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Abstract. The largest class of hyperstructures is the one which satisfies the

weak properties; these are called Hv-structures. In this paper we introduce a

special product of elements in Hv-group and define a new class of Hv-groups

called strongly Hv-groups. Then we show that in strongly Hv-groups β = β∗.

Also we express θ-hyperoperation and investigate some of its properties in

connection with strongly Hv-groups.
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1. Introduction

The first definition of hyperoperation and hypergroup was adverted by Frederic

Marty in the 8th Congress of Scandinavian Mathematicians in 1934. In 1990, in

Greece, T. Vougiouklis introduced the concept of the weak hyperstructures which

now are named Hv-structures. Over the last 28 years this class of hyperstructures,

which is the largest, has been studied from several aspects as well as in connection

with many other topics of mathematics. Basically, the study of Hv-structures has
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been continued in many directions by T. Vougiouklis, B. Davvaz, S. Spartalis, A.

Dramalidis, S. Hoskova, and some other mathematicians. We invite the readers for

more study about hyperstructure theory and its applications to [1], [2], [3], [4], [7],

[13] and [14]. We recall the following definitions from [1].

Definition 1.1. Let H be a non-empty set and ∗ : H×H −→ P∗
(H) be a hyperop-

eration. The couple (H, ∗) is called a hypergroupoid. For any two non-empty subset

A and B of H and x ∈ H, we define

A ∗B =
⋃

a∈A,b∈B

a ∗ b , A ∗ x = A ∗ {x}.

Definition 1.2. A hypergroupoid (H, ∗) is called hypergroup if for all (x, y, z) ∈ H3,

it satisfies the following conditions:

(1) (x ∗ y) ∗ z = x ∗ (y ∗ z), which means that⋃
u∈x∗y

u ∗ z =
⋃

v∈y∗z
x ∗ v,

(2) x ∗H = H = H ∗ x.

Definition 1.3. [2]. A hypergroupoid (H, ∗) is called a Hv-group if the following

axioms hold:

(1) x ∗ (y ∗ z) ∩ (x ∗ y) ∗ z 6= ∅ for all (x, y, z) ∈ H3; (weak associativity)

(2) x ∗H = H = H ∗ x for all x in H. (reproduction)

In the following for (x, y) ∈ (H2, ∗), we write xy instead of x ∗ y.

Example 1.4. ( [2], Example 6.1.2 ). Let (G, ·) be a group and R an equivalence

relation on G. In G
R consider the hyperaction � defined by

−
x �

−
y= {−z | z ∈−x ·

−
y},

where
−
x denotes the equivalence class of the element x. Then (G,�) is an Hv-group

which is not always a hypergroup.

2. Strongly Hv-groups

Consider a special product of elements of an Hv-group H. We introduce a no-

tation as follows. Let (x1, x2, ..., xn) ∈ Hn and Vx,n = V (x1, x2, ..., xn) be the set
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of all finite products of x1, x2, ..., xn, respectively. Also let Vn = {V (x1, x2, ..., xn) |
(x1, x2, ..., xn) ∈ Hn} and V = ∪n≥1Vn. For example

Vx,2 = {x1x2}, x = (x1, x2)

Vx,3 = {x1(x2x3), (x1x2)x3}, x = (x1, x2, x3)

Vx,4 = {x1[x2(x3x4)], x1[(x2x3)x4], [(x1x2)x3]x4, [x1(x2x3)]x4, (x1x2)(x3x4)},

x = (x1, x2, x3, x4)

Also let

Ux,2 = U(x1, x2) = {x1x2} = x1x2

Ux,3 = U(x1, x2, x3) = {(x1x2)x3} = (x1x2)x3

.

.

.

Ux,n+1 = U(x1, x2, ..., xn+1) = Ux,nxn+1.

Let Un = {Ux,n = U(x1, x2, ..., xn) | (x1, x2, ..., xn) ∈ Hn} and U = ∪n≥1Un. It is

clear that U ⊆ V. Now we define the class of strongly Hv-groups.

Definition 2.1. Let H be a Hv-group. We say that H is a strongly Hv-group if

p ⊆ Ux,n for all p ∈ Vx,n and n ∈ N.

Remark 2.2. Due to the above notation if H is a strongly Hv-group then for all

n,m ∈ N we have UnUm ⊆ Un+m.

Proposition 2.3. The Hv-group H is strongly if and only if for all (x, y, z) ∈ H3,

x(yz) ⊆ (xy)z.

