FINITENESS PROPERTIES OF LOCAL COHOMOLOGY MODULES FOR (I, J)-MINIMAX MODULES

J. TAYYEBI MAMAGHANI DEPARTMENT OF AZARBAIJAN HIGHER EDUCATION AND RESEARCH COMPLEX OF TABRIZ, TABRIZ, IRAN E-MAIL: JAVADTAYYEBI@YMAIL.COM

(Received: 2 October 2018, Accepted: 17 December 2018)

ABSTRACT. Let R be a commutative noetherian ring and let I and J be two ideals of R. In this paper, we introduce the concept of (I,J)-minimax R-module and it is shown that if M is an (I,J)-minimax R-module and t a non-negative integer such that $H^i_{I,J}(M)$ is (I,J)-minimax for all i < t, then for any (I,J)-minimax submodule N of $H^t_{I,J}(M)$, the R-module $\operatorname{Hom}_R(R/I,H^t_{I,J}(M)/N)$ is (I,J)-minimax. As a consequence, it follows that the Goldie dimension of $H^t_{I,J}(M)/N$ is finite and so the set of associated primes of $H^t_{I,J}(M)/N$ is finite. This generalizes the main result of Azami, Naghipour and Vakili [2, Theorem 4.2].

AMS Classification: 13D45, 14B15, 13E05.

Keywords: Local Cohomology, Cofinite Module, Minimax Module, Associated Primes.

JOURNAL OF MAHANI MATHEMATICAL RESEARCH CENTER

 $VOL. \ \ 7, \ \, NUMBERS \ \, 1\text{--}2 \ \, (2018) \ \, 79\text{--}94.$

DOI: 10.22103/JMMRC.2018.12807.1072

©MAHANI MATHEMATICAL RESEARCH CENTER

1. Introduction

Throughout this paper, R is a commutative Noetherian ring with non-zero identity. The generalized local cohomology module with respect to a pair of ideals I and J of R is introduced in [12].

We are concerned with the subset

$$W(I,J) = \big\{ p \in \operatorname{Spec}(R) \quad \big| \quad I^n \subseteq p+J \text{ for some integer } n \geq 1 \big\}$$

of Spec(R). For an R-module M, we consider the (I,J)-torsion submodule $\Gamma_{I,J}(M)$ of M which consists of all elements x of M with Supp(Rx) $\subseteq W(I,J)$. By [12, Corollary 1.8], we have $\Gamma_{I,J}(M) = \{x \in M \mid I^n x \subseteq Jx \text{ for some integer } n \geq 1\}$. Furthermore, for an integer i, we define the local cohomology functor $H^i_{I,J}(-)$ with respect to (I,J) to be the i-th right derived functor of $\Gamma_{I,J}(-)$. Note that if J=0, then $H^i_{I,J}(-)$ coincides with the ordinary local cohomology functor $H^i_I(-)$, with the support in the closed subset V(I). On the other hand, if J contains I, then $\Gamma_{I,J}(-)$ is the identity functor and $H^i_{I,J}(-)=0$, for i>0 [12].

In [3], Bordmann and Lashgari showed that if for a finitely generated R-module M and an integer t, the local cohomology modules $H_I^0(M), H_I^1(M), \dots, H_I^{t-1}(M)$ are finitely generated, then the set $\operatorname{Ass}_R(H_I^t(M)/N)$ is finite for every finitely generated submodule N of $H_I^t(M)$.

In [2], Azami, Naghipour and Vakili showed that if M is an I-minimax R-module and t non-negative integer such that $H_I^i(M)$ is I-minimax for all i < t, then for any I-minimax submodule N of $H_I^t(M)$, the R-module $\operatorname{Hom}_R(R/I, H_I^t(M)/N)$ is I-minimax. It follows that the Goldie dimension of $H_I^t(M)/N$ is finite and so the associated primes of $H_a^t(M)/N$ are finite. This generalizes the main result of Brodmann and Lashgari [3]. One of the main tools for proving above mentioned result in [2] is the following statement which is the following proposition.

Proposition 1.1. ([2, Theorem 2.7]) Let R be a Noetherian ring and M be a finitely generated R-module and N an arbitrary R-module. Let t be a non-negative integer such that $\operatorname{Ext}^i_R(M,N)$ is I-minimax for all $i \leq t$. Then for any finitely generated R-module L with $\operatorname{Supp} L \subseteq \operatorname{Supp} M$, $\operatorname{Ext}^i_R(L,N)$ is I-minimax for all $i \leq t$.

This paper is concerned with what might be considered a generalization of the above-mentioned result of Azami, Naghipour and Vakili to the class of (I, J)-minimax modules. More precisely, we shall show that:

Theorem 1.2. Let R be a Noetherian ring and let I and J be two ideas of R and M be an (I,J)-minimax R-module. Let t be a non-negative integer such that $H^i_{I,J}(M)$ is (I,J)-minimax for all i < t. Then for any (I,J)-minimax submodule N of $H^t_{I,J}(M)$ the R-module $\operatorname{Hom}(R/I,H^t_{I,J}(M)/N)$ is (I,J)-minimax. In particular, the Goldie dimension of $H^t_{I,J}(M)/N$ is finite and so the set $\operatorname{Ass}_R(H^t_{I,J}(M)/N)$ is finite.

