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Abstract. Taking into account the notion of BL-general fuzzy automaton, in

the present study we define the notation of BL-intuitionistic general L-fuzzy

automaton and I-bisimulation for BL-intuitionistic general L-fuzzy automaton.

Then for a given BL-intuitionistic general L-fuzzy automaton, we obtain the

greatest I-bisimulation. According to this notion, we give the structure of quo-

tient BL-intuitionistic general L-fuzzy automaton. Fortunately, this quotient is

the minimal BL-intuitionistic general L-fuzzy automaton. In addition, in this

study, we show that if there is an I-bisimulation between two BL-intuitionistic

general L-fuzzy automata, then they have the same behavior. Furthermore, we

give an algorithm which determines the I-bisimulation between any two BL-

intuitionistic general L-fuzzy automata. To clarify the notions and the results

obtained in this paper, we have submitted some examples as well.
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1. Introduction

Fuzzy automata were introduced by W. G. Wee [42] in 1967 and Santos [36] in

1968. E.T. Lee and L.A. Zadeh [28] in 1969 gave the concept of fuzzy finite state

automata. Fuzzy finite automata have offered many applications in several fields

of science, for example in learning system, pattern recognition, neural networks,

and database theory [20, 21, 30, 31, 33, 34, 43]. By adding non-membership value,

Atanassov in 1986 [3] has extended the notion of fuzzy set to the intuitionistic fuzzy

set (IFS), which may express more accurate and flexible information as compared

with fuzzy sets. Intuitionistic fuzzy set (IFS) theory has many applications in several

subjects, see [11, 12, 13, 14, 17, 24, 26, 27, 41, 23]. Recently, it has been found that

it is highly useful to deal with vagueness. Gua and Buehrer [18] introduced the

concept of vague sets, but Burillo [5] showed that the concept of vague sets was

coincided with that of IFSs. These studies established a good foundation for the

development of IFSs. These studies have established a good foundation for the

development of IFSs, introducing the coincidence of IFSs with interval value fuzzy

sets (IVFSs) [7].

Using the notion of intuitionistic fuzzy sets, W. L. Jun [25] introduced the notion

of intuitionistic fuzzy finite state machines as a generalization of fuzzy finite state

machines. According to the studies [25, 26], Zhang and Li [45] discussed intuition-

istic fuzzy finite automata. K. Atanassov and S. Stoeva generalized the concept of

IFS to intuitionistic L-fuzzy sets [4], where L is an appropriate lattice. A. Tepavce-

vic and T. Gerstenkorn gave a new definition of lattice-valued intuitionistic fuzzy

sets in [19]. After that, on the basis of lattice-valued intuitionistic fuzzy sets, Yang

et al. [44] presented the concepts of lattice-valued intuitionistic fuzzy finite state

machines.

In 2004, M. Doostfatemeh and S.C. Kremer [15] extended the notion of fuzzy

automata and gave the notion of general fuzzy automata. Their key motivation for

introducing the notion general fuzzy automata was the insufficiency of the current

literature to handle the applications which rely on fuzzy automata as a modeling

tool, assigning membership values to active states of a fuzzy automaton, in order

to resolve the multi-membership. Another important insufficiency of the current

literature is the lack of methodologies which enable us to define and analyze the

continuous operation of fuzzy automata. In 2014, M. Shamsizadeh and M. M.
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Zahedi [37] gave the notion of max-min intuitionistic general fuzzy automata. In

order to provide a general framework for formalizing statements of fuzzy nature,

the concept of ’Basic Logic’ (BL) has been suggested by Hájek [22]. Formulas of

propositional BL may be interpreted by means of BL-algebras [40]. In 2012, Kh.

Abolpour and M. M. Zahedi [1] extended the notion of general fuzzy automata and

gave the notion of BL-general fuzzy automata (BL-GFA).

Bisimulations have been introduced by Milner [29] and Park [32]. Bisimulation

has been widely used in many areas of computer science to model equivalence be-

tween various systems, and to reduce the number of states of these systems. The

approach to bisimulations, proposed in [8, 9] for fuzzy automata, has been applied

in ordinary nondeterministic automata and in weighted automata [10]. Today, they

are employed in many areas of computer science, such as functional languages,

object-oriented languages, databases, compiler optimizations, and verification tools

[2, 6, 16, 35].

In 2015, M. Shamsizadeh and M.M Zahedi [39] defined the notion of bisimulation

between two BL-general fuzzy automata. Taking into account the notions of the

intuitionistic general fuzzy automaton, BL-general fuzzy automaton and bisimula-

tion for BL-general fuzzy automaton, in the present study we define the notions

BL-intuitionistic general L-fuzzy automaton and I-bisimulation between two BL-

intuitionistic general L-fuzzy automata. This study mainly aims at obtaining the

greatest I-bisimulation for a BL-intuitionistic general L-fuzzy automaton. Also, for

a given BL-intuitionistic general L-fuzzy automaton, we realize the quotient BL-

intuitionistic general L-fuzzy automaton such that this quotient is the minimal BL-

intuitionistic general L-fuzzy automaton. Moreover, the authors show that if there

is an I-bisimulation between two BL-intuitionistic general L-fuzzy automata, then

there is a morphism between them. Finally, we give an algorithm, which determines

the I-bisimulation between any two BL-intuitionistic general L-fuzzy automata and

in the following we obtain its time complexity. Using the concept of IFS, all results

of this study should be held for IVFSs, vague sets, and fuzzy sets.

2. Preliminaries

We review some definitions which are needed in the forthcoming sections.
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Definition 1. [3] Let A in E is given. An intuitionistic fuzzy set (IFS) A+ on E

is an object of the following form

A+ = {
〈
x, µA(x), νA(x)

〉∣∣x ∈ E},
where the functions µA : E → [0, 1] and νA : E → [0, 1] define the value of mem-

bership and the value of non-membership of element x in E to the set A, which is

a subset of E, respectively. Also, for every x ∈ E, 0 ≤ µA(x) + νA(x) ≤ 1.

Definition 2. [4] Let X be a nonempty set and L be a complete lattice with an

involutive order reversing unary operation N : L → L. An intuitionistic L-fuzzy

set (ILFS) is an object of the form A = {(x, µ(x), ν(x))|x ∈ E}, where µ and ν are

functions µ : E → L, ν : E → L in which for all x ∈ X, µ(x) ≤ N(ν(x)).