Proof. Let H be strogly Hv-group, then by above notation it is clear that for all

(x, y, z) ∈ H3, x(yz) ⊆ (xy)z. We prove the converse by induction on n. Let x =

(x1, x2, ..., xn) ∈ H and v ∈ Vx,n = V (x1, x2, ..., xn). If n = 3, then by assumption

we have x1(x2x3) ⊆ (x1x2)x3 = U3. Thus p ⊆ Ux,3, for all p ∈ Vx,3. Now let the

the problem be true for all k < n. We have v = wz such that w ∈ V (x1, ...xr)

and z ∈ V (xr+1, ...xn), where r < n. So there exist Ux,r, Ux,n−r such that w ⊆
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Ux,r and z ⊆ Ux,n−r. Thus v = wz ⊆ Ux,rUx,n−r = (Ux,r−1xr)(Ux,n−r−1xn) ⊆
[(Ux,r−1xr)Ux,n−r−1]xn ⊆ Ux,n−1xn = Ux,n. This completes the proof. �

Corollary 2.4. The Hv-group H is strongly if and only if for all subsets A,B,C

of H, A(BC) ⊆ (AB)C.

The main tools to study hyperstructures are the fundamental relations β∗, γ∗

and ε∗, which are defined, in Hv-groups, Hv-ring and Hv-vector spaces, as the

smallest equivalences so that the quotients would be group, ring and vector space,

respectively. These relations were introduced by T. Vougiouklis [6, 7]. A way to

find the fundamental class is given by theorems as the following [8, 9, 10].

It is defined the relation β in Hv-group H by setting xβy if and only if {x, y} ⊂ p,
for some p ∈ Vz,n = V (z1, ..., zn) and n ∈ N and (z1, ..., zn) ∈ Hn.

Theorem 2.5. ([12], Theorem 1) Let H be an Hv-group. Then β∗ is the transitive

closure of β.

It has been proved that if H is a hypergroup then β = β∗ (see [5]). But in Hv-

group so far not proven that β = β∗. In the following we show that by considering

special products to wit in strongly Hv-groups we can prove that β = β∗. First we

express the below definitions and explain the theorems such that their proofs in

Hv-groups, due to the Proposition 2.3, are similar proving in hypergroups, that we

avoid presenting their proofs. These theorems are expressed in [1] completely.

Definition 2.6. Let A be a subset of a Hv-group H. A is called complete part if

the following implication is valid:

∀n ∈ N; ∀p ∈ Vx,n; p ∩A 6= ∅ ⇒ p ⊆ A.

Definition 2.7. Let A be a non-empty subset of Hv-group H, the intersection of the

subsets of H which are complete parts and contain A is called the complete closure

of A in H; it will be denoted by C(A).

Theorem 2.8. Let A be a non-empty subset of Hv-group H, and let K1(A) = A,

Kn+1(A) = {x ∈ H | ∃m ∈ N, ∃p ∈ Vy,m; x ∈ p, p ∩ Kn(A) 6= ∅}. Let

K(A) = ∪n≥1Kn(A). Then K(A) = C(A). (Note that Vy,m = V (y1, ..., ym)).

Proof. It is necessary to prove that i) K(A) is a complete part and ii) if A ⊆ B and

B is complete part then K(A) ⊆ B.
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i) Let m ∈ N and p ∈ Vy,m and p ∩K(A) 6= ∅. Then there exists n ∈ N such that

p ∩Kn(A) 6= ∅, from which follows p ⊆ Kn+1(A) ⊆ K(A).

ii) A ⊆ K1(A). Suppose Kn(A) ⊆ B, this implies that Kn+1(A) ⊆ B, for every

n ∈ N. �

Theorem 2.9. The relation xKy ⇔ x ∈ C(y) = ∪n≥1Kn(y) is an equivalence.

Proof. K is clearly reflexive. Now let xKy and yKz. If P is a comlete part and

z ∈ P , then C(z) ⊆ P thus y ∈ P and consequently x ∈ C(y) ⊆ P and so xKz. �

Theorem 2.10. For all x, y in Hv-group H, we have xKy ⇔ xβ∗y.

Proof. The proof is similar to the proof of Theorem 57 in [1]. �

Definition 2.11. Let H be a Hv-group and ϕH : H −→ H

β∗
the canonical projection.

The kernel of ϕH is called heart(or core) of H and denoted by ωH , i.e. ωH = {x ∈
H | ϕH(x) = 1}.

Theorem 2.12. ωH is the smallest subhypergroup of H that is complete part.

Remark 2.13. For all z ∈ ωH we have ωH = C(z), since

x ∈ C(z)⇔ xKz ⇔ xβ∗z ⇔−x=
−
y⇔ ϕH(x) = ϕH(z) = 1⇔ x ∈ ωH .

Theorem 2.14. If B is a non-empty subset of Hv-group H, then ϕ−1H ϕ(B) =

ωHB = BωH = C(B) = ∪b∈BC(b).

Proof. The structure of the proof is like to the proof of Theorem 66 in [1]. �

Corollary 2.15. By Theorems 2.9, 2.10, 2.14 for all x ∈ H we obtain

β∗(x) = {y | yβ∗x} = {y | yKx} = {y | y ∈ C(x)} = {y | y ∈ xωH}

Corollary 2.16. For all (x, y) ∈ H2, we have xβ∗y ⇔ xKy ⇔ y ∈ C(x) = xωH .