Recall that an R-module M is said to have finite Goldie dimension (written $G \dim M < \infty$) if M dose not contain an infinite direct sum of non-zero submodules, or equivalently the injective hull E(M) of M decomposes as a finite direct sum of indecomposable (injective) submodules, see [9, Section A6], in particular, [9, Definition 6.2, Proposition 6.4 and 6.12]. One notices that [9] uses uniform dimension instead of Goldie dimension. Also, an R-module M is said to have finite I-relative Goldie dimension if the I-torsion submodule $\Gamma_I(M) := \bigcup_{n \geq 1} (o :_M I^n)$ of M is finitely generated.

An R-module M is said to have finite (I, J)-relative Goldie dimension if the Goldie dimension of the (I, J)-torsion submodule $\Gamma_{I,J}(M)$ of M is finite.

We say that an R-module M is I-minimax if the I-relative Goldie dimension of any quotient module of M is finite. Also, an R-module M is (I, J)-minimax if the (I, J)-relative Goldie dimension of any quotient module of M is finite. One of our tools for proving Theorem 1.2 is the following proposition.

Proposition 1.3. Let R be a Notherian ring and let I and J be ideals of R. Let M be a finitely generated R-module and N an arbitrary R-module. Let t be a non-negative integer such that $\operatorname{Ext}^i_R(M,N)$ is (I,J)-minimax for all $i \leq t$. Then for any finitely generated R-module L with $\operatorname{Supp} L \subseteq \operatorname{Supp} M$, $\operatorname{Ext}^i_R(L,N)$ is (I,J)-minimax for all $i \leq t$.

Let $\tilde{W}(I,J)$ denote the set of all ideals a of R such that $I^n \subseteq a+J$ for some non-negative integer n. We define a partial order on $\tilde{W}(I,J)$ by letting $a \leq b$ if $a \supseteq b$ for $a,b \in \tilde{W}(I,J)$. If $a \leq b$, we have $\Gamma_a(M) \subseteq \Gamma_b(M)$. The order relation on $\tilde{W}(I,J)$

and inclusion maps make $\{\Gamma_a(M)\}_{a\in \tilde{W}(I,J)}$ into a direct system of R-modules. By [12, Theorem 3.2] we have:

$$H_{I,J}^i(M) \cong \varinjlim_{a \in \tilde{W}(I,J)} H_a^i(M)$$

for any integer i, where

$$H_a^i(M) = \underset{n \ge 1}{\varinjlim} H_a^i(M) \operatorname{Ext}_R^i(R/a^n, M).$$

We refer the reader to [4] and [12] for the basic properties of local cohomology.

2. I-MINIMAX, (I, J)-MINIMAX AND GOLDIE DIMENSION

For an R-module M, the Goldie dimension of M is defined as the cardinal of the set of indecomposable submodules of E(M) which appear in a decomposition of E(M) into a direct sum of indecomposable submodules [9, Proposition 6.12]. We shall use $G \dim M$ to denote the Goldie dimension of M. For a prime ideal p, let $\mu^0(p,M)$ denote the 0-th bass number of M with respect to the prime ideal p, that is, $\mu^0(p,M) = \dim_{R_p/pR_p} \operatorname{Hom}_{R_p}(Rp/pR_p,M_p)$. It is known that $\mu^0(p,M) > 0$ if and only if $p \in \operatorname{Ass}_R(M)$. Indeed, for a $p \in \operatorname{Spec}(R)$, let $\operatorname{Hom}_{R_p}(R_p/pR_p,M_p) \neq 0$. So $(\operatorname{Hom}_R(R/p,M))_p \neq 0$ and let $f \in \operatorname{Hom}_R(R/p,M)$ such that $f \neq 0$ in $(\operatorname{Hom}_R(R/p,M))_p$. We show that f is a monomorphism. Contrary, let $r \notin p$ and f(r+p) = 0. It follows that rf(1+p) = 0, then rf = 0. So $\frac{f}{1} = 0$ in $(\operatorname{Hom}_R(R/p,M))_p$. This contraction shows that f is a monomorphism. Hence, $p \in \operatorname{Ass}_R(M)$. Conversely, let $p \in \operatorname{Ass}_R(M)$. It follows that R/p is isomorphic to a submodule of M. Hence R_p/pR_p is isomorphic to a submodule of M. So that $\operatorname{Hom}_{R_p}(R_p/pR_p,M_p) \neq 0$.

It follows from [9, Proposition 6.12] and the decomposition $E(M) = \bigoplus_{p \in Ass_R(M)} \mu^0(p, M) E(R/p)$ of [5, Theorem 3.2.8] that

$$G \dim M = \sum_{p \in Ass_R(M)} \mu^0(p, M).$$

In view of this, for any ideal I of R and any R-module M, the I-relative Goldie dimension of M is defined as

$$G\dim_I M := \sum_{p \in V(I)} \mu^0(p, M).$$

The *I*-relative Goldie dimension of an *R*-module M has been studied in [6]. Motivating, for any two ideals I and J of R and any R-module M, we define the (I, J)-relative Goldie dimension of M as

$$G \dim_{(I,J)} M := \sum_{p \in W(I,J)} \mu^0(p,M).$$

In [15], H. Zöschinger introduced the interesting class of minimax modules and in [15] and [16] gave some equivalent conditions for a module to be minimax. The R-module M is said to be a minimax module if there is a finitely generated submodule N of M, such that M/N is Artinian. It was shown by T. Zink [14] and by E. Enochs [7] that a module over a complete local ring is minimax if and only if it is matlis reflexive. On the other hand, it is known that when R is a Noetherian ring, an R-module is minimax if and only if each of its quotient has finite Goldie dimension, [14] or [16]. This motivates the following definition:

Definition 2.1. Let I and J be two ideals of R. An R-module M is said to be minimax with respect to I or I-minimax if the I-relative Goldie dimension of any quotient module of M is finite, i.e., for any submodule N of M, $G \dim_I(M/N) < \infty$. Also, an R-module M is said to be minimax with respect to I and J or (I,J)-minimax if the (I,J)-relative Goldie dimention of any quotient module of M is finite, i.e., for any submodule N of M, $G \dim_{(I,J)}(M/N) < \infty$.

