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ABSTRACT. Let R be a commutative noetherian ring and let I and J be two
ideals of R. In this paper, we introduce the concept of (I, J)-minimax R-module
and it is shown that if M is an (I, J)-minimax R-module and ¢ a non-negative
integer such that H}J(M) is (I, J)-minimax for all ¢ < ¢, then for any (I, J)-
minimax submodule N of H} ;(M), the R-module Homg(R/I,H} ;(M)/N)
is (I, J)-minimax. As a consequence, it follows that the Goldie dimension of
H}J(M)/N is finite and so the set of associated primes of HfJ(M)/N is
finite. This generalizes the main result of Azami, Naghipour and Vakili [2,

Theorem 4.2].
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1. INTRODUCTION

Throughout this paper, R is a commutative Noetherian ring with non-zero iden-
tity. The generalized local cohomology module with respect to a pair of ideals I
and J of R is introduced in [12].

We are concerned with the subset
W(I,J)={peSpec(R) | I" Cp+J for some integer n > 1}

of Spec(R). For an R-module M, we consider the (I, J)-torsion submodule I'; ;(M)
of M which consists of all elements x of M with Supp(Rz) C W(I,J). By [12,
Corollary 1.8], we have 'y ;(M) = {# € M | I"a C Jx for some integer n > 1}.
Furthermore, for an integer 4, we define the local cohomology functor H} ;(—) with
respect to (I, J) to be the i-th right derived functor of I'y y(—). Note that if J =0,
then H} ;(—) coincides with the ordinary local cohomology functor Hi(—), with
the support in the closed subset V(I). On the other hand, if J contains I, then
7 s(—) is the identity functor and Hj ;(—) = 0, for i > 0 [12].

In [3], Bordmann and Lashgari showed that if for a finitely generated R-module
M and an integer ¢, the local cohomology modules HY (M), H}(M),--- ,H} (M)
are finitely generated, then the set Assg(H}(M) / N) is finite for every finitely gen-
erated submodule N of H:(M).

In [2], Azami, Naghipour and Vakili showed that if M is an I-minimax R-module
and ¢t non-negative integer such that H:(M) is I-minimax for all i < ¢, then for
any I-minimax submodule N of H}(M), the R-module Hompg(R/I, H{(M)/N) is
I-minimax. It follows that the Goldie dimension of H}(M)/N is finite and so
the associated primes of H.(M)/N are finite. This generalizes the main result of
Brodmann and Lashgari [3]. One of the main tools for proving above mentioned

result in [2] is the following statement which is the following proposition.

Proposition 1.1. (2, Theorem 2.7]) Let R be a Noetherian ring and M be a
finitely generated R-module and N an arbitrary R-module. Let t be a non-negative
integer such that EthR(M, N) is I-minimaz for all i < t. Then for any finitely
generated R-module L with Supp L C Supp M, EX‘UE(L,N) is I-minimazx for all
1 < t.
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This paper is concerned with what might be considered a generalization of the
above-mentioned result of Azami, Naghipour and Vakili to the class of (I,.J)-

minimax modules. More precisely, we shall show that:

Theorem 1.2. Let R be a Noetherian ring and let I and J be two ideas of R
and M be an (I,J)-minimaz R-module. Let t be a non-negative integer such that
Hj ;(M) is (I,J)-minimaz for alli < t. Then for any (I, J)-minimaz submodule N
of Hj ;(M) the R-module Hom(R/I,H} ;(M)/N) is (I, J)-minimaz. In particular,
the Goldie dimension of H} ;(M)/N is finite and so the set Assg(H} ;(M)/N) is
finite.

Recall that an R-module M is said to have finite Goldie dimension (written
Gdim M < oo) if M dose not contain an infinite direct sum of non-zero submod-
ules, or equivalently the injective hull E(M) of M decomposes as a finite direct
sum of indecomposable (injective) submodules, see [9, Section A6], in particular,
[9, Definition 6.2, Proposition 6.4 and 6.12]. One notices that [9] uses uniform di-
mension instead of Goldie dimension. Also, an R-module M is said to have finite

I-relative Goldie dimension if the I-torsion submodule I';(M) := U (0 :p I™) of
n>1
M is finitely generated.

An R-module M is said to have finite (I, J)-relative Goldie dimension if the
Goldie dimension of the (I, J)-torsion submodule I'; ;(M) of M is finite.

