedure. In all plots, the exact solutions are indicated

by solid lines while the numerical counterpart are depicted by coloured curves. In

order to see the behaviour of numerical solutions more precisely, we magnify these

solutions at time t = 8 in Fig. 4.

It can be seen from Fig. 4 and in particular at the magnification box that the

numerical results are found by FTICS-FTLag(0.25), CN-FTLag(0.33), and ADE-

FTLag(0.31) schemes are very close together and hardly distinguishable from the

analytical solutions. On the other hand, the performance of FTCS, FTICS, and

EPPFD(0.4) are very poor in particular at the final time t = 8. Therefore, in the

following we will focus on the schemes ADE/CN/FTICS-FTLag(θ).

In the next simulation, we investigate the impact of refining the spatial mesh size

and see the behaviour of L∞ errors in the methods ADE/CN/FTICS-FTLag(θ)

when applied to Example 3.2. We fix the time step size ∆t = 0.01 and employ

different mesh points M = 2s, s = 2, 3, . . . , 7. We first run the ADE/CN/FTICS-

FTLag(θ) with the parameter θ respectively equal to 0.34, 0.31, 0.25 as utilized in

Table 3. Although using these values of θ in the corresponding methods yields an

order of accuracy about 2.5−3, but our experiments show that the best convergence

rates or superconvergence rates are achieved when the parameter θ in these schemes

are chosen as θA = 0.1625, θC = 0.16875, and θF = 0.0875 respectively. These

results evaluated at time t = 8 are reported in Fig. 5, left table. The snapshots
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Figure 4. Numerical solutions of various finite difference schemes

for Example 3.2 with ∆t = 0.1 and ∆x = 1 evaluated at times

t = 5, 10. The magnification of solutions at time t = 8 is plotted

in the box. The exact solutions are displayed by thick lines.

of the corresponding convergence rates are displayed in the same figure, right plot.

Note that all computations are based on the sequential splitting procedure. The

numerical experiments shown in Fig. 5 indicate that achieving an order 4.47 of

accuracy is possible, if one uses the CN-FTLag(θC) method. More precisely, the

corresponding spatial order of convergence for the ADE-FTLag(θA) and FTICS-

FTLag(θF ) are about 4.40 and 4.05 respectively.

M ADE-FTLag CN-FTLag FTICS-FTLag

(θA) (θC) (θF )

22 9.8603E-1 9.8604E-1 9.8592E-1

23 8.4306E-1 8.4326E-1 8.4132E-1

24 5.6286E-1 5.6313E-1 5.6132E-1

25 1.9447E-1 1.9477E-1 1.9431E-1

26 4.7765E-2 4.7976E-2 4.8143E-2

27 2.2617E-3 2.1509E-3 2.9048E-3
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Figure 5. L∞-errors in ADE/CN/FTICS-FTLag(θA/θC/θF ) for

Example 3.2 (left) and the corresponding convergence rates (right)

at time t = 8 for ∆t = 0.01 for different M .
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Finally, for Example 3.2 we examine the influence of refining the time step size

on the L∞ errors while the number of spatial grid points M is fixed. To end that,

we take ∆x = 1 and consider various ∆t = 2−s for s = 1, 2, . . . , 5. Fig. 6, left plot,

shows the measurement of L∞ errors in the schemes ADE/CN/FTICS-FTLag(0)

evaluated at the final time t = 8. The corresponding convergence rates are reported

in the left table. It can be clearly from Fig. 6 seen that an achievement of order

of accuracy between 2 and 3 is possible if one utilizes the finite difference schemes

ADE/CN/FTICS-FTLag(0).
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Figure 6. L∞-errors in ADE/CN/FTICS-FTLag(0) for Exam-

ple 3.2 (left) and the corresponding convergence rates (right) with

∆x = 1 evaluated at time T = 8 for different ∆t = 2−s, s =

1, 2, 3, 4, 5.

4. Conclusions

In this paper, various numerical methods are proposed for the one-dimensional

reaction-diffusion equations and in particular the nonlinear Fisher equation arising

from modelling many real-world phenomena. To be more precise, several simple

but sufficiently accurate finite difference schemes based upon operator splitting

strategy are applied to this model problem. All methods are consistent of order

O(∆tα + ∆x2), for α = 1 or 2. The discussed computational procedures solved our

model quite satisfactorily compared to the existing and standard finite difference

algorithms.
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[10] T. Jahnke, C. Lubich, Error bounds for exponential operator splittings, BIT, Vol. 40, 735-744

(2000).

[11] T. Kawahara, M. Tanaka, Interactions of travelling fronts: an exact solution of a nonlinear

diffusion equation, Phys. Lett. A, Vol. 97, Number 8, 311-314 (1983).

[12] A. Kolmogorov, N. Petrovsky, and S. Piscounov, Étude de l’équations de la diffusion avec
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