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Abstract. The objective of the study in this paper is to define M1,M2-

direction curves and M1,M2-donor curves of the spacelike curve γ via the

Bishop frame of type-2 in E3
1. We obtained the necessary and sufficient con-

ditions when the associated curves to be slant helices and general helices via

the Bishop frame of type-2 in E3
1. After defining the spherical indicatrices of

the associated curves, we obtain some relations between associated curves and

their spherical indicatrices in terms of the frames used in the present work.

AMS Classification: 53A04,53B30,53B50.

Keywords: Minkowski 3-space, Bishop frame of type-2, M1,M2-direction curves,

M1,M2-donor curves, slant helices.

1. Introduction

There are lots of interesting and important problems in the theory of curves in

differential geometry. One of the interesting problems is the problem of character-

ization of a regular curve in the theory of curves in the Euclidean, Minkowski and

different ambient spaces, see, [1], [2], [5], [7], and [8]. Also there are special curves
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which are obtained under some definitions such as Smarandache curves, spherical

indicatrices, and curves of constant breadth, and etc.

Special curves are classical differential geometric objects. These curves are ob-

tained by assuming a special property on the original regular curve. Some of

them are Smarandache curves, curves of constant breadth, Bertrand curves, and

Mannheim curves, etc. Studying curves can be differed according to frame used

for curve. In the studies of classical differential geometry of curves, one of the

most used frames is parallel transport frame, also called Bishop frame which is an

alternative frame needed for non-continously differentiable curves on which Bishop

(parallel transport frame) frame is well defined and constructed in Euclidean and its

ambient spaces [1]. L. R. Bishop defined Bishop frame, which is known alternative

or parallel frame of the curves with the help of parallel vector fields [1]. That is why

he defined this frame that curvature may vanish at some points on the curve. That

is, second derivative of the curve may be zero. Numerous recent research papers

related to this concept have been treated, for example, see ([2], [10], [13]).

Choi and Kim introduced the notion of the principal (binormal)-direction curve

and principal (binormal)-donor curve of a Frenet curve in E3 and gave the rela-

tionship of curvature and torsion of its mates [3]. Also, Choi et al. introduced the

notion of the principal (binormal)-direction curve and principal (binormal)-donor

curve of a Frenet curve in E3 and gave the relationship of curvature and torsion

of its mates [4]. New associated curves by using the Bishop frame are obtained by

([6], [12]). S. Yilmaz and M. Turgut examined a new version of the Bishop frame

which is called the Bishop frame of type-2 [13].

The objective of the study in this paper is to define M1, M2-direction curves

and M1, M2-donor curves of non-lightlike curve γ via the Bishop frame of type-

2 in E3
1. We obtained the necessary and sufficient conditions when the associated

curves to be slant helices or general helices via the Bishop frame of type-2 in E3
1.

After defining the spherical indicatrices of the associated curves, we obtain some

relations between associated curves and their spherical indicatrices in terms of the

frames used in the present work.
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2. Preliminaries

The Minkowski three dimensional space E3
1 is a real vector space E3 endowed

with the standard flat Lorentzian metric, given by

(1) 〈, 〉 = −dx21 + dx22 + dx23,

where (x1, x2, x3) is rectangular coordinate system of E3
1, and g is an indefinite

metric. Let u = (u1, u2, u3) and v = (v1, v2, v3) be arbitrary an vectors in E3
1, the

Lorentzian cross product of u and v defined by

u× v = −


−i j k

u1 u2 u3

v1 v2 v3


Recall that a vector v ∈ E3

1 can have one of three Lorentzian characters: it can

be spacelike if g(v, v) > 0 or v = 0; timelike if g(v, v) < 0 and null(lightlike) if

g(v, v) = 0 for v 6= 0. Similarly, an arbitrary curve γ = γ(s) in E3
1 can locally be

spacelike, timelike or null (lightlike) if all of its velocity vector γp are respectively

spacelike, timelike, or null (lightlike), for every s ∈ I ⊂ R. The pseudo-norm of an

arbitrary vector a ∈ E3
1 is given by

‖a‖ =
√
|〈a, a〉|.