We say that an R-module M is I-minimax if the [-relative Goldie dimension of
any quotient module of M is finite. Also, an R-module M is (I, J)-minimax if the
(I, J)-relative Goldie dimension of any quotient module of M is finite. One of our

tools for proving Theorem 1.2 is the following proposition.

Proposition 1.3. Let R be a Notherian ring and let I and J be ideals of R. Let
M be a finitely generated R-module and N an arbitrary R-module. Let t be a non-
negative integer such that Ext}(M, N) is (I,J)-minimax for all i < t. Then for
any finitely generated R-module L with Supp L C Supp M, Ext’ (L, N) is (I,.J)-

minimaz for all i <t.

Let W (I, J) denote the set of all ideals a of R such that I C a+.J for some non-
negative integer n. We define a partial order on I/T/(I7 J) by letting a < bif a D b for
a,b € W(I,J). If a < b, we have T'y(M) C T},(M). The order relation on W(I,.J)
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and inclusion maps make {I'a(M)},cyi(s ) into a direct system of R-modules. By
[12, Theorem 3.2] we have:

Hp,(M)=  lim  Hg(M)
acW(I,J)

for any integer i, where

=

H!(M) =1l

n

HI(M)Extyz(R/a", M).

\Xl

We refer the reader to [4] and [12] for the basic properties of local cohomology.

2. I-MINIMAX, (I, J)-MINIMAX AND GOLDIE DIMENSION

For an R-module M, the Goldie dimension of M is defined as the cardinal
of the set of indecomposable submodules of E(M) which appear in a decompo-
sition of E(M) into a direct sum of indecomposable submodules [9, Proposition
6.12]. We shall use Gdim M to denote the Goldie dimension of M. For a prime
ideal p, let u%(p, M) denote the O-th bass number of M with respect to the prime
ideal p, that is, u°(p, M) = dime/pRp Hompg, (Rp/pRp,Mp). It is known that
ul(p, M) > 0 if and only if p € Assg(M). Indeed, for a p € Spec(R), let
Hompg, (R, /pRy, My) # 0. So (Homg(R/p,M)), # 0 and let f € Homp(R/p, M)
such that f # 0 in (HomR(R/p, M)),.We show that f is a monomorphism. Con-
trary, let r ¢ p and f(r + p) = 0. It follows that rf(1 4+ p) = 0, then rf = 0. So
{ = 0 in (Hompg(R/p,M)),. This contraction shows that f is a monomorphism.
Hence, p € Assg(M). Conversely, let p € Assg(M). It follows that R/p is isomor-
phic to a submodule of M. Hence R, / pR,, is isomorphic to a submodule of Mp. So
that Homp, (R, /pRy, M,) # 0.

It follows from [9, Proposition 6.12] and the decomposition E(M) = @ 1’ (p, M)E(R/p)
pEAssg (M)
of [5, Theorem 3.2.8] that

GdimM = Z wl(p, M).
pEAssg (M)

In view of this, for any ideal I of R and any R-module M, the I-relative Goldie

dimension of M is defined as

Gdim; M = Z 1P (p, M).
peV(I)
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The I-relative Goldie dimension of an R-module M has been studied in [6]. Mo-
tivating, for any two ideals I and J of R and any R-module M,we define the
(I, J)-relative Goldie dimension of M as

In [15], H. Zoschinger introduced the interesting class of minimax modules and in
[15] and [16] gave some equivalent conditions for a module to be minimax. The R-
module M is said to be a minimax module if there is a finitely generated submodule
N of M, such that M /N is Artinian. It was shown by T. Zink [14] and by E. Enochs
[7] that a module over a complete local ring is minimax if and only if it is matlis
reflexive. On the other hand, it is known that when R is a Noetherian ring, an
R-module is minimax if and only if each of its quotient has finite Goldie dimension,

[14] or [16]. This motivates the following definition:

Definition 2.1. Let I and J be two ideals of R. An R-module M is said to be
minimax with respect to I or I-minimax if the I-relative Goldie dimension of any
quotient module of M is finite, i.e., for any submodule N of M, G dimI(M/N) < 0.
Also, an R-module M is said to be minimax with respect to I and J or (I, J)-
minimax if the (I, J)-relative Goldie dimention of any quotient module of M is
finite, i.e., for any submodule N of M, G dim(; ;(M /N) < oo.

Lemma 2.2. Let I and J be two ideals of R and M be an injective R-module. Then

T'1.7(M) is an injective R-module.