In what follows in this paper, L = (L,≤L, T, S, 0, 1) always denotes a bounded

complete lattice, where endowed with an Lt-norm T , an Lt-conorm S, the least

element 0 and the greatest element 1, also with an involutive order reversing unary

operation N : L→ L,α, β ∈ L and α ≤ N(β).

Definition 3. [38] An intuitionistic general L-fuzzy automaton (IGLFA) F̃ is a

ten-tuple machine denoted by F̃ = (Q,X, R̃, Z, δ̃, ω, F1, F2), where

• Q is a set of states,

• X is a finite set of input symbols, X = {a1, a2, ..., am},
• R̃ is the ILFS of start states, R̃ = {(q, µt0(q), νt0(q))

∣∣q ∈ R}, where R is a

finite subset of Q,

• Z is a finite set of output symbols, Z = {b1, b2, ..., bl},
• δ̃ : (Q× L× L)×X ×Q→ L× L is the augmented transition function,

• ω : Q→ Z is the output function,

• F1 = (FT1 , F
S
1 ), where FT1 : L × L → L is a Lt-norm which is called the

membership assignment function.

Furthermore, FS1 : L × L → L is a Lt-conorm, where is the dual of FT1

respect to involutive negation and it is called non-membership assignment

function.

• F2 = (FTS2 , FST2 ), where FST2 : L∗ → L is a Lt-norm and is called the

multi-non-membership function.

Also, FTS2 : L∗ → L is a Lt-conorm, where it is the dual of FST3 respect

to the involutive negation and it is called the multi-membership function.
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Let Qact(ti) be the set of all active states at time ti for all i ≥ 0. We have Qact(t0) =

R̃ and Qact(ti) = {(q, µti(q), νti(q))
∣∣∃(q′, µti−1(q′), νti−1(q′)) ∈ Qact(ti−1),∃a ∈

X, δ(q′, a, q) ∈ ∆, µti(q) >L 0} for all positive integer i.

Since Qact(ti) is an ILFS, to show that a state q belongs to Qact(ti), we write

q ∈ Domain(Qact(ti)) and for simplicity of notation, we denote it by q ∈ Qact(ti).

Definition 4. [22] A BL-algebra is algebra (L,∧,∨, ∗,→, 0, 1) with four binary

operations ∧,∨, ∗,→ and two constants 0, 1 such that: (i) (L,∧,∨, 0, 1) is a bounded

lattice, (ii) (L, ∗, 1) is a commutative monoid, (iii) ∗ and → form an adjoint pair,

i.e., x ≤ y → z if and only if x ∗ y ≤ z for all x, y, z ∈ L, (iv) x ∧ y = x ∗ (x → y),

(v) (x→ y) ∨ (y → x) = 1.

Definition 5. [39] Let F̃ = (Q,X, R̃, Z, δ̃, ω, F1, F2) be a general fuzzy automaton

and Q̄ = (P (Q),⊆,∩,∪, ∅, Q) be a BL-algebra in Example 2 of [39]. Then the

BL-general fuzzy automaton (BL-GFA) as a ten-tuple machine denoted by F̃l =

(Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2), where

(i) Q̄ = P (Q), where Q is a finite set and Q̄ is the powerset of Q,

(ii) X is a finite set of input symbols,

(iii) R̃ is the set of fuzzy start states,

(iv) Z̄ is a finite set of output symbols, where Z̄ is the power set of Z,

(v) ωl : Q̄→ Z̄ is the output function defined by: ωl(Qi) = {ω(q)
∣∣q ∈ Qi},

(vi) δl : Q̄×X × Q̄→ L is the transition function defined by: δl({p}, a, {q}) =

δ(p, a, q) and δl(Qi, a,Qj) = ∨qi∈Qi,qj∈Qj
δ(qi, a, qj), for all Qi, Qj ∈ P (Q)

and a ∈ X,

(vii) fl : Q̄×X → Q̄ is the next state map defined by: fl(Qi, a) = ∪qi∈Qi{qj
∣∣δ(qi, a,

qj) ∈ ∆},
(viii) δ̃l : (Q̄ × L) × X × Q̄ → L is the augmented transition function defined

δ̃l((Qi, µ
t(Qi)), a,Qj) = F1(µt(Qi), δl(Qi, a,Qj)),

(ix) F1 : L× L→ L is called membership assignment function,

(x) F2 : L∗ → L is called multi-membership resolution function.

Definition 6. [1] Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2) be

a BL-GFA. The run map of the BL-GFA F̃l is the map ρ : X∗ → Q̄ is defined by

the following induction: ρ(Λ) = {q0} and ρ(a1a2...an) = Qin , ρ(a1a2...anan+1) =

fl(Qin , an+1), where (Qin , µ
t0+n(Qin)) ∈ Qact(a1a2...an), for every a1, ..., an ∈ X.
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The map β = ωl ◦ ρ : X∗ → Z̄ is the behavior of F̃l.

3. Intuitionistic BL-general L-fuzzy automata

This section is an attempt to introduce the concepts of BL-intuitionistic L-fuzzy

automaton and I-bisimulation between two BL-intuitionistic L-fuzzy automata. We

obtain the greatest I-bisimulation for the BL-intuitionistic general L-fuzzy automa-

ton. Finally by taking into consideration the greatest I-bisimulation, we give the

minimal BL-intuitionistic general L-fuzzy automaton.

Definition 7. Let F̃ = (Q,X, R̃, Z, δ̃, ω, F1, F2) be an intuitionistic general L-fuzzy

automaton (IGLFA) and Q̄ = (P (Q),⊆,∩,∪, ∅, Q) be a BL-algebra as in Example 1

of [39]. We define the BL-intuitionistic general L-fuzzy automaton (BL-IGLFA) as a

ten-tuple machine denoted by F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0}, νt0({q0})), Z̄, ωl, δl,
fl, δ̃l, F1, F2), where

(i) Q̄ = P (Q), where Q is a finite set and Q̄ is the power set of Q,

(ii) X is a finite set of input symbols,

(iii) R̃ is the set of fuzzy start states,

(iv) Z̄ is a finite set of output symbols, where Z̄ is the power set of Z,

(v) ωl : Q̄→ Z̄ is the output function defined by: ωl(Qi) = {ω(q)
∣∣q ∈ Qi},

(vi) δl : Q̄×X × Q̄→ L×L is the intuitionistic transition function defined by:

