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Abstract. In this article, an efficient numerical technique for solving the two-

dimensional time-dependent Schrödinger equation is presented. At first, we

employ the meshless local Petrov-Galerkin (MLPG) method based on a local

weak formulation to construct a system of discretized equations and then the

solution of time-dependent Schrödinger equation will be approximated. We

use the Moving Kriging (MK) interpolation instead of Moving least Square

(MLS) approximation to construct the MLPG shape functions and hence the

Heaviside step function is chosen as a test function on each subdomain. In this

method, no mesh is needed neither for integration of the local weak form nor

construction of the shape functions. So, the MLPG is truly a meshless method.

Several numerical examples are presented and the results are compared to their

analytical and RBF solutions to illustrate the accuracy and capability of this

algorithm.
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1. Introduction

The nonlinear Schrödinger equation (NLSE) is an important partial differential

equation (PDE) in modern physics with applications in many different branches of

physics and applied mathematics, including nonlinear quantum field theory, con-

densed matter and plasma physics, nonlinear optics and quantum electronics, fluid

mechanics, theory of turbulence and phase transitions, biophysics, star formation

and so on [10].

We consider the two-dimensional time-dependent Schrödinger equation with the

following form:

(1) −i∂u
∂t

= ∇2u+ ω(x, y)u, (x, y) ∈ Ω,

in some connected domain with suitable initial and Dirichlet boundary conditions

and an arbitrary potential function ω(x, y).

Several numerical methods are considered for (1), among others, we mention Sub-

asi [25] using the finite difference schemes, Dehghan and Shokri [13] using collocation

and radial basis functions, Kalita et al. [18] by a semi-discrete higher order compact

scheme, Antoine et al [3] by a Crank-Nicolson implicit scheme, Dehghan [14] using

several finite difference techniques. Authors of [2] used the dual reciprocity bound-

ary element method to study the generalized nonlinear two-dimensional Schrödinger

equation, etc.

1.1. The meshless methods. In recent years, more and more attentions have

been paid to meshless methods, since they do not require mesh to discrete the

problem domain, and they are very flexible in solving boundary value problems,

especially, problems with discontinuities, moving boundaries and severe material

deformations. There are a great number of meshless methods under current de-

velopment, including the reproducing kernel particle method proposed by Liu et al

[21], element-free galerkin method proposed by Belytschko et al [9], point interpo-

lation method by Liu et al [19], smooth particle hydrodynamics method by Gingold

and Monaghan [15], the meshless local Petrov-Galerkin (MLPG) method by Atluri

and Zhu [4, 5], radial point interpolation method by Liu and Gu [20], Wang and

Liu [27], Liu et al [26] . The meshless local Petrov-Galerkin (MLPG) method is a

completely meshless method, which never employs mesh divisions in analysis. The
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concept of MLPG was first proposed by Atluri and Shen [6], and later discussed in

depth by Atluri and Shen [6, 7] and Atluri [8].

The concept of shape function construction is one of the central and most im-

portant issues that significantly effects on the performance of meshfree methods. A

number of ways to create shape functions have been proposed including the mov-

ing least squares (MLS) approximation, radial point interpolation method (RPIM),

and MK interpolation. The MLS shape functions do not have the Kronecker delta

property thereby making the imposition of essential boundary conditions are com-

plicated. In order to eliminate this shortcoming of the MLS shape functions, the

MK interpolation technique, which has the Kronecker delta function and consis-

tency property, can be employed instead of the traditional MLS approximation to

construct the meshless shape functions. The MK interpolation is an approxima-

tion procedure originally employed in geostatistics by using known values and a

semivariogram to determine unknown values [11].

In this paper, we will provide a meshless MLPG method based on MK inter-

polation to obtain the numerical solution for the 2D time-dependent Schrödinger

equation. The organization of this paper is as follows: In Section 2, we briefly ex-

plain the MK interpolation. In Section 3, we describe the numerical implementation

of MLPG method for the linear Schrödinger equation. Moreover, in this section the

construction of local weak form of Schrödinger equation and the time difference ap-

proximation are discussed. Numerical experiments for some examples are reported

in Section 4. Finally, a conclusion is given in Section 5.