Proof. By [12, Theorem 3.2], we have H}’J(M) = I}LQ H!(M). When i = 0,
a€W(I,.J)
Lpy(M)=  lim  Dy(M), by [12, Theorem 3.2]. I'q(M) is an injective R-module
acW(1,J)
by [4, Proposition 2.1.4]. Since R is a Notherian ring, by [8, Theorem 3.1.17],

I;,7(M) is an injective R-module. |

Proposition 2.3. Let I and J be two ideals of R and M an R-module. Then
Gdim(],J) M = GdimFLJ(M).

Proof. Let p be a prime ideal of R. By [12, Proposition 1.11], if p € W (I, J), then
L7 s(E(R/p)) = E(R/p) and if p ¢ W(I,J), then I'y ;(E(R/p)) = 0. Hence, using
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[5, Theorem 3.2.8], we have

L1 (E(M)) s @ v, M)ER/p)

pESpec(R)

= @ L@ Mr(ER/p)

pESpec(R)
= D WeMER/p)

pEW (I, J)
It is easy to see that I'; j(E(M)) is an essential extension of I'y j(M). On the other
hand I'; ;(E(M)) is an injective R-module by Lemma 2.2. Hence I'; j(E(M)) =
E(F[y](M)) Thus

Gdimg M= > p'(p,M)=GdimI; ;(M).
peW(I,J)

O

Corollary 2.4. If M is (I, J)-torsion, then M is (I, J)-minimaz if and only if M

18 minimaz.
Proof. The assertion follows from Proposition 2.3. ]

Remark 2.5. Let I and J be two ideals of R and let M be an R-module.

(i) Assume that I = 0. Then M is (0, J)-minimax if and only if M is minimax.
(i)If I’ and J’ be two ideals of R such that I’ C I and J C J" and M is (I',J’)-
minimax, then M is (I, J)-minimax. In particular, every minimax module is (I, J)-
minimax.

(iii) If M is Noethrian or Artinian, then M is (I, J)-minimax.

Proof. (i) Clearly W(0,J) = Spec(R). Hence G dim ) M /N = Gdim M /N for
any submodule N of M. This complete the proof of (i).
(ii) Let I’ and J’ be two ideals of R such that I’ C I and J C J'.We then have
W (I,.J) C W(I',.J"). So that
Gdimg nyM/N= > p(p,M)< > p(p,M)=Gdimy ;) M/N
pEW(I,J) pEW(I',J")
for any submodule N of M. This proves the assertion.

(iii) Assume that M is Noetherian or Artinian. Then M is minimax by definition.
Hence, by (ii), M is (I, J)-minimax. O
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The following proposition is needed in the proof of the main theorem of this

paper.
Proposition 2.6. Let I and J be two ideals of R and let
0> M —-M—M'"—0

be an exact sequence of R-modules. Then M is (I,J)-minimaz if and only if M’

and M" are both (I,J)-minimaz.

Proof. Assume that M’ is a submodule of M and that M"” = M /M'. If M is (I, J)-
minimax, then from the definition clearly that M’and M /M’ are (I, J)-minimax.
Now suppose that M’ and M /M’ are (I,.J)-minimax. Let N be an arbitrary
submodule of M and let p € Ass(M /N)NW (I, J). Then the exact sequence

M + N M M

O =N "~ " w+n "

induces the exact sequence

!

0 — Hompg, (k(p) My ) — Hompg, (k(p), %) — Hompg, (k(p) M,

"M)NN, N, ’M;+Np)’

where k(p) = R, /pR,. Moreover, since Assg(M /N) C ASSR(W) U Ass(779—)

M+N
and the sets AssR(MlT“V)ﬂW(I, J) and AssR(M/LJFN) NW(I,J) are finite, it follows
that G dim(;, ;) (M /N) < oo and so M is (I, J)-minimax. O

Corollary 2.7. Let I and J be two ideals of R. Then any quotient and any finite

direct sum of (I, J)-minimax modules, is (I, J)-minimaz.
Proof. The assertion follows from the definition and Proposition 2.6. |

Corollary 2.8. Let I and J be two ideals of R and let M be a finitely generated R-
module and N be an (I, J)-minimaz R-module. Then Ext (M, N) and Torf (M, N)
are (I, J)-minimaz modules for all i. In particular, the R-modules Ext%(R/I,N)
and Tor{(R/I, N) are (I, J)-minimaz for all i.

