
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,001 |
تعداد دریافت فایل اصل مقاله | 3,580,066 |
بررسی تنوع ژنتیکی برخی از ارقام تجاری سیب (Malus domestica L.) در استان خراسان رضوی با استفاده از فناوری RAPD-PCR | ||
مجله بیوتکنولوژی کشاورزی | ||
مقاله 6، دوره 11، شماره 1 - شماره پیاپی 33، خرداد 1398، صفحه 119-134 اصل مقاله (3.06 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22103/jab.2019.12697.1076 | ||
نویسندگان | ||
مهیار گرامی1؛ محمود رضا کریمی شهری2؛ پرستو مجیدیان* 3؛ سمیه حیدری شرفدار کلاهی4؛ رضا نیکبخت5 | ||
1استادیار، موسسه آموزش عالی غیر انتفاعی سنا، ساری، ایران | ||
2بخش گیاهپزشکی مرکز تحقیقات کشاورزی و منابع طبیعی، مشهد، ایران | ||
3گروه اصلاح نباتات، مرکز تحقیقات و آموزش کشاورزی و منایع طبیعی مازندران | ||
4دانشکده غیر انتفاعی سنا، ساری، ایران | ||
5موسسه آموزش عالی غیر انتفاعی سنا، ساری، ایران | ||
چکیده | ||
هدف: هدف از این تحقیق بررسی تنوع ژنتیکی ارقام تجاری سیب در استان خراسان رضوی با استفاده از 40 آغازگر RAPD بود. مواد و روشها: DNA از برگهای جوان درخت سیب جمع آوری و با استفاده از روش دلاپورتا استخراج شد. به منظور بررسی چندشکلی، واکنش زنجیره ای پلیمراز برای هر آغازگر انجام و شاخص های نشانگری محاسبه شدند. تشابه ژنتیکی و گروهبندی نمونهها به ترتیب بر اساس ضریب تشابه جاکارد و روش UPGMA و تجزیه PcoA به کمک نرم افزارNTSYS-PC نسخه 2.2 انجام شد. ساختار ژنتیکی جمعیت سیب مورد مطالعه نیز با استفاده از نرم افزار STRUCTURE نسخه 2.3 ارزیابی شد. نتایج: بر اساس نتایج بدست آمده، بیشترین باند چندشکل متعلق به آغازگر OPA7 و کمترین باند چندشکل مربوط به آغازگر OPJ13 بود. بیشترین و کمترین میزان PIC به ترتیب در آغازگرهای OPA4 (48/0) و OPM6 (2/0) دیده شد. طبق نتایج تجزیه کلاستر با روش UPGMA، ارقام مورد نظر در 2 گروه اصلی و 5 زیرگروه دستهبندی شدند. بیشترین تشابه بین ارقام گلاب اصفهان-گلمکانی، Margenduft-Low Red Roem Beauty و علیموری خراسان-Dalago و کمترین تشابه بین ارقام گلاب اصفهان- Fuji Rossa و گلاب اصفهان-Low Red Roem Beauty تشخیص داده شد. گروهبندی نمونههای سیب بر اساس تجزیه PcoA و روش UPGMA متفاوت بود. به علاوه، نتایج بدست آمده از آنالیز Bayesian بیانگر عدم اختلاط تبار ارقام سیب مورد مطالعه بود. نتیجهگیری: بر اساس نتایج به دست آمده از این تحقیق، میتوان از نشانگر RAPD در شناسایی نواحی چندشکلی، تخمین فاصله ژنتیکی و مدیریت ژنوتیپ و ارقام سیب استفاده کرد. | ||
کلیدواژهها | ||
سیب؛ تشابه ژنتیکی؛ نشانگر مولکولی؛ تجزیه PcoA؛ ساختار ژنتیکی | ||
مراجع | ||
References Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Human Genet 32, 314. Dar JA, Wani AA, Dhar MK (2017) Assessment of the genetic diversity of apple (Malus× domestica Borkh.) cultivars grown in the Kashmir Valley using microsatellite Markers. J King Saud Uni Sci 31, 194-201. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA mini preparation: version II. Plant Mol Biol Rep 1, 19-21. Dunemann F, Kahnau R, Schmidt H (1994) Genetic relationships in Malus evaluated by RAPD ‘fingerprinting’of cultivars and wild species. Plant Breed 113, 150-159. Fagoria GL, Ranwah BR, Saharan V (2013) Diversity analysis in custard apple using RAPD analysis. Indian J Horticult 70, 279-282. Farrokhi J, Darvishzadeh R, Naseri L et al. (2011) Evaluation of genetic diversity among Iranian apple (Malus domestica Borkh.) cultivars and landraces using simple sequence repeat markers. Australian J Crop Sci 5, 815. FAOSTAT (2017). http://www.fao.org/faostat/en/#data/QC/visualize. Gasi F, Simon S, Pojskic N et al. (2013) Evaluation of apple (Malus× domestica) genetic resources in Bosnia and Herzegovina using microsatellite markers. HortScience 48, 13-21. Goulao L, Oliveira CM (2001) Molecular characterisation of cultivars of apple (Malus× domestica Borkh.) using microsatellite (SSR and ISSR) markers. Euphytica 122, 81-89. Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Inter 2015, 1-14. Guimaraes JFR, Nietsche S, Costa MR et al. (2014) Genetic diversity in sugar apple (Annona squamosa L.) by using RAPD markers. Rev Ceres 60, 428-431. Jarausch W, Saillard C, Helliot B et al. (2000) Genetic variability of apple proliferation phytoplasmas as determined by PCR-RFLP and sequencing of a non-ribosomal fragment. Mol Cell Probes 14, 17-24. Karimi MR, Dehvari V, Hajiyan M (2011) Genetics diversity of some grape genotypes by ISSR and RAPD markers. European J Horticult Sci 76, 201-207. Kenis K, Keulemans J (2005) Genetic linkage maps of two apple cultivars (Malus× domestica Borkh.) based on AFLP and microsatellite markers. Mole Breed 15, 205-219. Larsen B, Toldam-Andersen TB, Pedersen C, Ørgaard M (2017) Unravelling genetic diversity and cultivar parentage in the Danish apple gene bank collection. Tree Genet Genomes 13, 14. Mokhtarian PL, Van Herick D (2016) Quantifying residential self-selection effects: A review of methods and findings from applications of propensity score and sample selection approaches. J Transp Land Use 9, 9-28. Odong TL, Van Heerwaarden J, Jansen J et al. (2011) Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data? Theor Appl Genet 123, 195-205. Okcu M, Kalkışım Ö, Okcu Z et al. (2015) Determination of genetic diversity among wild grown apples from eastern black sea region in Turkey using ISSR and RAPDs markers. Erwerbs-Obstbau 57, 171-177. Omasheva ME, Pozharsky AS, Smailov BB et al. (2018) Genetic diversity of apple cultivars growing in Kazakhstan. Russian J Genet 54, 176-187. Oraguzie NC, Gardiner SE, Basset HC et al. (2001) Genetic diversity and relationships in Malus sp. germplasm collections as determined by randomly amplified polymorphic DNA. J Am Soc Hortic Sci 126, 318-328. Patzak J, Paprštein F, Henychová A, Sedlák J (2012) Comparison of genetic diversity structure analyses of SSR molecular marker data within apple (Malus× domestica) genetic resources. Genome 55, 647-665. Pereira‐Lorenzo S, Urrestarazu J, Ramos‐Cabrer AM et al. (2017) Analysis of the genetic diversity and structure of the Spanish apple genetic resources suggests the existence of an Iberian genepool. Annal Appl Biol 171, 424-440. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945-959. Roche P, Alston FH, Maliepaard C et al. (1997) RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (Sd1) in apple. Theor Appl Genet 94, 528-533. Roldan-Ruiz I, Dendauw J, Van Bockstaele E et al. (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6, 125-134. Savelyeva EN, Kudryavtsev AM (2015) AFLP analysis of genetic diversity in the genus Mallus Mill. (Apple). Russian J Genet 51, 966-973. Soengas P, Velasco P, Padilla G et al. (2006) Genetic relationships among Brassica napus crops based on SSR markers. HortScience 41, 1195-1199. Urrestarazu J, Denancé C, Ravon E et al. (2016) Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biol 16, 130. Velasco R, Zharkikh A, Affourtit J et al. (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genet 42, 833–839. | ||
آمار تعداد مشاهده مقاله: 591 تعداد دریافت فایل اصل مقاله: 448 |