2. The moving Kriging interpolation approach

Similar to the MLS scheme, the moving Krigin approach approximates the dis-

tribution function u(x) in a sub-domain Ωs (Ωs ⊂ Ω, Ω is the domain of u(x)). We

use the following procedure to construct the shape functions of the MLPG method

by MK interpolation. Suppose that Ω discretized by a set of suitably scattered

nodes xi (i = 1, 2, . . . , n). It is assumed that only N nodes of this randomly located

nodes are in neighbourhood of a point x (i.e. Ωs) and have effect on u(x). The MK

interpolation uh(x) can be shown in the form of linear combination of the shape
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functions defined as [11, 16]

(2) uh(x) =

N∑
i=1

Φi(x)ui = Φ(x)u, x ∈ Ωs,

in which

(3) Φ(x) = pT (x)A+ rT (x)B.

The matrices A and B are defined as follows [12]:

A = (PTR−1P )−1PTR−1,(4)

B = R−1(I − PA),(5)

where I is an N ×N unit matrix and p(x) has the following vector form

(6) pT (x) = [p1(x) · · · pm(x)],

where pj(x) is a polynomial basis function, which has monomial terms. Also, we

use a linear basis in two-dimensional space in our computations as

pT (x) = [1, x, y], m = 3,

where the quadratic polynomial basis is

pT (x) = [1, x, y, x2, xy, y2], m = 6,

and the cubic polynomial basis as

pT (x) = [1, x, y, x2, xy, y2, x3, x2y, xy2, y3], m = 10.

The matrix P represents the values of polynomial basis functions in Eq (6) at the

given set of nodes as

(7) P =


p1(x1) · · · pm(x1)

· · · · · · · · ·
p1(xN ) · · · pm(xN )

 .
Moreover, the vector r(x) in Eq (3) is given by

(8) rT (x) =
[
γ(x,x1) · · · γ(x,xN )

]
,
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where γ(xi,xj) is the correlation function between any pair of nodes located at xi

and xj . Many different functions can be used as a correlation function γ(xi,xj)

[24]. Here, we use the Gaussian weight function, as

(9) γ(x,xi) =

{
exp[−(di/ci)

2]−exp[−(ri/ci)
2]

1−exp[−(ri/ci)2] , 0 ≤ di ≤ ri,
0, di ≥ ri,

where di = ‖x−xi‖, ci a constant controlling the shape of the weight function and

ri is size of the support domain [1].

Hence, the correlation matrix R[γ(xi,xj)]N×N is given by

(10) R =


γ(x1,x1) · · · γ(x1,xN )

· · · · · · · · ·
γ(xN ,x1) · · · γ(xN ,xN )

 .
The partial derivatives of shape function φi can be obtained as follows

φi,x =
∂Φk(x)

∂x
=

m∑
j

∂pj(x)

∂x
Aji +

N∑
k

∂rk(x)

∂x
Bki,(11)

φi,y =
∂Φk(x)

∂y
=

m∑
j

∂pj(x)

∂y
Aji +

N∑
k

∂rk(x)

∂y
Bki.(12)

Unlike to the shape function of MLS scheme, the shape function obtained by the

MK interpolation has the following δ Kronecker property:

(13) φk(xj) =

{
1, (k = j; k, j = 1, 2, . . . , N),

0, (k 6= j; k, j = 1, 2, . . . , N).

To see the other properties of the MK interpolation one can refer to [11, 16, 12].

3. Local weak formulation

We consider the two-dimensional time-dependent Schrödinger equation with the

following form (i =
√
−1 is imaginary number):

(14) −i∂u
∂t

= ∇2u+ ω(x, y)u, (x, y) ∈ Ω,

subject to Dirichlet boundary condition

u(x, y, t) = g(x, y, t), (x, y) ∈ ∂Ω, 0 < t ≤ T,

and the initial condition

(15) u(x, y, 0) = f(x, y), (x, y) ∈ Ω,
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where f and ω are known functions, while the function u is unknown. The MLPG

formulation constructs the weak form on local sub-domains such as Ωs bounded

by Γs. The local sub-domains overlap each other and covering the full domain Ω .

They could be of any geometric shape and size [4], such as circles in two dimensions

and spheres or cubes in three dimensions. For simplicity, we take them to be a

circular shape. The local weak form of Eq (14) at each x ∈ Ωs can be weighted by

test functions and integrated over a local sub-domain (Fig.1). Then, this equation

can be written as

(16)

∫
Ωs

(i
∂u

∂t
+∇2u+ ωu)νdΩ = 0,

where ν is a test function. Using the divergence theorem, the following equation is

resulted:

Figure 1. Local sub-domains Ωs and global domain Ω.