Lemma 2.2. Let I and J be two ideals of R and M be an injective R-module. Then $\Gamma_{I,J}(M)$ is an injective R-module.

Proof. By [12, Theorem 3.2], we have $H^i_{I,J}(M) \cong \varinjlim_{a \in \tilde{W}(I,J)} H^i_a(M)$. When i = 0, $\Gamma_{I,J}(M) \cong \varinjlim_{a \in \tilde{W}(I,J)} \Gamma_a(M)$, by [12, Theorem 3.2]. $\Gamma_a(M)$ is an injective R-module by [4, Proposition 2.1.4]. Since R is a Notherian ring, by [8, Theorem 3.1.17], $\Gamma_{I,J}(M)$ is an injective R-module.

Proposition 2.3. Let I and J be two ideals of R and M an R-module. Then $G \dim_{(I,J)} M = G \dim \Gamma_{I,J}(M)$.

Proof. Let p be a prime ideal of R. By [12, Proposition 1.11], if $p \in W(I, J)$, then $\Gamma_{I,J}(E(R/p)) = E(R/p)$ and if $p \notin W(I, J)$, then $\Gamma_{I,J}(E(R/p)) = 0$. Hence, using

[5, Theorem 3.2.8], we have

$$\Gamma_{I,J}(E(M)) = \Gamma_{I,J}(\bigoplus_{p \in \operatorname{Spec}(R)} \mu^0(p, M) E(R/p)$$

$$= \bigoplus_{p \in \operatorname{Spec}(R)} \mu^0(p, M) \Gamma_{I,J}(E(R/p))$$

$$= \bigoplus_{p \in W(I,J)} \mu^0(p, M) E(R/p)$$

It is easy to see that $\Gamma_{I,J}(E(M))$ is an essential extension of $\Gamma_{I,J}(M)$. On the other hand $\Gamma_{I,J}(E(M))$ is an injective R-module by Lemma 2.2. Hence $\Gamma_{I,J}(E(M)) \cong E(\Gamma_{I,J}(M))$. Thus

$$G\dim_{(I,J)} M = \sum_{p \in W(I,J)} \mu^0(p,M) = G\dim \Gamma_{I,J}(M).$$

Corollary 2.4. If M is (I, J)-torsion, then M is (I, J)-minimax if and only if M is minimax.

Proof. The assertion follows from Proposition 2.3.

Remark 2.5. Let I and J be two ideals of R and let M be an R-module.

- (i) Assume that I = 0. Then M is (0, J)-minimax if and only if M is minimax.
- (ii) If I' and J' be two ideals of R such that $I' \subseteq I$ and $J \subseteq J'$ and M is (I', J')-minimax, then M is (I, J)-minimax. In particular, every minimax module is (I, J)-minimax.
- (iii) If M is Noethrian or Artinian, then M is (I, J)-minimax.
- *Proof.* (i) Clearly $W(0, J) = \operatorname{Spec}(R)$. Hence $G \dim_{(0,J)} M/N = G \dim M/N$ for any submodule N of M. This complete the proof of (i).
- (ii) Let I' and J' be two ideals of R such that $I' \subseteq I$ and $J \subseteq J'$. We then have $W(I,J) \subseteq W(I',J')$. So that

$$G\dim_{(I,J)} M \big/ N = \sum_{p \in W(I,J)} \mu^0(p,M) \leq \sum_{p \in W(I',J')} \mu^0(p,M) = G\dim_{(I',J')} M \big/ N$$

for any submodule N of M. This proves the assertion.

(iii) Assume that M is Noetherian or Artinian. Then M is minimax by definition. Hence, by (ii), M is (I, J)-minimax.

The following proposition is needed in the proof of the main theorem of this paper.

Proposition 2.6. Let I and J be two ideals of R and let

$$0 \to M' \to M \to M'' \to 0$$

be an exact sequence of R-modules. Then M is (I, J)-minimax if and only if M' and M'' are both (I, J)-minimax.

Proof. Assume that M' is a submodule of M and that M'' = M/M'. If M is (I, J)-minimax, then from the definition clearly that M' and M/M' are (I, J)-minimax. Now suppose that M' and M/M' are (I, J)-minimax. Let N be an arbitrary submodule of M and let $p \in \mathrm{Ass}(M/N) \cap W(I, J)$. Then the exact sequence

$$0 \to \frac{M'+N}{N} \to \frac{M}{N} \to \frac{M}{M'+N} \to 0$$

induces the exact sequence

$$0 \to \operatorname{Hom}_{R_p}(k(p), \frac{M_p'}{M_p' \cap N_p}) \to \operatorname{Hom}_{R_p}(k(p), \frac{M_p}{N_p}) \to \operatorname{Hom}_{R_p}(k(p), \frac{M_p}{M_p' + N_p}),$$

where $k(p) = R_p/pR_p$. Moreover, since $\operatorname{Ass}_R(M/N) \subseteq \operatorname{Ass}_R(\frac{M'+N}{N}) \cup \operatorname{Ass}(\frac{M}{M'+N})$ and the sets $\operatorname{Ass}_R(\frac{M'+N}{N}) \cap W(I,J)$ and $\operatorname{Ass}_R(\frac{M}{M'+N}) \cap W(I,J)$ are finite, it follows that $G \dim_{(I,J)}(M/N) < \infty$ and so M is (I,J)-minimax.