The curve γ = γ(s) is called a unit speed curve if velocity vector γp is unit i.e,

‖γp‖ = 1. For vectors v, w ∈ E3
1 it is said to be orthogonal if and only if g(v, w) = 0.

Denote by {T,N,B} the moving Serret-Frenet frame along the curve γ = γ(s) in

the space E3
1 [9].

For a unit speed spacelike curve with first and second curvature(torsion), κ(s)

and τ(s) the following Serret-Frenet formulae in E3
1 are given as

(2)


T p

N p

Bp

 =


0 κ 0

εκ 0 τ

0 τ 0

 .

T

N

B


where ε = ∓1 [9]. If ε = 1, then γ(s) is a spacelike curve with spacelike principal

normal N and timelike binormal B and define Serret-Frenet invariants, ([9]),

T (s) = γ′(s), κ(s) = ‖T ′(s)‖ , N(s) =
T ′(s)

κ(s)
,

B(s) = T (s)×N(s) and τ(s) =< N ′(s), B(s) > .
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If ε = −1, then γ(s) is a spacelike curve with timelike principal normal N and

spacelike binormal B then we write

T (s) = γ′(s), κ(s) =
√
− < T ′(s), T ′(s) >,N(s) =

T ′(s)

κ(s)
,

B(s) = T (s)×N(s) and τ(s) =< N ′(s), B(s) > .

The Lorentzian sphere S21 of radius r > 0 and with the center in the origin of the

space E3
1 is defined by

S21(r) = {p = (p1, p2, p3) ∈ E3
1 : 〈p, p〉 = r2}.

The pseudo-hyperbolic space H2
0 of radius r > 0 and with the center in the origin

of the space E3
1 is defined by

H2
0(r) = {p = (p1, p2, p3) ∈ E3

1 : 〈p, p〉 = −r2}.

The Bishop derivative formula of type-2 of a spacelike curve with spacelike prin-

cipal normal is given

(3)


M ′1(s)

M ′2(s)

B′(s)

 =


0 0 k1

0 0 −k2
−k1 −k2 0

 .

M1(s)

M2(s)

B(s)


in E3

1.

Also, the relation between Frenet and Bishop frames of type-2 is given as

(4)


T (s)

N(s)

B(s)

 =


sinh θ cosh θ 0

cosh θ sinh θ 0

0 0 1

 .

M1(s)

M2(s)

B(s)

 ,
where the angle

(5) θ = arctanh
k2
k1
.

There are also the following expressions

(6) τ(s) =
√
|k22(s)− k21(s)|, κ(s) =

dθ(s)

ds

where κ(s) and τ(s) are the curvature and torsion functions of the curve α(s), see

[13].



ASSOCIATED CURVES OF THE SPACELIKE... — JMMRC VOL. 8, NUMBERS 1-2(2019) 5

Proposition 2.1. ([5]) Let γ(s) be a spacelike curve with curvatures κ and τ.

The curve γ lies on the Lorentzian sphere if and only if

d

ds

[
1

τ

d

ds
(
1

κ
)

]
=
τ

κ
.

Proposition 2.2. ([5]) Let γ(s) be a spacelike curve with curvatures κ and τ.

The curve γ is a general helix if and only if

(7)
κ

τ
= constant.

Proposition 2.3. ([5]) Let γ(s) be a spacelike curve with curvatures κ and τ.

The curve γ is a slant helix if and only if

σ(s) =

[
κ2

(κ2 + τ2)
3
2

(
τ

κ
)′

]
= constant.

Theorem 2.4. Let γ : I → E3
1 be a unit speed spacelike curve with a spacelike

binormal curve with nonzero natural curvatures. Then γ is a slant helix if and only

if
k1
k2

is constant [2].

3. Associated curves of the spacelike curve via the Bishop frame of

type-2

In this section, we define some associated curves of a spacelike curve γ due to

the Bishop frame of type-2 in E3
1. For a Frenet frame γ : I → E3

1, consider a vector

field V given by the Bishop frame of type-2 as follows:

(8) V (s) = u(s)M1(s) + v(s)M2(s) + w(s)B(s),

where u, v, and w are functions on I satisfying

(9) u2(s)− v2(s) + w2(s) = 1.