(17)

∫
Ωs

(i
∂u

∂t
+ωu)νdΩ−

∫
Ωs

(
∂u

∂x

∂ν

∂x
+
∂u

∂y

∂ν

∂y
)dΩ+

∫
∂Ωs

(nx
∂u

∂x
ν+ny

∂u

∂y
ν)dΓ = 0,

where ∂Ωs is the boundary of local sub-domain Ωs. We take Heaviside step function

(18) ν =

{
1, x ∈ Ωs,

0, x /∈ Ωs,
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as the test function in any sub-domain [22, 17], then the local weak form of Eq (17)

arrive to the following integral equation

(19)

∫
Ωs

(i
∂u

∂t
+ ωu)dΩ +

∫
∂Ωs

(nx
∂u

∂x
+ ny

∂u

∂y
)dΓ = 0,

where ∂Ωs = Γs ∪ Ls, Ls is the subsection of the local boundary over which no

boundary conditions are specified and Γs is the subscribe of the local boundary and

the global boundary (Fig.1). So, the local weak form of Eq (19) arrive at

(20)

∫
Ωs

i
∂u

∂t
dΩ +

∫
Ωs

ωudΩ +

∫
Γs

(nx
∂u

∂x
+ny

∂u

∂y
)dΓ +

∫
Ls

(nx
∂u

∂x
+ny

∂u

∂y
)dΓ = 0.

To construct the Dirichlet boundary conditions, the delta function property of

shape functions will be used. The solution of Eq (1) is a function with both the

spatial coordinates and time. Suppose that only N nodes are in neighbourhood of

point x have effect on the numerical solution, so the MK interpolation implies that

(21) u(x, t) =

N∑
j=1

φj(x)uj(t) = Φ(x)u(t).

Substituting this relation in the local weak-form of Eq (20), we obtain the following

discrete equations for all nodes

(22) −iCu̇ = (B +K)u,

in which

Cij =

∫
Ωs

φj dΩ,(23)

Bij =

∫
Ls

(
nx
∂φj
∂x

+ ny
∂φj
∂y

)
dΓ +

∫
Γs

(
nx
∂φj
∂x

+ ny
∂φj
∂y

)
dΓ,

Kij =

∫
Ωs

ωφj dΩ.

Using the backward difference technique to approximate the first order derivative

in Eq (22), results in

u̇ =
∂u

∂t
=

un+1 − un

dt
.

Also, the finite difference approximation for u is as follows

u =
un+1 + un

2
.
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Therefore, Eq (22) can be written as

(24) −iCun+1 − un

dt
= (B +K)

un+1 + un

2
,

or

(25) (iC +
dt

2
(B +K))un+1 = (iC − dt

2
(B +K))un,

where un = u(n.dt). By solving this system the numerical solution for u at the

nodal points will be determined.

4. Numerical examples

To support our method, we present numerical results of the MK-MLPG for the

2D time-dependent Schrödinger equation on five examples. In these examples we

report the L∞ and maximum errors which are defined by

L∞ =
∥∥uexact − unumerical∥∥∞ = max

i

∣∣uexacti − unumericali

∣∣ ,
ε =

∥∥uexact − unumerical∥∥∞∥∥uexact∥∥∞ ,

and in some examples, we report the order of our method in space or time

variables [23] with

c− order =
log
(
E1

E2

)
log
(
h1

h2

) ,
to evaluate the efficiency of our method (where E1 and E2 are maximum errors

correspond to h1 and h2, respectively) . Note that 8 × 8 Gauss points are used in

each local sub-domain Ωs, 7 Gauss points are used on each local boundary Γs and

boundary section Ls for the numerical Gauss integration. Also, we take di = dx/2

, ri = 4di and ci = 4ri in domains and sub-domains for Gaussian weight function

(9).