Corollary 2.7. Let I and J be two ideals of R. Then any quotient and any finite direct sum of (I, J)-minimax modules, is (I, J)-minimax.

Proof. The assertion follows from the definition and Proposition 2.6. \Box

Corollary 2.8. Let I and J be two ideals of R and let M be a finitely generated R-module and N be an (I,J)-minimax R-module. Then $\operatorname{Ext}^i_R(M,N)$ and $\operatorname{Tor}^R_i(M,N)$ are (I,J)-minimax modules for all i. In particular, the R-modules $\operatorname{Ext}^i_R(R/I,N)$ and $\operatorname{Tor}^R_i(R/I,N)$ are (I,J)-minimax for all i.

Proof. Since R is Noetherian and M is finitely generated, it follows that M possesses a free resolution

$$\mathbb{F}_{\bullet}: \cdots \to F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to 0,$$

whose free modules have finite ranks.

Thus $\operatorname{Ext}_R^i(M,N)=H^i(\operatorname{Hom}_R(\mathbb{F}_{\bullet},N))$ is subquotient of a direct sum of finitely many copies of N. Therefore, it follows from Corollary 2.7 that $\operatorname{Ext}_R^i(M,N)$ is (I,J)-minimax for all $i\geq 0$. By using a similar proof as above we can deduce that $\operatorname{Tor}_i^R(M,N)$ is (I,J)-minimax for all $i\geq 0$.

Proposition 2.9. Let I and J be two ideas of R and let M be an (I, J)-minimax R-module such that $\mathrm{Ass}_R(M) \subseteq W(I, J)$. Then $H^i_{I,J}(M)$ is (I, J)-minimax for all $i \geq 0$.

Proof. If i=0, then $H^0_{I,J}(M)=\Gamma_{I,J}(M)$ is a submodule of M and by Proposition 2.6, $\Gamma_{I,J}(M)$ is (I,J)-minimax. As $\operatorname{Ass}_R(M)\subseteq W(I,J)$, by [12, Proposition 1.7], M is an (I,J)-torsion R-module and so $M=\Gamma_{I,J}(M)$. Consequently, by [12, Corollary 1.13], $H^i_{I,J}(M)=0$ for all i>0 and so $H^i_{I,J}(M)$ is (I,J)-minimax for all $i\geq 0$, as required.

Now we state Gruson's Theorem that will be needed.

Theorem 2.10. [13, Theorem 4.1] (Gruson's Theorem) Let M be a finitely generated R-module. If L is a finitely generated R-module with $\operatorname{Supp} L \subseteq \operatorname{Supp} M$, then there exists a chain

$$0 = L_0 \subset L_1 \subset \cdots \subset L_k = L$$
,

such that the factors L_j/L_{j-1} are homomorphic images of a direct sum of finitely many copies of M

Theorem 2.11. Let I and J be two ideals of R. Let M be a finitely generated R-module and N an arbitrary R-module. Let t be a non-negative integer such that $\operatorname{Ext}^i_R(M,N)$ is (I,J)-minimax for all $i \leq t$. Then for any finitely generated R-module L with $\operatorname{Supp} L \subseteq \operatorname{Supp} M$, the module $\operatorname{Ext}^i_R(L,N)$ is (I,J)-minimax for all $i \leq t$.

Proof. Since Supp $L \subseteq \text{Supp } M$, according to Lemma 2.10 there exists a chain

$$0 = L_0 \subset L_1 \subset \cdots \subset L_k = L,$$

of R-module such that the modules L_j/L_{j-1} are homomorphic images of a direct sum of finitely many copies of M. Now consider the exact sequences

$$0 \to K \to M^n \to L_1 \to 0$$

$$0 \to L_1 \to L_2 \to L_2/L_1 \to 0$$

$$\vdots$$

$$0 \to L_{k-1} \to L_k \to L_k/L_{k-1} \to 0$$

for some positive integer n.

Now from the long exact sequence

$$\cdots \to \operatorname{Ext}_R^{i-1}(L_{j-1},N) \to \operatorname{Ext}_R^i(L_j/L_{j-1},N) \to \operatorname{Ext}_R^i(L_j,N) \to \operatorname{Ext}_R^i(L_{j-1},N) \to \cdots$$

and an easy induction on k, it suffices to prove the case when k = 1.

Thus there is an exact sequence

$$(*) 0 \to K \to M^n \to L \to 0$$

for some $n \in \mathbb{N}$ and some finitely generated R-module K.