δl({p}, a, {q}) = (δlµ({p}, a, {q}), δlν({p}, a, {q})) = (δµ(p, a, q), δν(p, a, q)),

also, we have δl(Qi, a,Qj) = (δlµ(Qi, a,Qj), δlν(Qi, a,Qj)), where

δlµ(Qi, a,Qj) = ∨{δlµ(qi, a, qj)|qi ∈ Qi, qj ∈ Qj},

and

δlν(Qi, a,Qj) = ∧{δlν(qi, a, qj)|qi ∈ Qi, qj ∈ Qj},

for every Qi, Qj ∈ Q̄ and a ∈ X,

(vii) fl : Q̄×X → Q̄ is the next state map defined by: fl(Qi, a) = ∪qi∈Qi
{qj
∣∣δ(qi, a,

qj) ∈ ∆},
(viii) δ̃l : (Q̄× L× L)×X × Q̄→ L× L is the augmented transition function,

(ix) F1 = (FT1 , F
S
1 ), where FT1 : L × L → L is a L-tnorm which is called

membership assignment function. Furthermore, FS1 : L × L → L is a L-

tconorm, where is the dual of FT1 respect to the involutive negation, which
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is called non-membership assignment function. The process that takes place

upon the transition from the state Qi to Qj on an input a is given by:

δ̃l((Qi, µ
t(Qi), ν

t(Qi)), a,Qj) = (δ̃lµ((Qi, µ
t(Qi), ν

t(Qi)), a,Qj),

δ̃lν((Qi, µ
t(Qi), ν

t(Qi)), a,Qj)),

where δ̃lµ((Qi, µ
t(Qi), ν

t(Qi)), a,Qj) = FT1 (µt(Qi), δlµ(Qi, a,Qj)), and

δ̃lν((Qi, µ
t(Qi), ν

t(Qi)), a,Qj) = FS1 (νt(Qi), δlν(Qi, a,Qj)),

(x) F2 = (FTS2 , FST2 ), where FST2 : L∗ → L is a L-tnorm which is called the

multi-non-membership function. Also, FTS2 : L∗ → L is a L-tconorm, where

it is the dual of FST3 respect to the involutive negation, it is called multi-

membership function.

Example 1. Let (L,∧,∨, 0, 1) be a complete lattice as in Figure 1, where N(0) =

1, N(1) = 0, N(a) = d,N(d) = a,N(b) = c,N(c) = b, and N(f) = e,N(e) = f .

Consider the intuitionistic general L-fuzzy automaton F̃i = (Qi, X, δ̃
i, R̃i, Z, ωi, F1, F2),

Figure 1. The complete lattice L of Example 3

i = 1, 2, whereQ1 = {q1, q2}, Q2 = {p1, p2}, R̃1 = {(q1, 1, 0)}, R̃2 = {(p1, 1, 0)}, X =
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{σ}, Z = {z1, z2}, ω1(q1) = ω1(q2) = ω2(p1) = ω2(p2) = z2 and

δ1(q1, σ, q1) = (a, b), δ1(q2, σ, q1) = (b, a),

δ1(q1, σ, q2) = (c, a), δ1(q2, σ, q2) = (d, a),

δ2(p1, σ, p1) = (a, b), δ2(p2, σ, p1) = (b, a),

δ2(p1, σ, p2) = (c, a), δ2(p2, σ, p2) = (c, a).

By considering Definition 7, we have BL-IGLFAs F̃li, i = 1, 2 as follows: F̃li =

(Q̄i, X, R̃i, Z̄, ωli, δ
li, fli,

δ̃li, F1, F2), i = 1, 2, where Q̄1 = {∅, {q1}, {q2}, {q1, q2}}, Q̄2 = {∅, {p1}, {p2}, {p1, p2}},
R̃1 = ({q1}, 1, 0), R̃2 = ({p1}, 1, 0), Z̄ = {∅, {z1}, {z2}, {z1, z2}}, ωl1({q1}) = ωl1({q2})
= ωl1({q1, q2}) = ωl2({p1}) = ωl2({p2}) = ωl2({p1, p2}) = {z2}, fl1({q1}, σ) =

fl1({q2}, σ) = fl1({q1, q2}, σ) = {q1, q2}, fl2({p1}, σ) = fl2({p2}, σ) = fl2({p1, p2}, σ) =

{p1, p2} and

δl1({q1}, σ, {q1}) = (a, b), δl2({p1}, σ, {p1}) = (a, b),

δl1({q1}, σ, {q2}) = (c, a), δl2({p1}, σ, {p2}) = (c, a),

δl1({q1}, σ, {q1, q2}) = (c, a), δl2({p1}, σ, {p1, p2}) = (c, a),

δl1({q2}, σ, {q1}) = (b, a), δl2({p2}, σ, {p1}) = (b, a),

δl1({q2}, σ, {q2}) = (d, a), δl2({p2}, σ, {p2}) = (c, a),

δl1({q2}, σ, {q1, q2}) = (d, a), δl2({p2}, σ, {p1, p2}) = (d, a),

δl1({q1, q2}, σ, {q1}) = (b, a), δl2({p1, p2}, σ, {p1}) = (b, a),

δl1({q1, q2}, σ, {q2}) = (d, a), δl2({p1, p2}, σ, {p2}) = (c, a),

δl1({q1, q2}, σ, {q1, q2}) = (d, a), δl2({p1, p2}, σ, {p1, p2}) = (d, a).

Definition 8. Let (Q̄, fl, δl) and (Q̄′, f ′l , δ
′
l). Then g : (Q̄, fl, δl) → (Q̄′, f ′l , δ

′
l) is

called an I-homomorphism with threshold
τ1
τ2

if there is a map of Q̄ into Q̄′ such

that for every Qi, Qj ∈ Q̄ the following hold:

(i) g ◦ fl = f ′l ◦ (g × idX),

(ii) τ1 ≤ δlµ(fl(Qi, a1), a2, Qj) ≤ τ2 if and only if τ1 ≤ δ′lµ(g(fl(Qi, a1)), a2, g(Qj))

≤ τ2,

(iii) if δlν(fl(Qi, a1), a2, Qj) ≤ 1− τ2, then δ′lν(g(fl(Qi, a1)), a2, g(Qj)) ≤ 1− τ2,
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(iv) if δ′lν(g(fl(Qi, a1)), a2, g(Qj)) ≤ 1− τ2, then δlν(fl(Q
′
i, a1), a2, Q

′
j) ≤ 1− τ2,

for some Q′i, Q
′
j ∈ Q̄ such that g(Qi) = g(Q′i) and g(Qj) = g(Q′j).