Then, an integral curve γ(s) of V defined on I is a unit speed curve in E3
1.

Definition 3.1. (Mi−direction curve, i = 1, 2) Let γ be a spacelike curve in E3
1.

An integral curve of Mi is called Mi−direction curve of the spacelike curve γ via

the Bishop frame of type-2.

Remark 3.2. An M1−direction curve is an integral curve of the equation (8)

with u(s) = w(s) = 0, v(s) = 1.

Remark 3.3. An M2−direction curve is an integral curve of the equation (8)

with u(s) = v(s) = 0, w(s) = 1.
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Theorem 3.4. Let γ be a spacelike curve in E3
1 with the curvature κ and

the torsion τ, and γ be the M1−direction curve of the spacelike curve γ with the

curvature κ and the torsion τ . Then we have

T = M1, N = T, B = M2

κ = k1, τ = −k2.

Proof. From Definition 3.1, we can write that

(10) γ′ = T = M1.

Differentiating the expression (10) and then taking its norm, we find

(11) κ = k1

for k1 > 0.

Differentiation of the expressions (10) with using of (11) gives us

(12) N = B.

The vectorial product of T and N is as follows:

(13) B = T ×N.

Using the expressions (10), (12) in (13) we find that

(14) B = M2.

Finally, differentiating (14) and using (12) in it, we have

(15) τ = k2.

Proposition 3.5. Let γ be a spacelike curve in E3
1 and γ be the M1−direction

curve of γ. Then the M1−direction curve of γ equals to γ up to translation if and

only if

u(s) = 0, v(s) = sinh(
∫
k1(s)ds) and w = cosh(

∫
k1(s)ds).

Proof. Differentiating the expression (9) with respect to s gives

(16) uu′ − vv′ + ww′ = 0.

Similarly differentiating (8) with respect to s, we obtain

(17) V ′ = (u′ − wk1)M1 + (v′ − wk2)M2 + (uk1 − vk2 + w′)B.
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Since V ′(s) = γ′′(s) = T
′

= κN, γ is theM1−direction curve of γ, i.e., γ′(s) = T = M1

if and only if

(18)


u′ − wk1 6= 0,

v′ − wk2 = 0,

uk1 − vk2 + w′ = 0.

Multiplying the third equation in (18) with w and substituting it into (16), we

have

(19) vwk2 = uu′ + ww′.

Similarly multiplying the first equation with u and putting such an obtained

equation into (19), we have u(u′ − wk1) = 0. Since u′ − wk2 6= 0, it follows that

u = 0. Hence the solutions of (18) which hold (16) are given by

u(s) = 0, v(s) = sinh(
∫
k1(s)ds), and w = cosh(

∫
k1(s)ds).

Definition 3.6. An integral curve of

sinh(
∫
k1(s)ds)M2(s) + cosh(

∫
k1(s)ds)B(s)

in the expression (8) is called a M1−donor curve of γ.

Theorem 3.7. Let γ be a spacelike curve in E3
1 with the curvature κ and the

torsion τ, and γ be the M2−direction curve of γ with the curvature κ and the

torsion τ . Then we have

T = M2, N = T, B = M1

κ = −k2, τ = k1.

Proof. It is similar to the proof of Theorem 3.5.

Corollary 3.8. Let γ be a spacelike curve in E3
1 and γ be the Mi−direction

curve of γ, i = 1, 2. The Frenet frame of γ is given in terms of the Bishop frame of

type-2 as follows:

(20)

T (s) = sinh(
∫
ki(s)ds)M1(s) + cosh(

∫
ki(s)ds)M2(s),

N(s) = cosh(
∫
ki(s)ds)M1(s) + sinh(

∫
ki(s)ds)M2(s),

B(s) = B(s).

Proof. It is straightforwardly seen by substituting the curvature functions in

Theorem 3.7 into (4).
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Corollary 3.9. If the curve γ is a Mi−donor curve of the curve γ with the

curvature κ and the torsion τ , then the curvature κ and the torsion τ of the spacelike

curve γ are given by

(21) τ =
√
κ2 − τ2, κ = (

τ2

τ2 − κ2
)(
κ

τ
)′

Proof. It is straightforwardly seen by substituting the expressions in Theorem

3.7 into (6).