Now, we use induction on t. First, $\operatorname{Hom}_R(L,N)$ is a submodule of $\operatorname{Hom}_R(M^n,N)$, hence in view of the assumption and Corollary 2.7 $\operatorname{Ext}_R^0(L,N)$ is (I,J)-minimax. So assume that t>0 and that $\operatorname{Ext}_R^j(L',N)$ is (I,J)-minimax for every finitely generated R-module L' with $\operatorname{Supp} L'\subseteq\operatorname{Supp} M$ and for all $j\leq t-1$. Now the exact sequence (*) induces the long exact sequence

$$\cdots \to \operatorname{Ext}_R^{i-1}(K,N) \to \operatorname{Ext}_R^i(L,N) \to \operatorname{Ext}_R^i(M^n,N) \to \cdots.$$

Hence, by the inductive hypothesis, $\operatorname{Ext}_R^{i-1}(K,N)$ is (I,J)-minimax for all $i \leq t$. On the other hand, according to Corollary 2.7, since $\operatorname{Ext}_R^i(M^n,N) \cong \bigoplus^n \operatorname{Ext}_R^i(M,N)$, $\operatorname{Ext}_R^i(M^n,N)$ is (I,J)-minimax. Therefore, it follows from Proposition 2.6 that $\operatorname{Ext}_R^i(L,N)$ is (I,J)-minimax for all $i \leq t$ and the inductive step is complete. \square

Corollary 2.12. Let I and J be two ideals of R and let t be a non-negative integer. Then for any R-module M the following conditions are equivalent:

- (i) $\operatorname{Ext}_R^i(R/I, M)$ is (I, J)-minimax for all $i \leq t$.
- (ii) For any ideal I' of R with $I' \supseteq I$, $\operatorname{Ext}_R^i(R/I', M)$ is (I', J)-minimax for all $i \le t$.
- (iii) For any finitely generated R-module N with Supp $N \subseteq W(I,J)$, $\operatorname{Ext}_R^i(N,M)$

is (I, J)-minimax for all $i \leq t$.

(iv) For any minimal prime ideal p over I, $\operatorname{Ext}_{R}^{i}(R/p, M)$ is (I, J)-minimax for all $i \leq t$.

Proof. (i) \Rightarrow (ii) Since $\operatorname{Supp}_R(R/I') = V(I') \subseteq V(I) = \operatorname{Supp}_R(R/I)$, we have $\operatorname{Ext}_{R}^{i}(R/I',M)$ is (I,J)-minimax for all $i \leq t$ by Theorem 2.11. Now it follows from remark 2.5 (ii) that $\operatorname{Ext}_R^i(R/I', M)$ is (I', J)-minimax for all $i \leq t$.

- (ii) ⇒ (iii) This parts follows from [1, Exercise 7.18] using induction.
- (iii) \Rightarrow (iv) Let p be a minimal prime ideal over I. Then $\operatorname{Supp}_R(R/P) = V(p) \subseteq$ V(I). Hence, $\operatorname{Ext}_{R}^{i}(R/p, M)$ is I-minimax for all $i \leq t$.
- (iv) \Rightarrow (i) Let p_1, \dots, p_n be the minimal primes of I. Then by assumption, the

R-modules
$$\operatorname{Ext}_R^i(R/p_j, M)$$
 are (I, J) -minimax for each $j \in \{1, 2, \dots, n\}$. Hence by Corollary 2.7, $\bigoplus_{j=1}^n \operatorname{Ext}_R^i(R/p_j, M) \cong \operatorname{Ext}_R^i(\bigoplus_{j=1}^n R/p_j, M)$ is (I, J) -minimax. Since $\operatorname{Supp}(\bigoplus_{j=1}^n R/p_j) = \operatorname{Supp}(R/I)$, it follows from Theorem 2.11 that $\operatorname{Ext}_R^i(R/I, M)$ is

(I, J)-minimax, as required.

3. (I, J)-Cominimax modules and local cohomology

Let R be a Notherian ring and I and J be two ideals of R and M be an Rmodule. Recall that M is said to be (I, J)-cofinite if M has support in W(I, J)and $\operatorname{Ext}_R^i(R/I,M)$ is finitely generated R-module for each i. This motivates the following definition:

Definition 3.1. Let R be a Notherian ring and let I and J be two ideals of R. We say that an R-module M is (I, J)-cominimax if Supp $M \subseteq W(I, J)$ and $\operatorname{Ext}_R^i(R/I,M)$ is (I,J)-minimax for all $i \geq 0$.

Example 3.2. (i) Let I and J be two ideals of R and let M be an (I, J)-minimax R-module such that Supp $M \subseteq W(I,J)$. Then it follows from Corollary 2.8 that M is (I, J)-cominimax. In particular, every minimax R-module with support in W(I, J) is (I, J)-cominimax.

- (ii) Let I and J be two ideals of R. Then every (I, J)-cofinite R-module is (I, J)cominimax. In particular, any Noetherian or Arthinian R-module with support in W(I,J) is (I,J)-cominimax.
- (iii) Let I and J be two ideals of R and let N be a pure submodule of an R-module

M. Then M is (I, J)-cominimax if and only if N and M/N are (I, J)-cominimax. In fact, P. M. Cohn's characterization of purity (see [11, Theorem 3.56]) implies that the sequence

$$0 \to \operatorname{Ext}^i_R(R/I, N) \to \operatorname{Ext}^i_R(R/I, M) \to \operatorname{Ext}^i_R(R/I, M/N) \to 0$$

is exact for all i (see also the proof of [10, Proposition 2.7]). Hence, the result follows from Proposition 2.6.

Proposition 3.3. Let I and J be two ideals of R. Let

$$0 \to M' \to M \to M'' \to 0$$

be an exact sequence of R-modules such that two of the modules are (I, J)-cominimax. Then so is the third one.