We say that g : (Q̄, fl, δl) → (Q̄′, f ′l , δ
′
l) is an I-homomorphism if and only if

g : (Q̄, fl, δl)→ (Q̄′, f ′l , δ
′
l) is an I-homomorphism with threshold

0

1
.

Definition 9. Let F̃li = (Q̄i, X, R̃i = ({q0i}, µt0({q0i}), νt0({q0i})), Z̄, ωli, δli, fli, δ̃li,
F1, F2), i = 1, 2 be two BL-IGLFAs. We say that (g, gout) : F̃l → F̃ ′l is an I-

morphism with threshold
τ1
τ2

if and only if the following hold:

(i) g({q0}) = {q′0},
(ii) g : (Q̄, fl, δl)→ (Q̄′, f ′l , δ

′
l) is an I-homomorphism with threshold

τ1
τ2

,

(iii) gout ◦ ωl = ω′l ◦ g.

We say that (g, gout) : F̃l → F̃ ′l is an I-morphism if and only if (g, gout) : F̃l → F̃ ′l

is an I-morphism with threshold
0

1
.

Theorem 1. For every I-morphism (g, gout) : F̃l → F̃ ′l with threshold τ1
τ2

of BL-

IGLFAs,

(i) the run map ρ of F̃l is related to the run map ρ′ of F̃ ′l by ρ′ = g ◦ ρ,
(ii) the behavior β of F̃l is related to the behavior of F̃ ′l by β′ = gout ◦ β.

Proof. Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0}, νt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2) and

F̃ ′l = (Q̄′, X, R̃′ = ({q′0}, µt0({q′0}, νt0({q′0})), Z̄, ω′l, δ′l, f ′l , δ̃′l, F1, F2) be two BL-

IGLFAs. Let ρ and ρ′ be the run relation of F̃l and F̃ ′l , respectively.

(i) We prove the claim by induction on |x| = n. Let n = 0. Then x = Λ. So

ρ(Λ) = {q0}, ρ′(Λ) = {q′0} = g({q0}) = g(ρ(Λ)). If n = 1, then x = a. Therefore

ρ′(a) = f ′l ({q′0}, a) = f ′l (g({q0}), a)

= g(fl({q0}, a))

= g(ρ(a)).
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Let the claim holds for any positive integer n−1, n ≥ 1. Now, suppose that |x| = n

and x = a1a2...an ∈ X∗. So

ρ′(a1...an) = f ′l (ρ
′(a1...an−1), an)

= f ′l (g(ρ(a1...an−1)), an)

= g ◦ fl(ρ(a1...an−1), an)

= g(ρ(a1...an−1)).

(ii) By considering ρ′ = g ◦ ρ, we have

β′ = ω′l ◦ ρ′ = ω′l ◦ (g ◦ ρ) = (ω′l ◦ g) ◦ ρ

= (gout ◦ ωl) ◦ ρ

= gout ◦ (ωl ◦ ρ)

= gout ◦ β.

Hence, the claim holds. �

Corollary 1. Let F̃l and F̃
′
l be two BL-IGLFAs with the same output alphabet and

let (g, gout) : F̃l → F̃ ′l be an I-morphism with threshold τ1
τ2
. Then F̃l and F̃

′
l have

the same behavior.

4. I-bisimulation for BL-intuitionistic general L-fuzzy automata

Definition 10. Let F̃li = (Q̄i, X, R̃i = ({q0i}, µt0({q0i}), νt0({q0i})), Z̄, ωli, δli, fli,
δ̃li, F1, F2), i = 1, 2 be two BL-IGLFAs. Then the relation ≈ between Q̄1 and Q̄2

is called an intuitionistic bisimulation (I-bisimulation) between F̃l1 and F̃l2 if the

following hold:

(1) {q01} ≈ {q02},
(2) Q′ ≈ Q′′ implies that

(∀α ∈ L)(Q′1 ∈ Q̄1)(a ∈ X)(δlµ1(Q′, a,Q′1) = α)

=⇒ ((∃Q′2 ∈ Q̄2)δlµ2(Q′′, a,Q′2) ≥ α,Q′1 ≈ Q′2) and vice versa,

(3) Q′ ≈ Q′′ implies that

(∀β ∈ L)(Q′1 ∈ Q̄1)(a ∈ X)(δlν1(Q′, a,Q′1) = β)

=⇒ (∃Q′2 ∈ Q̄2)δlν2(Q′′, a,Q′2) ≤ β,Q′1 ≈ Q′2) and vice versa,

(4) Q′ ≈ Q′′ implies that ωl1(Q′) = ωl2(Q′′),



I-HOMOMORPHISM FOR BL-I-GENERAL ... – JMMRC VOL. 7, NUMBERS 1-2 (2018) 67

where Q′ ∈ Q̄1 and Q′′ ∈ Q̄2.

Definition 11. Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0}), νt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2)

be a BL-IGLFA. Then F̃l is a minimal BL-IGLFA if for every BL-IGLFA F̃ ′l , which

F̃ ′l is I-bisimilar to F̃l, |F̃l| ≤ |F̃ ′l |.

Note 1. Let F̃li = (Q̄i, X, R̃i = ({q0i}, µt0({q0i}), νt0({q0i})), Z̄, ωli, δli, fli, δ̃li, F1, F2),

i = 1, 2, 3 be three BL-IGLFA.

(i) Let ≈ be an I-bisimulation between F̃l1 and F̃l2. Clearly, its reverse is an

I-bisimulation between F̃l2 and F̃l1. So, the relation ≈ is a symmetric relation be-

tween Q̄1 and Q̄2.

(ii) Let ≈1 be an I-bisimulation between F̃l1 and F̃l2 and ≈2 be an I-bisimulation

between F̃l2 and F̃l3. Then their composition as follow:

≈=≈1 ◦ ≈2= {(P, P ′)
∣∣∃Q′ ∈ Q̄2, P ≈1 Q

′and Q′ ≈2 P
′},

is an I-bisimulation between F̃l1 and F̃l3. So, we proof the claim as follows:

(1) We have {q01} ≈1 {q02} and {q02} ≈2 {q03}. Then {q01} ≈ {q03}.
(2) Let Q′1 ≈ Q′3. Then there is Q′2 ∈ Q̄2 such that Q′1 ≈1 Q

′
2 and Q′2 ≈2 Q

′
3.