Remark. We performed our computations by using MATLAB software on a

Core i3− 2100 PC with a 3.10−GHz CPU and 2−GB of memory.
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4.1. Example 4.1. In this example, we consider the time-dependent Schrödinger

Eq (1) in (x, y) ∈ Ω = [0, π]× [0, π], subject to the following initial condition

(26) u(x, y, 0) = sin(x) sin(y),

and Dirichlet boundary conditions which are zero on all sides, with the given po-

tential function as

(27) ω(x, y) = 3, (x, y) ∈ Ω.

The exact solution of this problem is

(28) u(x, y, t) = eit sin(x) sin(y).

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

Figure 2. The regular (121 nodes) and irregular (441 nodes) domains

in example 4.1.

The L∞ and maximum absolute errors for the real and imaginary parts at t =

0.1, 0.3, 0.5, 0.7, 1 with dt = 0.01 on 11×11 uniformed nodes (Fig.2 left) are reported

in Table 1. The last column of Table 1 shows the CPU times.

In Table 2, we report the L∞ error for the real and imaginary parts, maximum

error for different numbers of nodes in the space variables for the MK-MLPG scheme

and c− order of our method with t = 1 and dt = 0.01. Considering the irregular

domain of Fig.2 (right), the maximum error (ε) and CPU times calculated by the

presented method (MK-MLPG) are listed in Table 3. Fig.3, shows a comparison

between numerical results obtained by MK-MLPG method with the exact solution

of Real (left) and Imaginary (right) parts of the temperature at y = π/2 for different

times. In Fig.4, one can observe a comparison between numerical results obtained
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Figure 3. comparison between the exact solution and the results of

present method at y = π/2, for example 4.1.

Figure 4. Plot of the Real (left) and Imaginary (right) parts of nu-

merical and exact solutions for example 4.1.

by MK-MLPG method with the exact solution for the real and imaginary parts at

t = 1s.

These tables and graphs reveal that the results obtained by the MK-MLPG

scheme, are in a good agreement with the exact solutions.

4.2. Example 4.2. We consider Eq (1) in a square domain Ω = [0, 1]× [0, 1] with

the following potential function

(29) ω(x, y) = 1− 2

x2
− 2

y2
,
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Table 1. L∞ , Maximum error and CPU times for example 4.1.

L∞error Max-error(ε) CPU time (s)

t Real Imaginary

0.1 1.02(−4) 4.82(−5) 1.02(−4) 0.4

0.3 1.24(−4) 8.17(−5) 1.34(−4) 0.4

0.5 1.14(−4) 7.93(−5) 1.15(−4) 0.6

0.7 7.88(−5) 1.19(−4) 1.32(−4) 0.7

1 1.08(−4) 1.25(−4) 1.25(−4) 1.0

Table 2. L∞ and Maximum error at t = 1 with dt = 0.01 for example 4.1.

Number of points L∞error Max-error(ε) c− order

Real Imaginary

(11× 11, h = π/10) 1.08(−4) 1.25(−4) 1.25(−4) −

(15× 15, h = π/14) 6.98(−5) 6.85(−5) 7.40(−5) 1.55

(21× 21, h = π/20) 3.52(−5) 4.51(−5) 4.31(−5) 1.51

(41× 41, h = π/40) 2.43(−5) 3.49(−5) 2.13(−5) 1.02

Table 3. The maximum error(ε) for irregular 441 nodes Fig.2 (right) with dt =

0.01 in example 4.1.

time(s) Max-error (ε) CPU Time (s)

0.10 7.18(−2) 5

0.50 1.71(−2) 8

1.00 2.81(−2) 12

subject to the initial and boundary conditions as

(30) u(x, y, 0) = x2y2, (x, y) ∈ Ω,

and

u(0, y, t) = 0, u(1, y, t) = y2 exp(it),

u(x, 0, t) = 0, u(x, 1, t) = x2 exp(it).(31)

The analytical solution of this equation is given in [25] as
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(32) u(x, y, t) = x2y2 exp(it).
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Figure 5. The regular (441 nodes) and irregular (441 nodes) domains

considered in example 4.2.

Table 4. L∞ and Maximum error (ε) with dt = 0.0005 for example 4.2.