Proof. The exact sequence

$$0 \to M' \to M \to M'' \to 0$$

induces a long exact sequence

$$\cdots \to \operatorname{Ext}^i_R(R/I,M) \to \operatorname{Ext}^i_R(R/I,M'') \to \operatorname{Ext}^{i+1}_R(R/I,M') \to \operatorname{Ext}^{i+1}_R(R/I,M) \to \cdots.$$

Now the result follows easily from Proposition 2.6.

Corollary 3.4. Let I and J be two ideals of R. Let $f: M \to N$ be a homomorphism between two (I, J)-cominimax modules such that one of three modules $\operatorname{Ker} f$, $\operatorname{Im} f$ and $\operatorname{Coker} f$ is (I, J)-cominimax. Then all of them are (I, J)-cominimax.

Proof. The result follows from Proposition 3.3 and the following exact sequences.

$$0 \to \operatorname{Ker} f \to M \to \operatorname{Im} f \to 0,$$

$$0 \to \operatorname{Im} f \to N \to \operatorname{Coker} f \to 0.$$

Proposition 3.5. Let I and J be two ideals of R and let M be an R-module such that $\operatorname{Supp} M \subseteq W(I,J)$ and $(0:_M I)$ has finite Goldie dimension. Then M has finite Goldie dimension.

Proof. Since $(0:_MI)$ has finite Goldie dimension and Supp $M\subseteq W(I,J)$, by [5, Exercise 1.2.27], $\mathrm{Ass}_R(M)$ is finite. On the other hand, for any $p\in\mathrm{Ass}_R(M)$, one easily has $0:_{M_p}pR_p=0:_{(0:_{M_p}IR_p)}pR_p$ since $p\supseteq I$. Then we have

$$\begin{array}{lcl} \operatorname{Hom}_{R_p}(k(p), M_p) & = & \operatorname{Hom}_{R_p}(R_p / pR_p, M_p) \\ \\ & \cong & 0:_{M_p} pR_p \\ \\ & = & 0:_{(0:_{M_p}IR_p)} pR_p \\ \\ & \cong & \operatorname{Hom}_{R_p}(R_p / pR_p, 0:_{M_p}IR_p) \\ \\ & = & \operatorname{Hom}_{R_p}(k(p), 0:_{M_p}IR_p), \end{array}$$

as k(p)-vector spaces, where $k(p) = R_p/pR_p$. Therefore, $\mu^0(p, M)$ is finite and so $G \dim M < \infty$.

Corollary 3.6. Let I and J be two ideals of R and let M be an (I, J)-cominimax R-module. Then M has finite Goldie dimension. In particular the set of associated primes of M is finite.

Proof. By Proposition 3.5.
$$\Box$$

Proposition 3.7. Let I and J be two ideals of R. Let M be an R-module such that $H^i_{I,J}(M)$ is (I,J)-cominimax for all i. Then $\operatorname{Ext}^i_R(R/I,M)$ is (I,J)-minimax for all i.

Proof. It is well-known that $\operatorname{Hom}_R(R/I,M) \cong 0:_M I$. Then we have

$$\begin{array}{rcl} \operatorname{Hom}_R(R/I,M) & \cong & 0:_M I \\ \\ & = & 0:_{\Gamma_{I,J}(M)} I \\ \\ & \cong & \operatorname{Hom}_R(R/I,\Gamma_{I,J}(M)) \\ \\ & \cong & \operatorname{Ext}_R^0(R/I,\Gamma_{I,J}(M)). \end{array}$$

Therefor for i=0 the statement is true. Let i>0 and do induction on i. We first reduce to the case $\Gamma_{I,J}(M)=0$. To do this, let $\bar{M}=M/\Gamma_{I,J}(M)$. Then we have the long exact sequence

$$\cdots \to \operatorname{Ext}^i_R(R\big/I,\Gamma_{I,J}(M)) \to \operatorname{Ext}^i_R(R\big/I,M) \to \operatorname{Ext}^i_R(R\big/I,\bar{M}) \to \cdots,$$

and the isomorphism $H_{I,J}^i(M) \cong H_{I,J}^i(\bar{M})$ for i > 0, by [12, Corollary 1.13]. So in view of Proposition 2.6, we may assume that M is (I,J)-torsion free. Let E be the

injective envelop of M and set L := E/M. Since $\Gamma_{I,J}(M) = 0$, we have $\Gamma_{I,J}(E) \cap M = 0$. It follows that $\Gamma_{I,J}(E) = 0$. Then $\operatorname{Hom}_R(R/I,E) = 0$ and we therefore get the isomorphisms $H^i_{I,J}(L) \cong H^{i+1}_{I,J}(M)$ and $\operatorname{Ext}^i_R(R/I,L) \cong \operatorname{Ext}^{i+1}_R(R/I,M)$ for all $i \geq 0$. Now the assertion follows by induction.

Proposition 3.8. Let I and J be two ideals of R and let M be an R-module such that $\operatorname{Ext}^i_R(R/I,M)$ is (I,J)-minimax for all i. If t is non-negative integer such that $H^i_{I,J}(M)$ is (I,J)-cominimax for all $i \neq t$, then $H^t_{I,J}(M)$ is (I,J)-cominimax.