Also, by considering Definition 10, and Q′1 ≈1 Q
′
2 we have

(∀α ∈ L)(Q′′1 ∈ Q̄1)(a ∈ X)(δlµ1(Q′1, a,Q
′′
1) = α)

=⇒ (∃Q′′2 ∈ Q̄2)(δlµ2(Q′2, a,Q
′′
2) ≥ α,Q′′1 ≈1 Q

′′
2) and vice versa.

Also, Q′2 ≈2 Q
′
3 implies that

(∀α ∈ L)(Q′′2 ∈ Q̄2)(a ∈ X)(δlµ2(Q′2, a,Q
′′
2) = α)

=⇒ (∃Q′′3 ∈ Q̄3)(δlµ3(Q′3, a,Q
′′
3) ≥ α,Q′′2 ≈2 Q

′′
3) and vice versa.

So, obviously

(∀α ∈ L)(Q′′1 ∈ Q̄1)(a ∈ X)(δlµ1(Q′1, a,Q
′′
1) = α)

=⇒ (∃Q′′3 ∈ Q̄3)(δlµ3(Q′3, a,Q
′′
3) ≥ α,Q′′1 ≈ Q′′3) and vice versa.

(3) The proof is similar to (2).

(4) Let Q′1 ≈ Q′3. Then there is Q′2 ∈ Q̄2 such that Q′1 ≈1 Q
′
2 and Q′2 ≈2 Q

′
3.

So, ωl1(Q′1) = ωl2(Q′2) = ωl3(Q′3). Hence, the relation ≈ is a transitive relation

between Q̄1 and Q̄3.
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Lemma 1. Let F̃li = (Q̄i, X, ({q0i}, µt0({q0i}), νt0({q0i})), Z̄, ωli, δli, fli, δ̃li, F1, F2),

i = 1, 2 be two BL-IGLFAs and let {≈i
∣∣i ∈ l} be an arbitrary nonempty set of I-

bisimulations between F̃l1 and F̃l2. Then ≈= ∪i∈l ≈i is an I-bisimulation between

F̃l1 and F̃l2.

Proof. Let ≈= ∪i∈l ≈i. Then Q′ ≈ Q′′ if and only if there is i ∈ l such that

Q′ ≈i Q′′. For every i ∈ l, we have {q01} ≈i {q02}. So, {q01} ≈ {q02}. Let

Q′1 ≈ Q′2. Then Q′1 ≈i Q′2, for some i ∈ l. Therefore,

(∀α ∈ L)(Q′′1 ∈ Q̄1)(a ∈ X)(δlµ1(Q′1, a,Q
′′
1) = α)

=⇒ (∃Q′′2 ∈ Q̄2)(δlµ2(Q′2, a,Q
′′
2) ≥ α,Q′′1 ≈i Q′′2) and vice versa.

So,

(∀α ∈ L)(Q′′1 ∈ Q̄1)(a ∈ X)(δlµ1(Q′1, a,Q
′′
1) = α)

=⇒ (∃Q′′2 ∈ Q̄2)(δlµ2(Q′2, a,Q
′′
2) ≥ α,Q′′1 ≈ Q′′2) and vice versa.

In a similar way, if

(∀β ∈ L)(Q′′1 ∈ Q̄1)(a ∈ X)(δlν1(Q′1, a,Q
′′
1) = β)

=⇒ (∃Q′′2 ∈ Q̄2)(δlν2(Q′2, a,Q
′′
2) ≤ β,Q′′1 ≈i Q′′2) and vice versa,

then,

(∀β ∈ L)(Q′′1 ∈ Q̄1)(a ∈ X)(δlν1(Q′1, a,Q
′′
1) = β)

=⇒ (∃Q′′2 ∈ Q̄2)(δlν2(Q′2, a,Q
′′
2) ≤ β,Q′′1 ≈ Q′′2) and vice versa.

Finally, if Q1 ≈ Q2, then there exists i ∈ l such that Q1 ≈i Q2 and ωl1(Q1) =

ωl2(Q2). Hence, the claim holds. �

Theorem 2. Let F̃li = (Q̄i, X, R̃i = ({q0i}, µt0({q0i}), νt0({q0i})), Z̄, ωli, δli, fli, δ̃li,
F1, F2), i = 1, 2 be two BL-IGLFAs and let ≈ be an I-bisimulation between F̃l1 and

F̃l2. Then βF̃l1
= βF̃l2

.

Proof. Let ≈ be an I-bisimulation between F̃l1 and F̃l2 and let ρ1 and ρ2 be the

run relations of F̃l1 and F̃l2, respectively. We show that for every a1...an = x ∈ X∗

there exist Q′1 ∈ Q̄1 and Q′2 ∈ Q̄2 such that ρ1(x) ≈ Q′2 ⊆ fl2(ρ2(a1a2...an−1), an)

and ρ2(x) ≈ Q′1 ⊆ fl1(ρ1(a1a2...an−1), an). We prove the claim by induction on

|x| = n. Now, let |x| = 0. Then x = Λ and ρ1(Λ) = {q01} ≈ {q02} = ρ2(Λ). Let
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x = a ∈ X. Then ρ1(a) = fl1({q01}, a). Suppose that α, β ∈ L,α ≤ N(β) be such

that δlµ1({q01}, a, fl1({q01}, a)) = α and δlν1({q01}, a, fl1({q01}, a)) = β. Then by

considering Definition 10, there exist Q′2, Q
′′
2 ∈ Q̄2 such that δlµ2({q02}, a,Q′2) ≥

α, δlν2({q02}, a,Q′′2) ≤ β, ρ1(a) ≈ Q′2 ⊆ fl2({q02}, a) and ρ1(a) ≈ Q′′2 ⊆ fl2({q02}, a).

Now, let the claim holds for every y ∈ X∗ such that |y| = n − 1, n > 0. Let

a1a2...an = x ∈ X∗, α, β ∈ L,P ′2 ≈ ρ1(a1...an−1) ≈ Q′2 and δlµ1(ρ1(a1...an−1), an,

ρ1(a1...an)) = α and δlν1(ρ1(a1...an−1), an, ρ1(a1...an)) = β. Then there exist

Q′′2 , P
′′
2 ∈ Q̄2 such that δlµ2(Q′2, an, Q

′′
2) ≥ α, δlν2(P ′2, an, P

′′
2 ) ≤ β and ρ1(x) ≈

Q′′2 ⊆ fl2(Q′2, an) ⊆ fl2(ρ2(a1...an−1), an), where P ′2 ≈ fl1(ρ1(a1...an−1), an) ≈ Q′2.

