
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,379,991 |
تعداد دریافت فایل اصل مقاله | 3,580,057 |
مدلسازی رشدمیکروبی باکتری رالستونیا یوتروفا در تخریب زیستی فنول در راکتور هواراند با لوله مشبک مرکزی | ||
نشریه علوم و مهندسی جداسازی | ||
مقاله 6، دوره 11، شماره 1، تیر 1398، صفحه 64-75 اصل مقاله (1.06 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22103/jsse.2019.2244 | ||
نویسندگان | ||
الهام جلیل نژاد* ؛ سیده مژگان حسینی؛ مهران نعلبند | ||
گروه مهندسی شیمی، دانشگاه صنعتی ارومیه، ارومیه، ایران | ||
چکیده | ||
بر اساس مشاهدات تجربی راکتور هواراند با لوله مشبک داخلی به دلیل مهیا کردن شرایط مناسب جهت رشد میکروبی، بازدهی فرآیند زیستی را به میزان قابلتوجهی افزایش داده و یکی از بیوراکتورهای پرکاربرد در تصفیه پساب به روش بیولوژیکی است. از این رو مدلسازی و شبیهسازی فرآیند تخریبزیستی در این راکتور برای مقاصد طراحی و بهینهسازی عملکرد راکتور ضروری است. در این پژوهش فرآیند تخریب زیستی فنل توسط باکتری رالستونیا یوتروفا و رشد تودهزیستی در راکتور هواراند با لوله مشبک داخلی آزمایشگاهی به روش دینامیک سیالات محاسباتی(CFD) شبیهسازی شد. برای روابط جریان حبابی از مدل آشفته є-k؛ متداوترین مدل به کار رفته برای تشریح جریانهای آشفته استفاده شد. خطوط جریان در نواحی بالارونده و پایینرونده در داخل راکتور هواراند با لوله مشبک داخلی شبیهسازی شده و تغییرات غلظت فنل و پراکندگی غلظت تودهزیستی در شرایط ورودی مختلف با به تصویر کشیدن پروفیلهای غلظت بدستآمد. تطابق خوب نتایج حاصل با دادههای تجربی نشان از اعتبار مدل و صحت شبیهسازی است. . | ||
کلیدواژهها | ||
شبیهسازی CFD؛ رشد توده زیستی؛ راکتور هواراند؛ تخریبزیستی فنل؛ مدل هلدین | ||
مراجع | ||
[1] K. Mohanty, D. Das, and M. N. Biswas (2008) "Treatment of phenolic wastewater in a novel multi-stage external loop airlift reactor using activated carbon", Separation and Purification Technology, 58, 311-319. ## [2] H. Jamshidian, S. Khatami, A. Mogharei, F. Vahabzadeh, and A. Nickzad (2013) "Cometabolic degradation of para-nitrophenol and phenol by Ralstonia eutropha in a Kissiris-immobilized cell bioreactor", Korean Journal of Chemical Engineering, 30, 2052–2058. ## [3] A. Gunay, and M. Cetin, (2013) "Determination of aerobic biodegradation kinetics of olive oil mill wastewater" International Biodeterioration & Biodegradation, 85, 237-242. ## [4] E. Jalilnejad, and F. vahabzadeh, (2013) "Models for the biodegradation kinetics of naphthalene by ralstonia eutropha", Polycyclic Aromatic Compound, 33, 451-466. ## [5] حامد حیدری و سیدمرتضی ضمیر) ۱۳۹۴( "تخریب زیستی بیسفنل توسط باکتری رالستونیا یوتروفا"، کنفرانس بین المللی محیط زیست و منابع طبیعی، شیراز، موسسه عالی علوم و فناوری خوارزمی. ## [6] نوید اعتباری علمداری، علیرضا حبیبی و فرزانه وهاب زاده (۱۳۹۳) "تخریب زیستی فنل توسط رالستونیا ایوتروفای تثبیت یافته بر سنگ آذرین درراکتور بستر چکنده"، پنجمین کنفرانس آب، پساب و پسماند، تهران، شرکت هم اندیشان انرژی کیمیا. ## [7] B. Jajuee, A. Margaritis, D. Karamanev, and M. A. Bergougnou, (2007) "Kinetics of Biodegradation of p-Xylene and Naphthalene and Oxygen Transfer in a Novel Airlift Immobilized Bioreactor", Biotechnology and Bioengineering, 96, 232-243. ## [8] A. Kermanshahipour, D. Karamanev, and A. Margaritis, (2005) "Biodegradation of petroleum hydrocarbons in an immobilized cell airlift bioreactor" Water Research, 39, 3704-3714. ## [9] A. Amani, E. Jalilnejad, and S. M. Mousavi, (2018) "Simulation of phenol biodegradation by Ralstonia eutropha in packed-bed bioreactor with batch recycle mode using CFD", Journal of Industrial and Engineering Chemistry, 59, 310–319. ## [10] Y. G. Farouzatu, (2010) Mixing characteristics of draft tube airlift bioreactor using the electrical resistance tomography, Theses and dissertations, Ryerson University. ## [11] S. Sanjari, F. Vahabzadeh, A. Naderifar, and M. Pesaran, (2014) "Hydrodynamics and mass transfer coefficients of airlift reactors with net draft tubes of different sizes: Production