L∞ Re part L∞ Im part Max-error(ε)

t MK-MLPG RBF[13] MK-MLPG RBF[13] MK-MLPG RBF[13]

0.1 2.79(−4) 4.04(−4) 2.34(−4) 3.57(−4) 3.18(−4) 4.14(−4)

0.3 2.11(−4) 5.12(−4) 2.31(−4) 3.05(−4) 2.43(−4) 5.13(−4)

0.5 1.81(−4) 4.63(−4) 3.01(−4) 3.95(−4) 3.37(−4) 4.97(−4)

0.7 2.62(−4) 3.89(−4) 1.80(−4) 4.16(−4) 3.03(−4) 5.70(−4)

1 2.51(−4) 3.72(−4) 3.48(−4) 4.12(−4) 4.02(−4) 4.26(−4)

Table 5. L∞ and Maximum error for t = 1 with dt = 0.01 for example 4.2.

Number of points L∞error Max-error(ε) c− order

Real Imaginary

(11× 11, h = 1
10 ) 7.43(−4) 3.36(−4) 3.02(−4) −

(21× 21, h = 1
20 ) 4.25(−4) 6.38(−5) 7.84(−5) 1.94

(41× 41, h = 1
400 ) 1.54(−5) 2.28(−5) 2.70(−5) 1.53

The second and the third columns of Table 4 present L∞ error for the real part

by MK-MLPG and RBF methods [13]. Also, two next columns show L∞ error
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of imaginary part by our method and RBF method [13]. The last two columns

show maximum error of proposed method and RBF scheme [13]. These results are

obtained for 121 uniformed nodes (dx = dy = 0.1) at different times up to t = 1

(first column of Table 4) with dt = 0.0005. As one can see from this table, the

obtained solutions are superior to the results of [13].

0 0.5 1 1.5 2 2.5 3
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Time(s)

u
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Figure 6. Temperature evolution at points A(0.5,0.5) and B( 10
14
, 10
14
),

Real (left) Imaginary (right) parts for example 4.2.

Figure 7. Real (left) and Imaginary (right) parts of numerical and

exact solutions of example 4.2 at t = 1s.



118 ALI HABIBIRAD AND ESMAIL HESAMEDDINI

Table 6. The Maximum errors for irregular 441 nodes Fig.2 (right) with dt =

0.001 for example 4.2.

time(s) Max-error (ε) CPU Time (s)

0.10 1.20(−3) 7

0.50 4.29(−2) 10

1.00 5.96(−2) 14

As in the previous example, in Table 5 we report the L∞ error for the real

and imaginary parts and the maximum error of solution for different numbers of

uniformed nodes (see Fig.5, left) in the space variable with t = 1 and dt = 0.01.

Also, the last column of this table show the c-order of our scheme.

Table 6, shows the maximum error and CPU times in irregular domain (Fig.5

(right)) with 441 nodes and t = 0.1, 0.5, 1, dt = 0.001 for this example. Fig.6, shows

a comparison between the numerical results obtained by MK-MLPG scheme with

the exact solution of Real (left) and Imaginary (right) parts of the temperature

at two points A(0.5, 0.5) and B( 10
14 ,

10
14 ) for different times. The graphs of real

and imaginary parts of the estimated and analytical solutions at time t = 1 with

dt = 0.001 are depicted in Fig.7.

4.3. Example 4.3. Consider Eq (1) in a square domain Ω = [0, 1]× [0, 1] with the

following potential function

(33) ω(x, y) = 3− 2 tanh2 x− 2 tanh2 y.

The analytical solution of this equation is [14]

(34) u(x, y, t) =
i exp(it)

cosh(x) cosh(y)
.

The initial and boundary conditions can be found from the analytical solution as

(35) u(x, y, 0) =
i

cosh(x) cosh(y)
, (x, y) ∈ Ω,

and

u(0, y, t) =
i exp(it)

cosh(y)
, u(1, x, t) =

i exp(it)

cosh(1) cosh(y)
,

u(x, 0, t) =
i exp(it)

cosh(x)
, u(x, 1, t) =

i exp(it)

cosh(1) cosh(x)
.(36)



APPLICATION OF MOVING KRIGING ... — JMMRC VOL. 7, NUMBERS 1-2 (2018) 119

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

4

5

6

x 10
−4

x

Real Part error

y

e
rr

o
r

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

1

2

3

4

5

6

x 10
−4

x

Imaginary Part error

y

e
rr

o
r

Figure 8. Plot of the absolute errors of Real part (left) and Imaginary

part (right) at t = 4s for example 4.3.