Proof. We use induction on t. Let $\bar{M}:=M/\Gamma_{I,J}(M)$. Then by [12, Corollary 1.13], if i>0, then $H^i_{I,J}(\bar{M})\cong H^i_{I,J}(M)$ and if i=0, then $H^i_{I,J}(\bar{M})=0$. If t=0, then $H^i_{I,J}(\bar{M})$ is (I,J)-cominimax for all i. Hence by Proposition 3.7, $\operatorname{Ext}^i_R(R/I,\bar{M})$ is (I,J)-minimax for all i. Therefor the exactness of $0\to \Gamma_{I,J}(M)\to M\to \bar{M}\to 0$ implies that $\operatorname{Ext}^i_R(R,/I,\Gamma_{I,J}(M))$ is (I,J)-minimax for all i. It follows that $\Gamma_{I,J}(M)$ is (I,J)-cominimax. Let t>0 and suppose that the result has been proved for t-1. Since $\Gamma_{I,J}(M)$ is (I,J)-cominimax, the exact sequence

$$\cdots \to \operatorname{Ext}^i_R(R/I,\Gamma_{I,J}(M)) \to \operatorname{Ext}^i_R(R/I,M) \to \operatorname{Ext}^i_R(R/I,\bar{M}) \to \cdots$$

allows us to assume that M is (I,J)-torsion free. Let E be the injective envelope of M and put L=E/M. Then $\Gamma_{I,J}(E)=0$ and $\operatorname{Hom}_R(R/I,E)=0$ and we therefore get the isomorphisms $H^i_{I,J}(L)\cong H^{i+1}_{I,J}(M)$ and $\operatorname{Ext}^i_R(R/I,L)\cong \operatorname{Ext}^{i+1}_R(R/I,M)$ for all $i\geq 0$. Now the assertion follows by induction.

Corollary 3.9. Let I and J be two ideals of R and let M be an (I,J)-minimax R-module. If t is a non-negative integer such that $H^i_{I,J}(M)$ is (I,J)-cominimax for all $i \neq t$, then $H^t_{I,J}(M)$ is (I,J)-cominimax.

Proof. This follows from Corollary 2.8 and Proposition 3.8. \Box

Proposition 3.10. Let I and J be two ideals of R such that $I \subseteq J$ and M an (I,J)-minimax R-module. Then $H^i_{I,J}(M)$ is (I,J)-cominimax.

Proof. Since $H_{I,J}^0(M)$ is a submodule of M, it turns out that $H_{I,J}^0(M)$ is (I,J)-cominimax by Proposition 2.6 and Example 3.2 (i). Since $I \subseteq J$, it is easy that $\Gamma_{I,J}(-)$ is the identity functor and $H_{I,J}^i(-) = 0$ for all i > 0. Therefore $H_{I,J}^i(M)$ is (I,J)-cominimax.

4. Finiteness of associated primes

In this section, we show that the subjects of the previous sections can be used to prove a finiteness result about local cohomology modules. In fact, we generalize the main result about of Azami, Naghipour and Vakili to (I, J)-minimax modules. The main result is Theorem 4.2. The following theorem will serve to shorten the proof of the main theorem.

Theorem 4.1. Let I and J be two ideals of R and let M be an R-module. Let t be a non-negative integer such that $H^i_{I,J}(M)$ is (I,J)-cominimax for all i < t and $\operatorname{Ext}^i_R(R/I,M)$ is (I,J)-minimax. Then fot any (I,J)-minimax submodule N of $H^t_{I,J}(M)$ and for any finitely generated R-module L with $\operatorname{Supp} L \subseteq W(I,J)$, the R-module $\operatorname{Hom}_R(L,H^t_{I,J}(M)/N)$ is (I,J)-minimax.

Proof. The exact sequence

$$0 \to N \to H^t_{I,J}(M) \to H^t_{I,J}(M)/N \to 0$$

provides the following exact sequence:

$$\operatorname{Hom}_R(L, H_{I,J}^t(M)) \to \operatorname{Hom}_R(L, H_{I,J}^t(M)/N) \to \operatorname{Ext}_R^1(L, N) \to \cdots$$

By Corollary 2.8, $\operatorname{Ext}^1_R(L,N)$ is (I,J)-minimax, and so in view of Proposition 2.6 it is sufficient to show that the R-module $\operatorname{Hom}_R(L,H^t_{I,J}(M))$ is (I,J)-minimax. By Corollary 2.12, it is enough to show that the R-module $\operatorname{Hom}_R(R/I,H^t_{I,J}(M))$ is (I,J)-minimax.

We use induction on t. When t=0, the R-module $\operatorname{Hom}_R(R/I,M)$ is (I,J)-minimax, by assumption. Since $0:_M I=0:_{\Gamma_{I,J}(M)} I$, we have

$$\operatorname{Hom}_R(R/I, H^0_{I,J}(M)) \cong \operatorname{Hom}_R(R/I, \Gamma_{I,J}(M)) \cong \operatorname{Hom}_R(R/I, M),$$

it follows that $\operatorname{Hom}_R(R/I, H^0_{I,J}(M))$ is (I,J)-minimax.