of cyclodextrin glucanotransferase using Bacillus sp. DSM 2523", Starch-Starke, 66, 935-46. ## [12] J. Y. Wu, and W. T. Wu (1991) "Fed-Batch Culture of Saccharomyces cerevisiae in an Airlift Reactor with net draft tube", Biotechnology progress, 7, 230-233. ## [13] A. G. D. Jesu´s, F. J. R. Baez, L. L. Amezcua, C. J. rez-Ramı´rez, N. Ruiz-Ordaz, and J. G. Mayer (2008) "Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation", Journal of Hazardous Materials, 161, 1140–1149. ## [14] E. Jalilnejad, and F. Vahabzadeh (2014) "Use of a packed-bed airlift reactor with net draft tube to study kinetics of naphthalene degradation by Ralstonia eutropha", Environmental Science and Pollution Research, 21, 4592-4604. ## [15] E. Amini, M. R. Mehrnia, S. M. Mousavi, and N. Mostoufi (2013) "Experimental study and computational fluid dynamics simulation of a full-scale membrane bioreactor for municipal wastewater treatment application", Industrial & Engineering Chemistry Research, 52, 9930-9939. ## [16] S. M. Mousavi, S. A. Shojaosadati, J. Golestani, and F. Yazdian, (2010) "CFD simulation and optimization of effective parameters for biomass production in a horizontal tubular loop bioreactor", Chemical Engineering and processing, 49, 1249-1258. ## [17] W. A. Al-Masry (2006) Analysis of Bubble Column Hydrodynamics Using Computational Fluid Dynamics, King Saud University. ## [18] R. Davarnejad, E. Bagheripoor, and A. Sahraei (2012) "CFD Simulation of Scale Influence on the Hydrodynamics of an Internal Loop Airlift Reactor", Scientific Research, 4, 668-674. ## [19] H. P. Luo, and M. H. Al-Dahhan (2011) "Verification and validation of CFD simulations for local flow dynamics in a draft tube airlift bioreactor", Chemical Engineering Science, 66, 907–923. ## [20] S. Ranjbar, H. K. Aghtaei, E. Jalilnejad, and F. Vahabzadeh (2016) "Application of an airlift reactor with a net draft tube in phenol bio-oxidation using Ralstonia eutropha", Desalination and Water Treatment, 57, 1-13. ## [21] M. Ebrahimifakhar, E. Mohsenzadeh, S. Moradi, M. Moraveji, and M. Salimi (2011) "CFD simulation of the hydrodynamics in an internal air lift reactor with two different configurations", Frontiers of Chemical Science and Engineering, 5, 455–462. ## [22] M. K. H. AL-Mashhadani, S. J. Wilkinson, and W. B. Zimmerman (2015) "Airlift bioreactor for biological applications with micro-bubble mediated transport processes", Chemical Engineering Science, 137: 243–253. ## [23] D. Kuzmin, S. Turek, and H. Haario (2005) Finite Element Simulation of Turbulent Bubbly Flows in Gas-liquid Reactors, Ergebnisberichte Angew, University of Dortmund. ## [24] R. Davarnejad, and M. K. Moraveji (2011) "CFD Modeling of Geometrical Parameters Effects on the Hydrodynamics and Mass Transfer in an Airlift Reactor", World Applied Sciences Journal, 15, 890-898. ## [25] A. Sokolichin, G. Eigenberger and A. Lapin (2004) "Simulations of buoyancy driven bubbly flow: Established simplifications and open questions", AIChE Journal, 50, 24–49. ## [26] P. Lestinsky, P. Vayrynen, M. Vecer, and K. Wichterle (2012) "Hydrodynamics of airlift reactor with internal circulation loop: Experiment vs. CFD simulation", Procedia Engineering, 42, 892 – 907. ## [27] M. K. Moraveji, B. Sajjadi, M. Jafarkhani, and R. Davarnejad (2011) "Experimental investigation and CFD simulation of turbulence effect on hydrodynamic and mass transfer in a packed bed airlift internal loop reactor", International Communications in Heat and Mass Transfer, 38, 518–524. ## [28] S. M. Mousavi, A. Jafari, S. Yaghmaei, M. Vossoughi, and I. Turunen (2008) "Experiments and CFD simulation of ferrous bio-oxidation in a bubble column bioreactor", Computers and Chemical Engineering, 32, 1681–1688. ## | ||
آمار تعداد مشاهده مقاله: 462 تعداد دریافت فایل اصل مقاله: 232 |