Corollary 3.10. Let γ be a spacelike curve with the curvature κ and the torsion

τ in E3
1 and γ be the M2−direction curve of γ with the curvature κ and the torsion

τ . Then it satisfies

(22) τ

κ
= coth θ,

τ

κ
= − (τ2 − κ2)

3
2

τ2
(
τ

κ
)′

Proof. It is straightforwardly seen by substituting the expressions in Theorem

3.7 into (5).

Proposition 3.11. Let γ be a spacelike curve in E3
1 and γ be the M2−direction

curve of γ. Then the M2−direction curve of γ equals to γ up to translation if and

only if

u(s) = cosh(−
∫
k1(s)ds), v(s) = sinh(−

∫
k1(s)ds) and w = 0.

Proof. It is similar to Proposition 3.5.

Definition 3.12. An integral curve of

sin(
∫
k1(s)ds)M1(s) + cos(

∫
k1(s)ds)B(s)

in the expreesion (8) is called a M2−donor curve of γ.

4. M i-Bishop spherical images of a regular M1-direction curve γ in E3
1

Definition 4.1. Let γ = γ(s) be an Mi−direction curve of a spacelike curve

γ in E3
1. If we translate the vector field M i (i = 1, 2) of the Bishop frame of

type−2 to the center O of the unit Lorentzian sphere S2, we obtain a spherical

image ϕ = ϕ(sϕ). This curve is called the M i-Bishop spherical image of the regular

spacelike curve γ = γ(s).

Let ϕ = ϕ(sϕ) be the M1 Bishop spherical image of a regular spacelike curve

γ = γ(s). First, we differentiate of the curve ϕ with respect to s:

ϕ′ =
dϕ

dsϕ

dsϕ
ds

= k1B.
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Taking the norm of the both sides of the above equation, then we have

(23) Tϕ = B and
dsϕ
ds

= k1.

Differentiating the expression (23), then we get

T
′
ϕ =

·
Tϕ

dsϕ
ds

= −(k1M1 + k2M2)

or
·
Tϕ = −

(
M1 +

k2

k1
M2

)
,

where we denote derivative according to s by a dash, and to sα by a dot.

We find the first curvature of ϕ as follows:

(24) κϕ =

∥∥∥∥ ·T β∥∥∥∥ =

√√√√∣∣∣∣∣
(
k2

k1

)2

− 1

∣∣∣∣∣ =

√∣∣∣k22 − k21∣∣∣
k1

.

Using the expression (24), then we have the principal normal vector field of ϕ as

Nϕ = − k1√∣∣∣k22 − k21∣∣∣M1 +
k2√∣∣∣k22 − k21∣∣∣M2.

By the cross product of Tϕ ×Nϕ, the binormal vector field of ϕ is obtained as

Bϕ = − k2√∣∣∣k22 − k21∣∣∣M1 +
k1√∣∣∣k22 − k21∣∣∣M2.

By means of the obtained equations, we express the torsion of the M1 Bishop

spherical image of a regular curve γ = γ(s) as follows:

(25) τϕ =

(k1)7
(
k2

k1

)′
∣∣∣k22 − k21∣∣∣ .

Consequently, we determined the Frenet-Serret invariants of the M1 Bishop

spherical image of M1−direction curve γ in terms of the Bishop invariants of type-2.

Considering the equations (24) and (25) by Theorem 2.4, then we have the fol-

lowing corollary:

Corollary 4.2. Let ϕ = ϕ(sϕ) be a M1 Bishop spherical image of a regular

M1−direction curve γ = γ(s). If the spacelike curve γ = γ(s) is a slant helix due to
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the Bishop frameof type 2, then the M1 Bishop spherical image ϕ is a circle in the

osculating plane.