So,

ρ1(x) ≈ P ′′2 ⊆ fl2(P ′2, an) ⊆ fl2(ρ2(a1...an−1), an).

Similarly, there is Q′1 ∈ Q̄1 such that ρ2(x) ≈ Q′1 ⊆ fl1(ρ1(a1...an−1), an). There-

fore, for every a1a2...an = x ∈ X∗

βF̃l1
(x) = ωl1(ρ1(x)) = ωl2(Q′2) ⊆ ωl2(fl2(ρ2(a1...an−1), an)) = ωl2(ρ2(x)) = βF̃l2

(x),

for some Q′2 ∈ Q̄2 such that ρ1(x) ≈ Q′2. Also,

βF̃l2
(x) = ωl2(ρ2(x)) = ωl1(Q′1) ⊆ ωl1(fl1(ρ1(a1...an−1), an)) = ωl1(ρ1(x)) = βF̃l1

(x),

for some Q′1 ∈ Q̄1 such that ρ2(x) ≈ Q′1. Hence, βF̃l1
(x) = βF̃l2

(x).

�

Notice that the converse of Theorem 2, does not hold, i.e., if F̃li = (Q̄i, X, R̃i, Z̄, ωli,

δli, fli, δ̃li, F1, F2), i = 1, 2, be two BL-IGLFAs and βF̃l1
(x) = βF̃l2

(x), then it is not

necessary that there exists a I-bisimulation between them.

Example 2. Let BL-IGLFA F̃l1 be as Example 1, also, consider BL-IGLFA F̃l2 as

follows:

F̃l2 = (Q̄2, X, R̃2, Z̄, ωl2, δ
l2, fl2, δ̃

l2, F1, F2),
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where Q̄2 = {∅, {p1}, {p2}, {p1, p2}}, Z̄ = {∅, {z1}, {z2}, {z1, z2}}, ωl2({p1}) = ωl2({p2})
= ωl2({p1, p2}), fl2({p1}, σ) = fl2({p2}, σ) = fl2({p1, p2}, σ) = {p1, p2}, and

δl2({p1}, σ, {p1}) = (0, 1), δl2({p1}, σ, {p2}) = (a, 1),

δl2({p1}, σ, {p1, p2}) = (0, 1), δl2({p2}, σ, {p1}) = (a, 1),

δl2({p2}, σ, {p2}) = (0, 1), δl2({p2}, σ, {p2}) = (a, 1),

δl2({p2}, σ, {p1, p2}) = (0, 1), δl2({p1, p2}, σ, {p1}) = (a, 1),

δl2({p1, p2}, σ, {p2}) = (0, 1), δl2({p1, p2}, σ, {p1, p2}) = (a, 1).

It is clear that βF̃l1
(x) = βF̃l2

(x), but there is not any I-bisimulation between F̃l1

and F̃l2.

Definition 12. Let F̃li = (Q̄i, X, ({q0i}, µt0({q0i}), νt0({q0i})), Z̄, ωli, δli, fli, δ̃li, F1,

F2), i = 1, 2 be two BL-IGLFAs and ≈ be an I-bisimulation between F̃l1 and F̃l2.

Then the support of ≈ in F̃l1 is the set C≈(Q̄2), the set of states of F̃l1 that are

related by ≈ to some states of F̃l2.

Definition 13. Let F̃l be a BL-IGLFA. We say that ∅ 6= Q′ ∈ Q̄ is an accessible

state if there exists x ∈ X∗ such that fl({q0}, x) = Q′.

Note that an I-bisimulation between a BL-IGLFA and itself is called an I-

bisimulation on BL-IGLFA.

Theorem 3. Let F̃ be a BL-IGLFA and let B be the set of all I-bisimulations on

F̃ . Then union of all the relations in B is an I-bisimulation on F̃l and also it is an

equivalence relation on Q̄.

Proof. The proof is similar to the proof of Theorem 2 [39]. �

Let ≡ be the union of all I-bisimulations on F̃l. We define [P ] = {Q′
∣∣P ≡

Q′}, '= {(P, [P ])
∣∣P ∈ Q̄}, and A′ = {[P ]

∣∣P ∈ A}, for any A ⊆ Q̄.

Lemma 2. For every A,B ⊆ Q̄:

(i) A ⊆ C≡(B) if and only if A′ ⊆ B′,
(ii) A ≡ B if and only if A′ = B′,

(iii) A ' A′.

Proof. The proof is similar to the proof of Lemma 2, of [39]. �
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Definition 14. Let F̃l = (Q̄l, X, ({q0}, µt0({q0}), νt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2)

be a BL-IGLFA and let ≡ be the union of all I-bisimulations on F̃l. Define the quo-

tient BL-IGLFA F̃ ′l as follows: F̃ ′l = (Q̄′l, X, R̃
′, Z̄, ω′l, δ

′
l, f
′
l , δ̃
′
l, F1, F2), where Q̄′l =

{[Q′]
∣∣Q′ ∈ Q̄l}, [Q′] = {P

∣∣Q′ ≡ P}, R̃′ = [{q0}], µt0([{q0}]) = µt0({q0}), νt0([{q0}]) =

νt0({q0}), f ′l : Q̄′l×X → Q̄′l by f ′l ([Q
′], a) = [fl(Q

′, a)], δ′l : Q̄′l×X × Q̄′l → L×L
by δ′l([Q

′], a, [P ]) = (δ′lµ([Q′], a, [P ]), δ′lν([Q′], a, [P ])), where

(1)

δ′lµ([Q′], a, [P ]) = ∨{δlµ(Q′′, a, P ′)
∣∣Q′′ ≡ Q′, P ′ ≡ P} = ∨{δlµ(Q′, a, P ′)

∣∣P ′ ≡ P},
(2)

δ′lν([Q′], a, [P ]) = ∧{δlν(Q′′, a, P ′)
∣∣Q′′ ≡ Q′, P ′ ≡ P} = ∧{δlν(Q′, a, P ′)

∣∣P ′ ≡ P},
and ω′l : Q̄′l → Z by ω′l([Q

′]) = ωl(Q
′).