Proof. Since R is Noetherian and M is finitely generated, it follows that M possesses

a free resolution
Fe:---—=F,—-F,_1— = F, = Fy—0,

whose free modules have finite ranks.
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Thus Ext’ (M, N) = H'(Homg(F,, N)) is subquotient of a direct sum of finitely
many copies of N. Therefore, it follows from Corollary 2.7 that Exths(M,N) is
(I, J)-minimax for all ¢ > 0. By using a similar proof as above we can deduce that
Torl (M, N) is (I, .J)-minimax for all i > 0. O

Proposition 2.9. Let I and J be two ideas of R and let M be an (I, J)-minimaz
R-module such that Assp(M) C W(I,J). Then H}‘J(M) is (I, J)-minimax for all
i>0.

Proof. If i = 0, then H} ;(M) =T'; s(M) is a submodule of M and by Proposition
2.6, I'y y(M) is (I, J)-minimax. As Assg(M) C W(I,J), by [12, Proposition 1.7],
M is an (I, J)-torsion R-module and so M = I'; ;(M). Consequently, by [12,
Corollary 1.13], H} ;(M) = 0 for all i > 0 and so H} ;(M) is (I, J)-minimax for all
i > 0, as required. OJ

Now we state Gruson’s Theorem that will be needed.

Theorem 2.10. [13, Theorem 4.1] (Gruson’s Theorem) Let M be a finitely gener-
ated R-module. If L is a finitely generated R-module with Supp L C Supp M, then

there exists a chain
0=LoCLyC---CLg=1L,

such that the factors Lj/Lj_l are homomorphic images of a direct sum of finitely

many copies of M

Theorem 2.11. Let I and J be two ideals of R. Let M be a finitely generated
R-module and N an arbitrary R-module. Let t be a non-negative integer such that
Ext}a(M, N) is (I,J)-minimaz for all i« < t. Then for any finitely generated R-
module L with Supp L C Supp M, the module Ext%(L,N) is (I, J)-minimazx for all
1 <t.

Proof. Since Supp L C Supp M, according to Lemma 2.10 there exists a chain

O=LocCcLiC---CLp=1L,
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of R-module such that the modules L;/L;_; are homomorphic images of a direct

sum of finitely many copies of M. Now consider the exact sequences

0-K—-M"—IL—0
0—>L1—>L2—)L2/L1—)0

0—>Lk,1 —)Lk —)Lk/Lk,1 —0

for some positive integer n.

Now from the long exact sequence

oo = Ext’y N(Lj—1,N) = Ext(L; /Lj—1,N) = Ext(L;, N) = Extly(Lj_1,N) — - --

and an easy induction on k, it suffices to prove the case when k& = 1.

Thus there is an exact sequence
0—-K—->M"—>L—->0

for some n € N and some finitely generated R-module K.

Now, we use induction on ¢t. First, Hompg(L, N) is a submodule of Homp(M™, N),
hence in view of the assumption and Corollary 2.7 Ext% (L, N) is (I, J)-minimax.
So assume that ¢ > 0 and that Ext%(L/ ,N) is (I, J)-minimax for every finitely
generated R-module L’ with Supp L’ C Supp M and for all j < t — 1. Now the

exact sequence (*) induces the long exact sequence

oo = Extly 1K, N) — Extbh(L, N) = Exta(M",N) — --- .
Hence, by the inductive hypothesis, Ext};l(K, N)is (I, J)-minimax for all i < ¢. On
the other hand, according to Corollary 2.7, since Ext’y(M™, N) = é Ext% (M, N),

Exth(M™ N) is (I,J)-minimax. Therefore, it follows from Proposition 2.6 that
Ext% (L, N) is (I, J)-minimax for all i <t and the inductive step is complete. [

Corollary 2.12. Let I and J be two ideals of R and let t be a non-negative integer.
Then for any R-module M the following conditions are equivalent:

(i) Extﬁ%(R/I,M) is (I,J)-minimaz for all i < t.

(i) For any ideal I' of R with I' O I, EX‘G’R(R/I’,M) is (I', J)-minimazx for all
1 < t.