Here, we use 11 × 11 regular nodes (dx = dy = 0.1) in the problem domain as

shown in Fig.2 (left). Table 7, compares the numerical results with RBF method [13]

and shows the superiority of our algorithm. In this table, the first column is time

and two next columns are L∞ of real part errors by MK-MLPG and RBF methods

[13], columns four and five represent the L∞ of imaginary part errors by MK-MLPG

and RBF algorithms [13] respectively, the last two columns are maximum errors by

proposed method and RBF scheme [13]. Table 8, show the MK-MLPG results and

the exact solutions on some selected points at t = 4s. This table reveals that, the

MK-MLPG results are in a good agreement with the exact solution even at the

large values of t.

Also, the graph of absolute error between the analytical and numerical (error in

Real (left) and Imaginary (right) parts) solutions at t = 4s are depicted in Fig.8.

Table 7. L∞ and Maximum error (ε) for example 4.3 with dt = 0.001.

.

L∞ Re part L∞ Im part Max-error(ε)

t MK-MLPG RBF[13] MK-MLPG RBF[13] MK-MLPG RBF[13]

0.1 2.33(−6) 2.44(−5) 2.38(−5) 2.99(−5) 2.97(−5) 3.01(−5)

0.3 1.23(−6) 2.95(−5) 2.48(−6) 2.38(−5) 2.74(−6) 3.45(−5)

0.5 2.17(−5) 2.74(−5) 3.15(−5) 3.40(−5) 3.21(−5) 3.67(−5)

0.7 1.09(−5) 2.54(−5) 1.65(−5) 1.86(−5) 1.67(−5) 3.16(−5)

1 1.36(−5) 2.94(−5) 1.40(−5) 2.42(−5) 1.96(−5) 3.32(−5)
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Table 8. Numerical and exact solutions for some selected points at time t = 4s

in example 4.3.

(x, y) Exact Numerical

(0.1, 0.1) 0.7493− 0.6472i 0.7493− 0.6476i

(0.2, 0.2) 0.7273− 0.6282i 0.7272− 0.6285i

(0.3, 0.3) 0.6926− 0.5982i 0.6923− 0.5984i

(0.4, 0.4) 0.6475− 0.5593i 0.6472− 0.5595i

(0.5, 0.5) 0.5952− 0.5141i 0.5948− 0.5142i

(0.6, 0.6) 0.5385− 0.4651i 0.5381− 0.4651i

(0.7, 0.7) 0.4804− 0.4149i 0.4801− 0.4148i

(0.8, 0.8) 0.4231− 0.3654i 0.4229− 0.3654i

(0.9, 0.9) 0.3685− 0.3183i 0.3685− 0.3184i

4.4. Example 4.4. In this case, we consider ω(x, y) = 0 in Eq (1) with the following

initial condition

(37) u(x, y, 0) = e−(x2+y2)−ik0x,

which generates transient Gaussian distribution as follows

(38) u(x, y, t) =
i

i− 4t
e−((x2+y2)+ik0x+ik20t)/(i−4t)),

initially centred at (0, 0) and then moving along the negative x−direction as time

progresses [18]. Here, k0 is the wave number and we take it 2.5. Hence, this is

an open domain problem, and we limited our computational domain to the square

2.5 ≤ x, y ≤ 2.5. The boundary conditions from the exact solution of Eq (25) will

be determined as in the previous examples.

Table 9. L∞ and Maximum error with dt = 0.001 for example 4.4.

L∞ Re part L∞ Im part Max-error(ε)

t MK-MLPG RBF[13] MK-MLPG RBF[13] MK-MLPG RBF[13]

0.10 1.65(−5) 9.58(−5) 2.48(−4) 1.37(−4) 1.59(−4) 1.81(−4)

0.25 2.73(−3) 3.00(−3) 2.59(−3) 2.78(−3) 2.18(−3) 2.29(−3)

0.50 2.57(−3) 3.69(−3) 2.39(−3) 3.60(−3) 1.66(−3) 8.26(−3)

0.75 2.79(−3) 3.69(−3) 3.91(−3) 4.34(−3) 1.94(−2) 1.60(−2)
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Figure 9. Contour plots of modulus for the exact solutions (left) and

numerical solutions (right) at t = 0.1, 0.3 and 0.6, for example 4.4.