Clearly, δ̃lµ and δ̃lν are well-defined, so δ̃l is well-defined. Obviously, ω′l is well-

defined.

Theorem 4. Let F̃l be a BL-IGLFA with no inaccessible states and ≡ be the greatest

I-bisimulation on Q̄l. The quotient BL-IGLFA F̃ ′l on F̃l, under I-bisimulation ≡,
is an I-morphism to F̃l.

Proof. By considering Theorem 3 of [39] the proof is clear. �

Theorem 5. Let F̃l be a BL-IGLFA with no inaccessible states and let F̃ ′l be the

quotient BL-IGLFA of F̃l. Then F̃l and F̃
′
l have the same behavior.

Proof. Clearly, by considering Theorems 1, 4, and Corollary 1. �

Theorem 6. The relation '= {(P, [P ])
∣∣P ∈ Q̄l} is an I-bisimulation between BL-

IGLFA F̃l and quotient BL-IGLFA F̃ ′l, where [P ] = {Q′
∣∣P ≡ Q′}. So, F̃l and F̃ ′l

have the same behavior.

Proof. Clearly, {q0} ' [{q0}]. Let P ' [Q′]. If there are P ′ ∈ Q̄l and a ∈ X such

that δlµ(P, a, P ′) = α, then there exists Q′′ ∈ Q̄′l such that δlµ(Q′, a,Q′′) ≥ α and

P ′ ≡ Q′′. So, δ′lµ([Q′], a, [Q′′]) ≥ α and P ′ ' [Q′′]. Now, let there are [Q′′] ∈ Q̄′l
and a ∈ X such that δ′lµ([Q′], a, [Q′′]) = α. Then there is S ≡ Q′′ such that

δ′lµ([Q′], a, [Q′′]) = δlµ(Q′, a, S) = α. Therefore, there exists P ′ ∈ Q̄l such that

δlµ(P, a, P ′) ≥ α and P ′ ≡ S so P ′ ' [Q′′].
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Also, if there are P ′ ∈ Q̄l and a ∈ X such that δlν(P, a, P ′) = β, then there exists

Q′′ ∈ Q̄′l such that δlν(Q′, a,Q′′) ≤ β and P ′ ≡ Q′′. Therefore, δ′lν([Q′], a, [Q′′]) ≤ β
and P ′ ' [Q′′]. Let there are [Q′′] ∈ Q̄′l and a ∈ X such that δ′lν([Q′], a, [Q′′]) = β.

Then there is P ′ ≡ Q̄l such that δlν(P, a, P ′) ≤ β′ ≤ β, and P ′ ' [Q′′].

Now, let P ' [Q′]. Then P ≡ Q′ and ωl(P ) = ωl(Q
′) = ω′l([Q

′]). Therefore F̃l

and F̃ ′l are I-bisimulation. So, by considering Theorem 2, F̃l and F̃ ′l have the same

behavior. �

Lemma 3. The only I-bisimulation on the quotient BL-IGLFA F̃ ′l is the identity

relation.

Proof. The proof is similar to the proof of Lemma 3 of [39]. �

Two BL-IGLFAs F̃l1 and F̃l2 are called I-bisimilar if there exists an I-bisimulation

between them.

Theorem 7. Let F̃l1 be a BL-IGLFA with no inaccessible states and ≡ be the

greatest I-bisimulation on Q̄l1. Then the quotient BL-IGLFA F̃ ′l1 is the minimal

BL-IGLFA I-bisimilar to F̃l1.

Proof. The proof is similar to the proof of Theorem 6 [39]. �

The following algorithm, for two given BL-IGLFAs determines an I-bisimulation

between them. Also, if there is no I-bisimulation between them the algorithm stops

and reports failure.

1. Algorithm for computing I-bisimulation

Step 1. input: Two BL-IGLFAs F̃li = (Q̄i, X, ({q0i}, µt0({q0i}), νt0({q0i})), Z̄, ωli, δli,
fli, δ̃li, F1, F2), i = 1, 2, Q′ ∈ Q̄1, Q

′′ ∈ Q̄2, X = {a1, a2, ..., an}, j = 1,

Step 2. Q′ ≈′ Q′′ if and only if ωl1(Q′) = ωl2(Q′′),

Step 3. If {q01} ≈′ {q02}, then assume {q01} ≈j {q02}. Also, let Q′ ≈j Q′′ if and

only if Q′ ≈′ Q′′, where Q′ 6= {q01} and Q′′ 6= {q02},
Step 4. If {q01} ≈j {q02}, then assume k = 1, j = j + 1, else go to Step 9,

Step 5. Q′ ≈j Q′′ if and only if Q′ ≈j−1 Q′′ and

(∀α ∈ L)(Q′1 ∈ Q̄1)(ak ∈ X)(δlµ1(Q′, ak, Q
′
1) = α)

=⇒ (∃Q′2 ∈ Q̄2)(δlµ2(Q′′, ak, Q
′
2) ≥ α,Q′1 ≈j−1 Q′2) and vice versa,
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and

(∀β ∈ L)(Q′1 ∈ Q̄1)(ak ∈ X)(δlν1(Q′, ak, Q
′
1) = β)

=⇒ (∃Q′2 ∈ Q̄2)(δlν2(Q′′, ak, Q
′
2) ≤ β,Q′1 ≈j−1 Q′2) and vice versa,

Step 6. k = k + 1, if k > n, then go to the next step, else go to Step 5,

Step 7. if ≈j=≈j−1, then go to the next step, else go to Step 4,

Step 8. output: ≈=≈j ,
Step 9. output: fail.

Steps 3 to 5 of The algorithm, are a loop. This loop must be repeated at most

max{|Q̄1|, |Q̄2|} + 1 times. So, by considering |X| and Steps 3 to 5, the order of

time complexity is at most O(|X||Q̄1||Q̄2|(max{|Q̄1|, |Q̄2|}2)).