(iii) For any finitely generated R-module N with Supp N C W (I,.J), Exth(N, M)
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is (I, J)-minimaz for all i < t.
(iv) For any minimal prime ideal p over I, Extiz(R/p, M) is (I, .J)-minimaz for all
1<t

Proof. (i)= (ii) Since Suppg(R/I') = V(I') € V(I) = Suppg(R/I), we have

Exth(R/I’,M) is (I, J)-minimax for all ¢ < t by Theorem 2.11. Now it follows

from remark 2.5 (ii) that Extl(R/I’, M) is (I, J)-minimax for all i < ¢.

(ii)= (iii) This parts follows from [1, Exercise 7.18] using induction.

(iii)= (iv) Let p be a minimal prime ideal over I. Then Suppg(R/P) = V(p) C

V(I). Hence, EXt%(R/p, M) is I-minimax for all ¢ < ¢t.

(iv)= (i) Let p1,---,pn be the minimal primes of I. Then by assumption, the

R-modules Extﬁ(R/pj, M) are (I, J)-minimax for each j € {1,2,--- ,n}. Hence by

Corollary 2.7, @EthR(R/pj,M) = Exﬂé(@ R/pj, M) is (I, J)-minimax. Since
j=1 j=1

Supp(@ R/p;j) = Supp R/I, it follows from Theorem 2.11 that Ext%(R/I,M) is
j=1
(I, J)-minimax, as required. O

3. (I,J)-COMINIMAX MODULES AND LOCAL COHOMOLOGY

Let R be a Notherian ring and I and J be two ideals of R and M be an R-
module. Recall that M is said to be (I, J)-cofinite if M has support in W(I,J)
and Ext% (R /I, M) is finitely generated R-module for each i. This motivates the

following definition:

Definition 3.1. Let R be a Notherian ring and let I and J be two ideals of
R. We say that an R-module M is (I, J)-cominimax if Supp M C W(I,J) and
Extzk(R/I, M) is (I, J)-minimax for all ¢ > 0.

Example 3.2. (i) Let I and J be two ideals of R and let M be an (I, J)-minimax
R-module such that Supp M C W(I,J). Then it follows from Corollary 2.8 that
M is (I, J)-cominimax. In particular, every minimax R-module with support in
W(I,J)is (I, J)-cominimax.

(ii) Let I and J be two ideals of R. Then every (I, J)-cofinite R-module is (I, J)-
cominimax. In particular, any Noetherian or Arthinian R-module with support in
W(I,J)is (I,J)-cominimax.

(iii) Let I and J be two ideals of R and let N be a pure submodule of an R-module
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M. Then M is (I, J)-cominimax if and only if N and M /N are (I, J)-cominimax.
In fact, P. M. Cohn’s characterization of purity (see [11, Theorem 3.56]) implies

that the sequence
0 — Extix(R/I,N) — Extyy(R/I,M) — Extiz(R/I,M/N) =0

is exact for all ¢ (see also the proof of [10, Proposition 2.7]). Hence, the result

follows from Proposition 2.6.
Proposition 3.3. Let I and J be two ideals of R. Let
0—-M —-M-—M"—0

be an exact sequence of R-modules such that two of the modules are (I, J)-cominimaz.

Then so is the third one.
Proof. The exact sequence
0—->M —>M-—-M" -0
induces a long exact sequence
o= Exty(R/I, M) — Extiy(R/I,M") — Exti " (R/I,M') — Ext'T (R/I,M) — --- .
Now the result follows easily from Proposition 2.6. g

Corollary 3.4. Let I and J be two ideals of R. Let f : M — N be a homomorphism
between two (I, J)-cominimax modules such that one of three modules Ker f, Im f

and Coker f is (I, J)-cominimaz. Then all of them are (I, J)-cominimaz.

Proof. The result follows from Proposition 3.3 and the following exact sequences.

0—-Kerf—-M-—=>Imf—0,

0—Imf— N — Coker f — 0.
O

Proposition 3.5. Let I and J be two ideals of R and let M be an R-module such
that Supp M C W(I,J) and (0 :ps I) has finite Goldie dimension. Then M has

finite Goldie dimension.
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Proof. Since (0 :p; I) has finite Goldie dimension and Supp M C W(I,J), by [5,
Exercise 1.2.27], Assgp(M) is finite. On the other hand, for any p € Assg(M), one
easily has 0 :p, pR, =0 (0, IRyp) pR, since p O I. Then we have
Homg, (k(p), M) = HomRP(Rp/pRp,Mp)

= 0:m, PRy
= 0:(0:p, 1R,) PRp

= Home(Rp/pRp,O M, 1Rp)