In the light of Propositions 2.2, and 2.3, we give the following results without

proofs:

Corollary 4.3. Let ϕ = ϕ(sϕ) be the M1 Bishop spherical image of a regular

M1−direction curve γ = γ(s). If the spacelike curve γ = γ(s) is a general helix due

to the Bishop frame of type-2, then the Bishop curvatures of ϕ satisfy

(k1)5
(
k2

k1

)′
(k

2

2 − k
2

1)
3
2

= constant.

Corollary 4.4. Let ϕ = ϕ(sϕ) be the M1 Bishop spherical image of a regular

M1−direction curve γ = γ(s). If the spacelike curve γ = γ(s) is a slant helix due to

the Bishop frame of type-2, then the Bishop curvatures of ϕ satisfy
(k1)5

(
k2

k1

)′
(k

2

2 − k
2

1)
3
2

 (k
2

1 − k
2

2)4k1(k
2

2 − k
2

1)3 − (k1)16

[(
k2

k1

)′]2 3
2

= constant.

5. Binormal Bishop spherical images of a regular M1-direction curve

γ in E3
1

Definition 5.1. Let γ = γ(s) be a M1−direction curve of a spacelike curve γ in

E3
1. If we translate the binormal vector field of the Bishop frame of type−2 to the

center O of the unit Lorentzian sphere S2, we obtain a spherical image α = α(sα).

This curve is called the binormal Bishop spherical image of the regular spacelike

curve γ = γ(s).

Let α = α(sα) be the binormal Bishop spherical image of a regular spacelike

curve γ = γ(s). We can write that

α′ =
dα

dsα

dsα
ds

= −(k1M1 + k2M2).

Here, we denote derivative according to s by a dash, and to sα by a dot.
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In terms of type-2 Bishop frame vector field in (3), we obtain the tangent vector

of the binormal Bishop spherical image as follows:

(26)
Tα =

−(k1M1 + k2M2)√∣∣∣k22 − k21∣∣∣ = −k1
k2
M1 −

k2
k2
M2,

where
dsα
ds

=

√∣∣∣k22 − k21∣∣∣ = τ(s) = k2(s).

In order to determine the first curvature of the binormal Bishop spherical image

α, we can write

·
Tα = −(P ′(s)M1 +Q′(s)M2 + (P (s)k1 −Q(s)k2)B),

where

P (s) =
k1√∣∣∣k22 − k21∣∣∣ , and

Q(s) =
k2√∣∣∣k22 − k21∣∣∣ .

Immediately, we arrive at

κα =

∥∥∥∥ ·Tα∥∥∥∥ =
√∣∣(P ′(s))2 + (Q′(s))2 − (P (s)k1 −Q(s)k2)2

∣∣.
So, the principal normal vector field of the binormal Bishop spherical image α is

obtained as

Nα =
−1

κα

{
(P ′(s)M1 +Q′(s)M2 + (P (s)k1 −Q(s)k2)B)

}
By the cross product of Tα × Nα, we have the binormal vector field of the

binormal Bishop spherical image α as

Bα =
1

κα

√∣∣∣k22 − k21∣∣∣
{[
Q(s)k2 − P (s)k1

]
M1 +

[
P (s)k1 −Q(s)k2

]
M2

−
[
Q′(s)k1 + P ′(s)k2

]
B
}
.

By means of the obtained equations, we express the torsion of the binormal

Bishop spherical image α as follows:

(27)

τ =
1

(κα)2

{
k1

[
k1k
′
1k
′
2 + k2k

′2
2 + k

′
2(k

2

1 + k
2

2)′ − (k
2

1 + k
2

2)(k
2

2 + (k
2

1 + k
2

2)k2

]
+k2

[
(k

2

1 + k
2

2)(k
2

1 + (k
2

1 + k
2

2)k1 − k1k
′2
1 − k

′
1k2k

′
2 − k

′
1(k

2

1 + k
2

2)
]}

Consequently, we determined the Frenet-Serret invariants of the binormal Bishop

spherical image of M1−direction curve γ in terms of the Bishop invariants of type-2.
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Corollary 5.2. Let α = α(sα) be a binormal Bishop spherical image of a regular

M1−direction curve γ = γ(s). If the spacelike curve γ = γ(s) is a slant helix due to

the Bishop frame of type-2, then the binormal spherical image α is a circle in the

osculating plane.
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