Now suppose, inductively, that t > 0 and that the result is true for t - 1. Since $\Gamma_{I,J}(M)$ is (I,J)-cominimax, it follows that $\operatorname{Ext}_R^i(R/I,\Gamma_{I,J}(M))$ is (I,J)-minimax for all $i \geq 0$. On the other hand, the exact sequence

$$0 \to \Gamma_{I,J}(M) \to M \to M/\Gamma_{I,J}(M) \to 0$$

induces the exact sequence

$$\operatorname{Ext}_R^t(R/I,M) \to \operatorname{Ext}_R^t(R/I,M/\Gamma_{I,J}(M)) \to \operatorname{Ext}_R^{t+1}(R/I,\Gamma_{I,J}(M)).$$

Hence, by Proposition 2.3 and the assumption, the R-module $\operatorname{Ext}_R^t(R/I,M/\Gamma_{I,J}(M))$ is (I,J)-minimax. Also since $H^0_{I,J}(M/\Gamma_{I,J}(M))=0$ and $H^i_{I,J}(M/\Gamma_{I,J}(M))\cong H^i_{I,J}(M)$ for all i>0, it follows that $H^i_{I,J}(M/\Gamma_{I,J}(M))$ is (I,J)-cominimax for all i< t. Therefor we may assume that M is (I,J)-torsion free. Let E be an injective envelope of M and put $M_1:=E/M$. Then $\Gamma_{I,J}(E)=0$ and $\operatorname{Hom}_R(R/I,E)=0$. Consequently, $\operatorname{Ext}_R^i(R/I,M_1)\cong\operatorname{Ext}_R^{i+1}(R/I,M)$ and $H^i_{I,J}(M_1)\cong H^{i+1}_{I,J}(M)$ for all $i\geq 0$ (including the case i=0). The induction hypothesis applied to M_1 yields that $\operatorname{Hom}_R(R/I,H^{t-1}_{I,J}(M_1))$ is (I,J)-minimax. Hence $\operatorname{Hom}_R(R/I,H^t_{I,J}(M))$ is (I,J)-minimax.

Now we are prepared to prove the main theorem of this section, which is a generalization of the main result of Azami, Naghipour and Vakili.

Theorem 4.2. Let I and J be two ideals of R and let M be an (I,J)-minimax R-module. Let t be a non-negative integer such that $H^i_{I,J}(M)$ is (I,J)-minimax for all i < t. Then for any (I,J)-minimax submodule N of $H^t_{I,J}(M)$, the R-module $\operatorname{Hom}_R(R/I,H^t_{I,J}(M)/N)$ is (I,J)-minimax. In particular, the Goldie dimension of $H^t_{I,J}(M)/N$ is finite and so the set $\operatorname{Ass}_R(H^t_{I,J}(M)/N)$ is finite.

Proof. Apply Theorem 4.1 and Corollary 2.8.

Corollary 4.3. Let R be a Notherian ring and let I,J be two ideals of R and M a finitely generated R-module. Let $\mathrm{Obj}(N)$ (resp. $\mathrm{Obj}(A)$) denote the category of all Noetherian (resp. Artinian) R-modules and R-homomorphisms. Let t be a non-negative integer such that $H^i_{I,J}(M) \in \mathrm{Obj}(N) \cup \mathrm{Obj}(A)$ for all i < t. Then the R-module $\mathrm{Hom}_R(R/I, H^t_{I,J}(M))$ is (I,J)-minimax and so the set $\mathrm{Ass}_R(H^t_{I,J}(M))$ is finite.

Proof. Apply Theorem 4.1 and the fact that the class of (I, J)-minimax modules contains all Noetherian and Artinian modules.

References

- M. F. Atiyah and I. G. Macdonold, Introduction to Commutative Algebra, University of oxford, 1969.
- [2] J. Azami, R. Naghipour and B. Vakili, Finiteness properties of local cohomology modules for <u>a</u>-minimax modules, Proceedings of the American Mathematical Society, Vol. 137, 439-448 (2009).

- [3] M. P. Brodmann and F. A. Lashgari, A finiteness result for associated primes of local cohomology modules, Proceedings of the American Mathematical Society, Vol. 128, 2851-2853 (2000).
- [4] M. P. Brodmann and R. Y. Sharp, Local cohomology: An algebraic introduction with geometric applications, Cambridge University Press, 1998.
- [5] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, Vol. 39, Cambridge Univ. Press, Cambridge, UK. 1998.
- [6] K. Divaani-Azar and M. A. Esmkhani, Artinianness of local cohomology modules of ZD-modules, Communications in Algebra, Vol. 33, 2857-2863 (2005).
- [7] E. Enochs, Flat covers and flat cotorsion modules, Proceedings of the American Mathematical Society, Vol. 92, 179-187 (1984).
- [8] E. E. Enchos, O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter. Berlin. New York. 2000.
- [9] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, Vol. 189, Springer-Verlag, New-York, 1999.
- [10] L. Melkersson, Modules cofinite with respect to an ideal, Journal Of Algebra, Vol. 285, 649-668 (2005).
- $[11]\,$ J. J. Rotman, An introdution to homological algebra, Academic Press, San Diego, 1979.
- [12] R. Takahashi, Y. Yoshino, T. Yoshizawa, Local cohomology based on nonclosed supprot difined by pair of ideals, Journal of Pure and Applied Algebra, Vol. 213, Number 4, 582-600 (2009).
- [13] W. Vasconcelos, Divisor Theory in Module Categories, North-Holland Publishing Company, Amesterdam, 1974.
- [14] T. Zink. Endlichkeitsbedingungen für moduln über einem Noetherschen ring, Mathematische Nachrichten Journal, Vol. 164, 239-252 (1974).
- [15] H. Zöschinger, Minimax-module, Journal Of Algebra Vol. 102, 1-32 (1986), .
- [16] H. Zöschinger, Über die bedingung Maximal für radikalvolle Untermoduln, Hokkaido Mathematical Journal, Vol. 17, 101-116 (1988).