= HOHIRP (/ﬂ(p), O :JV[p IRp),
as k(p)-vector spaces, where k(p) = Rp/pRp. Therefore, °(p, M) is finite and so
Gdim M < cc. O

Corollary 3.6. Let I and J be two ideals of R and let M be an (I,J)-cominimaz
R-module. Then M has finite Goldie dimension. In particular the set of associated

primes of M 1is finite.
Proof. By Proposition 3.5. O

Proposition 3.7. Let I and J be two ideals of R. Let M be an R-module such
that Hy ;(M) is (I, J)-cominimaz for all i. Then ExtR(R/I,M) is (I,J)-minimaz
for all i.

Proof. It is well-known that HomR(R/I7 M) 2 0:p I. Then we have

HomR(R/I,M) > 0:yl

= 0 :FIY,](M) I
HOHIR(R/I, F[7J(M))

1%

1%

Ext%(R/I1,T (M)).

Therefor for ¢ = 0 the statement is true. Let ¢ > 0 and do induction on i. We
first reduce to the case I'; s(M) = 0. To do this, let M = M /T’y ;(M). Then we
have the long exact sequence

-+ = Ext(R/I,T; ;(M)) = Ext{(R/I, M) — Ext(R/I, M) — - -,

and the isomorphism H}’J(M) = H}7J(M) for i > 0, by [12, Corollary 1.13]. So in

view of Proposition 2.6, we may assume that M is (I, J)-torsion free. Let E be the
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injective envelop of M and set L := E/M. Since I'y ;(M) = 0, we have I'y ;(E) N
M = 0. It follows that I'; ;(E) = 0. Then HomR(R/I, E) = 0 and we therefore
get the isomorphisms Hj ,(L) = H} (M) and Ext(R/I,L) = Exti{" (R/I, M)

for all ¢ > 0. Now the assertion follows by induction. O

Proposition 3.8. Let I and J be two ideals of R and let M be an R-module such
that Extly(R/I, M) is (I, J)-minimaz for all i. Ift is non-negative integer such that
Hj ;(M) is (I,J)-cominimaz for all i #t, then H} ;(M) is (I, J)-cominimaz.

Proof. We use induction on t. Let M := M /T'; ;(M). Then by [12, Corollary 1.13],
if ¢ > 0, then H}](M) o~ H}](M) and if 4 = 0, then H}](Z\Z) =0. Ift =0, then
H}lyJ(M) is (I, J)-cominimax for all i. Hence by Proposition 3.7, EX‘E%(R/I, M) is
(I, J)-minimax for all . Therefor the exactness of 0 — I'y ;(M) - M — M —
0 implies that Exth(R, J1,T; ;(M)) is (I,J)-minimax for all i. It follows that
;M) is (I,J)-cominimax. Let ¢ > 0 and suppose that the result has been

proved for ¢ — 1. Since I'y ;(M) is (I, J)-cominimax, the exact sequence
-+ = Ext(R/I,T; ;(M)) — Ext{(R/I, M) — Exty(R/I, M) — - --

allows us to assume that M is (I, J)-torsion free. Let E be the injective envelope of
M and put L = E/M. Then T; ;(E) = 0 and Homg(R/I, E) = 0 and we therefore
get the isomorphisms Hj ,(L) = H;H' (M) and Extyp(R/I,L) = Exti{ " (R/I, M)

for all ¢ > 0. Now the assertion follows by induction. O

Corollary 3.9. Let I and J be two ideals of R and let M be an (I,J)-minimaz
R-module. If t is a non- negative integer such that Hy ;(M) is (I,.J)-cominimaz
for alli # t, then H} ;(M) is (I, J)-cominimaz.

Proof. This follows from Corollary 2.8 and Proposition 3.8. g

Proposition 3.10. Let I and J be two ideals of R such that I C J and M an
(I, J)-minimaz R-module. Then Hj ;(M) is (I, J)-cominimaz.

Proof. Since H} ;(M) is a submodule of M, it turns out that HRJ(M) is (I, J)-
cominimax by Proposition 2.6 and Example 3.2 (i). Since I C J, it is easy that
7 7(—) is the identity functor and H} ;(—) = 0 for all i > 0. Therefore Hj ;(M)

is (I, J)-cominimax. O
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4. FINITENESS OF ASSOCIATED PRIMES

In this section, we show that the subjects of the previous sections can be used
to prove a finiteness result about local cohomology modules. In fact, we generalize
the main result about of Azami, Naghipour and Vakili to (I, J)-minimax modules.
The main result is Theorem 4.2. The following theorem will serve to shorten the

proof of the main theorem.