The numerical results of MK-MLPG and RBF [13] methods for this example are

reported in Table 9. These results reveal that our method for solving this problem

is superior to RBF method. The contour plot of modulus of exact and MK-MLPG

solutions at t = 0.1, 0.3 and 0.6 with 26 × 26 uniformed nodes (dx = dy = 0.2),

dt = 0.001, are depicted in Fig.9.

4.5. Example 4.5. Finally, we consider the following two-dimensional time-dependent

Schrödinger equation

(39) −i∂u
∂t

= ∇2u− u, (x, y) ∈ [0, 1]× [0, 1],
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Table 10. MK-MLPG and FD[14] solutions for some selected points at time

t = 1s in example 4.5.

(x, y) MK-MLPG FD[14]

(0.1, 0.1) 0.5432 + 0.8451i 0.5430 + 0.8456i

(0.2, 0.2) 0.5518 + 0.8581i 0.5511 + 0.8583i

(0.3, 0.3) 0.5647 + 0.8798i 0.5648 + 0.8796i

(0.4, 0.4) 0.5849 + 0.9095i 0.5841 + 0.9096i

(0.5, 0.5) 0.6098 + 0.9483i 0.6092 + 0.9488i

(0.6, 0.6) 0.6404 + 0.9977i 0.6405 + 0.9975i

(0.7, 0.7) 0.6782 + 1.0561i 0.6781 + 1.0562i

(0.8, 0.8) 0.7225 + 1.1251i 0.7226 + 1.1254i

(0.9, 0.9) 0.7741 + 1.2055i 0.7743 + 1.2059i

subject to the initial condition

(40) u(x, y, 0) = cosh(x) cosh(y),

and the boundary conditions

u(0, y, t) = exp(it) cosh(y), u(1, x, t) = exp(it) cosh(1) cosh(y),

u(x, 0, t) = exp(it) cosh(x), u(x, 1, t) = exp(it) cosh(x) cosh(1).(41)

The exact solution for this example is

u(x, y, 0) = exp(it) cosh(x) cosh(y).

This problem will be solved by our method and Finite difference (FD) method (5,1)

[14]. We apply 121 uniform nodes in the domain [0, 1] × [0, 1] by using t = 1s and

dt = 0.01. Table 10 shows the results of these methods for some nodes. One can see

that, the results of MK-MLPG and FD [14] are almost the same. The Maximum

absolute errors between exact solution and MK-MLPG in Real and Imaginary parts

for different times are shown in columns two and four. Also, the errors of FD [14]

are in columns three and five . Moreover, the last two columns of this table show

the Maximum absolute errors for MK-MLPG and FD [14] methods.

In Table 12, we report the c−order in time variable for our method. These tables

reveal that, the MK-MLPG results are in a good agreement with the FD [14] and

exact solution at different values of t.
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Table 11. L∞ between MK-MLPG and FD[14] methods with dt = 0.01 for

example 4.5.

L∞ Re part L∞ Im part Max-error(ε)

t MK-MLPG FD[14] MK-MLPG FD[14] MK-MLPG FD[14]

0.75 4.92(−3) 5.41(−3) 4.01(−3) 3.54(−3) 1.69(−3) 1.81(−3)

1.00 8.26(−3) 8.37(−3) 8.58(−3) 8.53(−3) 1.81(−4) 1.65(−4)

2.00 7.41(−4) 3.12(−3) 2.32(−3) 2.77(−3) 2.65(−4) 2.94(−4)

3.00 2.61(−4) 1.45(−3) 4.55(−4) 2.81(−3) 3.12(−4) 3.50(−4)

Table 12. The maximum error(ε) and c-order for 221 regular nodes Fig.2 (left)

for t = 1s in example 4.5.

dt Max-error (ε) c-error

0.08 5.51(−3) −

0.04 2.63(−3) 1.07

0.02 6.08(−4) 2.11

0.01 1.81(−4) 1.74

5. Conclusion

In this paper, the numerical solutions of the two dimensional time-dependent

Schrödinger equation are discussed. We proposed a numerical method to solve

this partial differential equation by using the moving Kriging interpolation based

on the meshless local Petrov-Galerkin (MK-MLPG) method. This method has

been successfully applied to this equation. Numerical results were obtained for

five examples and were compared to their analytical and RBF solutions in some

examples and by FD solution in the last example, to confirm the efficiency and

capability of this scheme.
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