Example 3. Let (L,∧,∨, 0, 1) be a complete lattice as in Figure 1 and BL-IGLFA

as Example 1. Then we have:

Stage 1. 1. j = 1, X = {σ}, k = 1,

2. {q1} ≈′ {p1} ≈′ {q2} ≈′ {p2} ≈′ {q1, q2} ≈′ {p1, p2},
3. {q2} ≈1 {p2} ≈1 {q1, q2} ≈1 {p1, p2}, {q1} ≈1 {p1}
4. k = 1, j = 2,

5. {q1} ≈2 {p1}, {q2} ≈2 {p2} ≈2 {p1, p2} ≈2 {q1, q2},
6. k = 2,

7. ≈2=≈1,

8. Output: ≈=≈2.

Example 4. Let (L,∧,∨, 0, 1) be a complete lattice as in Figure 1. Consider

the intuitionistic general L-fuzzy automaton F̃ = (Q,X, δ̃, R̃, Z, ω, F1, F2), where

Q = {q0, q1}, R̃ = {(q0, 1, 0)}, X = {σ1, σ2}, Z = {z1, z2}, ω(q0) = ω(q1) = z1 and

δ(q0, σ1, q0) = (a, 0), δ(q0, σ1, q1) = (b, c),

δ(q1, σ1, q0) = (d, 0), δ(q1, σ1, q1) = (b, c),

δ(q0, σ2, q1) = (c, b), δ(q1, σ2, q1) = (1, 0).

By considering Definition 7, we have BL-IGLFA as follows: F̃l = (Q̄,X, ({q0}, 1, 0), Z̄,

ωl, δl, fl, δ̃l, F1, F2), where Q̄ = {∅, {q0}, {q1}, {q0, q1}}, Z̄ = {∅, {z1}, {z2}, {z1, z2}},
ωl({q0}) = ωl({q1}) = ωl({q0, q1}) = {z1}, fl({q0}, σ1) = fl({q1}, σ1) = fl({q0, q1}, σ1) =
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{q0, q1}, fl({q0}, σ2) = fl({q1}, σ2) = fl({q0, q1}, σ2) = {q1} and

δl({q0}, σ1, {q0}) = (a, 0), δl({q0}, σ1, {q1}) = (b, c),

δl({q0}, σ1, {q0, q1}) = (b, 0), δl({q1}, σ1, {q0}) = (d, 0),

δl({q1}, σ1, {q1}) = (b, c), δl({q1}, σ1, {q0, q1}) = (d, 0),

δl({q0, q1}, σ1, {q0}) = (d, 0), δl({q0, q1}, σ1, {q1}) = (b, c),

δl({q0, q1}, σ1, {q0, q1}) = (d, 0) δl({q0}, σ2, {q1}) = (c, d),

δl({q0}, σ2, {q0, q1}) = (c, d), δl({q1}, σ2, {q1}) = (1, 0),

δl({q1}, σ2, {q0, q1}) = (1, 0), δl({q0, q1}, σ2, {q1}) = (1, 0),

δl({q0, q1}, σ2, {q0, q1}) = (1, 0).

By taking into account the Definition 10, [{q1}] = [{q0, q1}], so, we have the

quotient BL-intuitionistic general L-fuzzy automaton of F̃l, which is called F̃ ′l , as fol-

lows: Q̄′ = {[∅], [{q0}], [{q1}]}, Z̄ = {∅, {z1}, {z2}, {z1, z2}}, ω′l([{q0}]) = ω′l([{q1}]) =

{z1} and

δ′l([{q0}], σ1, [{q0}]) = (a, 0), δ′l([{q0}], σ1, [{q1}]) = (b, 0),

δ′l([{q1}], σ1, [{q0}]) = (d, 0), δ′l([{q1}], σ1, [{q1}]) = (d, 0),

δ′l([{q0}], σ2, [{q1}]) = (c, d), δ′l([{q1}], σ2, [{q1}]) = (1, 0).

Clearly, '= {(P, [P ])
∣∣P ∈ Q̄} is an I-bisimulation between F̃l and F̃ ′l , where

{q0} ' [{q0}], {q1} ' [{q1}], {q0, q1} ' [{q1}]. Now, define g : Q̄→ Q̄′ by g({P}) =

[P ]. So,

g(fl({q0}, σ1)) = g({q0, q1}) = [{q1}] = f ′l ((g × idX)({q0}, σ1)) = f ′l ([{q0}], σ1),

g(fl({q1}, σ1)) = g({q0, q1}) = [{q1}] = f ′l ((g × idX)({q1}, σ1)) = f ′l ([{q1}], σ1),

g(fl({q0, q1}, σ1)) = g({q0, q1}) = [{q1}] = f ′l ((g×idX)({q0, q1}, σ1)) = f ′l ([{q1}], σ1),

g(fl({q0}, σ2)) = g({q1}) = [{q1}] = f ′l ((g × idX)({q0}, σ2)) = f ′l ([{q0}], σ2),

g(fl({q1}, σ2)) = g({q1}) = [{q1}] = f ′l ((g × idX)({q1}, σ2)) = f ′l ([{q1}], σ2),

g(fl({q0, q1}, σ2)) = g({q0, q1}) = [{q1}] = f ′l ((g×idX)({q0, q1}, σ2)) = f ′l ([{q1}], σ2).

Then g : (Q̄, fl, δl) → (Q̄′, f ′l , δ
′
l) is an I-homomorphism. Let gout : Z̄ → Z̄ be an

identity map. Clearly, gout ◦ ωl = ω′l ◦ g. Then F̃l and F̃ ′l are I-morphic. Hence, by

considering Theorem 2 and Corollary 1, F̃l and F̃ ′l have a same behavior.
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5. Conclusion

Taking into account the notions of BL-general fuzzy automaton and bisimulation

for BL-general fuzzy automaton, in the present study, we defined the notions of

BL-intuitionistic general L-fuzzy automaton and I-bisimulation between two BL-

intuitionistic general L-fuzzy automata. For a given BL-intuitionistic general L-

fuzzy automaton, we obtained the greatest I-bisimulation and the minimal BL-

intuitionistic general L-fuzzy automaton. Moreover in this research, the authors

showed that if there is an I-bisimulation between two BL-intuitionistic general L-

fuzzy automata, then there is a morphism between them so they have the same

behavior. Furthermore, we gave an algorithm, which determined the I-bisimulation

between any two BL-intuitionistic general L-fuzzy automata.

In the paper ”bisimulation of type 2 for BL-general fuzzy automata”, we pre-

sented bisimulation of type 2 for BL-general fuzzy automaton where bisimulation

type 2 was better than the bisimulation of type 1.

Now, we submit two issues as: If there is an I-bisimulation on BL-intuitionistic

general L-fuzzy automaton as better than this I-bisimulation which we have pre-

sented in this study, and also how we can deal with the idea of I-bisimulation to

(fuzzy) pushdown automata and in (fuzzy) tree automata?
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