Theorem 4.1. Let I and J be two ideals of R and let M be an R-module. Let
t be a non-negative integer such that Hj ;(M) is (I,J)-cominimaz for all i < t
and Ext}(R/I,M) is (I, J)-minimax. Then fot any (I,J)-minimax submodule N
of Hi ;(M) and for any finitely generated R-module L with Supp L C W (I, J), the
R-module Hompg (L, H} ;(M)/N) is (I,J)-minimaz.

Proof. The exact sequence
0— N — Hp ;(M) — Hj ;(M)/N —0
provides the following exact sequence:
Hompg(L,H} ;(M)) — Hompg(L, H} ;(M)/N) — Extp(L,N) — --- .

By Corollary 2.8, Exty(L, N) is (I, .J)-minimax,and so in view of Proposition
2.6 it is sufficient to show that the R-module Hompg (L, H} ;(M)) is (I, J)-minimax.
By Corollary 2.12, it is enough to show that the R-module Homg(R/I, H} ;(M))
is (I, J)-minimax.

We use induction on t. When ¢ = 0, the R-module Hompg(R/I, M) is (I,J)-
minimax, by assumption. Since 0:p [ =0 :p, ;ar) I, we have

Homp(R/1, HRJ(M)) =~ Hompg(R/I,T1,;(M)) = Homg(R/I, M),

it follows that Homg(R/1I, H} ;(M)) is (I, J)-minimax.

Now suppose, inductively, that ¢ > 0 and that the result is true for ¢ — 1. Since
I'r.7(M) is (I, J)-cominimax, it follows that Extiz(R/I, Iy y(M))is (I, J)-minimax
for all © > 0. On the other hand, the exact sequence

0_>].—‘]7J(M) — M — M/F[,J(M) —0
induces the exact sequence

Ext%(R/I, M) — Extly(R/I, M /T; ;(M)) — Exti (R/I,T 1 (M)).
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Hence, by Proposition 2.3 and the assumption, the R-module Ext(R/I, M /T ;(M))
is (I, J)-minimax. Also since H?’J(M/F],J(M)) = 0 and H;’J(M/F]7J(M)) =
H} ;(M) for all i > 0, it follows that Hj (M /T ;(M))is (I,J)-cominimax for all
i < t. Therefor we may assume that M is (I, J)-torsion free. Let E be an injective
envelope of M and put My := E/M. Then I'y ;(E) = 0 and Homg(R/I,E) = 0.
Consequently, Exty(R/I, My) = Exti ' (R/1, M) and H] ,(My) = H;H' (M) for all
i > 0 (including the case ¢ = 0). The induction hypothesis applied to M; yields that
HomR(R/I,H;j(Ml)) is (1, J)-minimax. Hence Homp(R/I, Hi ;(M)) is (1, J)-

minimax. O

Now we are prepared to prove the main theorem of this section, which is a

generalization of the main result of Azami, Naghipour and Vakili.

Theorem 4.2. Let I and J be two ideals of R and let M be an (I,J)-minimaz
R-module. Let t be a non-negative integer such that Hy ;(M) is (I,.J)-minimaz for
all i < t. Then for any (I,J)-minimax submodule N of H} ;(M), the R-module
Hompg(R/I, H} ;(M)/N) is (I,J)-minimaz. In particular, the Goldie dimension
of HfJ(M)/N is finite and so the set ASSR(H?J(M)/N) is finite.

Proof. Apply Theorem 4.1 and Corollary 2.8. ]

Corollary 4.3. Let R be a Notherian ring and let I,J be two ideals of R and
M a finitely generated R-module. Let Obj(N) (resp. Obj(A)) denote the category
of all Noetherian (resp. Artinian) R-modules and R-homomorphisms. Let t be a
non-negative integer such that Hy ;(M) € Obj(N)UObj(A) for all i < t. Then the
R-module Homp(R/I,H} ;(M)) is (I,J)-minimaz and so the set Assg(H} ;(M))

is finite.

Proof. Apply Theorem 4.1 and the fact that the class of (I, .J)-minimax modules

contains all Noetherian and Artinian modules. O
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