Now let P (z) be as follows:

P (z) = {Ux,n ∈ Un | z ∈ Ux,n, n ∈ N}.

We set M(z) is the union of P (z) that is M(z) = ∪Ux,n∈P (z)Ux,n.

Theorem 2.17. Let H be a strongly Hv-group and z ∈ H. Then M(z) is a complete

part.
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Proof. Let p ∈ Vx,n be a finite products of x1, ..., xn and p ∩M(z) 6= ∅. Assume

a ∈ p∩M(z), so there exists Uy,m ∈ P (z) such that a ∈ Uy,m, z ∈ Uy,m. Because H

is strongly Hv-group there exists Ux,n ∈ U such that p ⊆ Ux,n. By reproductivity

property, there exists (w, b) ∈ H2 such that xn ∈ wz and z ∈ ab. Therefore

p ⊆ Ux,n = Ux,n−1xn ⊆ Ux,n−1(wz) ⊆ (Ux,n−1w)z ⊆ (Ux,n−1w)(ab)

⊆ (Ux,n−1w)(Uy,mb) ⊆ [(Ux,n−1w)Uy,m]b

⊆ Ut,n+mb = Ut,kb.

Also

z ∈ ab ⊆ pb ⊆ Unb ⊆ [Ux,n−1xn]b ⊆ [Ux,n−1(wz)]b

⊆ [(Ux,n−1w)z]b ⊆ [(Ux,n−1w)Uy,m]b

⊆ Ut,n+mb = Ut,kb.

So Ut,kb ∈ P (z) and p ⊆ Ut,kb ⊆M(z) and this completes the proof. �

Corollary 2.18. For all z ∈ ωH , we have M(z) = ωH .

Proof. Let Ux,n ∈ P (z), so z ∈ Ux,n ∩ ωH . Since ωH is complete thus Ux,n ⊆ ωH

and M(z) = ∪Ux,n∈P (z)Ux,n ⊆ ωH . On the other hand since M(z) is complete,

z ∈ M(z) and C(z) is the smallest complete part that contains z so C(z) ⊆ M(z)

and by 2.13 ωH = C(z) ⊆M(z). Therefore M(z) = ωH for all z ∈ ωH . �

Theorem 2.19. If H is a strongly Hv-group, then β = β∗.

Proof. We know that β ⊆ β∗. Let x, y ∈ H and xβ∗y. Then by Corollary 2.16 we

have

xβ∗y ⇔ xKy ⇔ y ∈ C(x) = xωH ,

Therefore ∃v, w ∈ ωH such that x ∈ xv and y ∈ xw. According to Corollary 2.18

there exist Ut,n ∈ P (v) such that w ∈ Ut,n, where Ut,n = Ut,n−1tn. Also v ∈ Ut,n
and thus vβw. Therefore {x, y} ⊆ x(Ut,n−1xn). Thus xβy and β∗ ⊆ β. �

3. the θ-hyperoperation

In this section we investigate a special class of hyperstructures called θ-hyperoperation

introduced by Vougiouklis in [11]. By using θ-hyperoperation we obtain a Hv-

structure. We investigate θ-hyperoperation by adding strongly Hv-group condition.

General definition of θ-hyperoperation is as follows that we can see it in [11, 12].
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Definition 3.1. Let H be a set equipped with n operations (or hyperoperations)

⊗1,⊗2, ...,⊗n and a map (or multivalued map) f : H −→ H (or f : H −→ P∗
(H)).

Then n hyperoperations θ1, θ2, ..., θn on H can be defined, called θ-hyperoperations

by putting

xθiy = {f(x)⊗i y, x⊗i f(y)}, ∀(x, y) ∈ H2, i ∈ {1, 2, ..., n}

or, in case where ⊗i is hyperoperation or f is multivalued map, we have

xθiy = (f(x)⊗i y) ∪ (x⊗i f(y)), ∀(x, y) ∈ H2, i ∈ {1, 2, ..., n}.

If ⊗i is associative then θi is weak associative.

Similarly one can use several maps f , instead than only one. We express a special

case that way let (H, ·) be a hypergroupoid and f : H −→ H, be a map on H. It is

defined in this case
−
θ-hyperoperation as follows:

x
−
θ y = (x · y) ∪ (f(x) · y) ∪ (x · f(y)), ∀(x, y) ∈ H2

Proposition 3.2. Let (H, ·) be an Hv-group, then (H,
−
θ) is an Hv-group.

Proof. According to [11, 12], (H,
−
θ) is weak associative. Since (H, ·) is reproductive

so for all x ∈ H we have x ·H = H = H · x. Therefore

x
−
θ H =

⋃
h∈H

x
−
θ h =

⋃
h∈H

{x · h, f(x) · h, x · f(h)} = H

and (H,
−
θ) is reproductive. Thus (H,

−
θ) is an Hv-group. �

Proposition 3.3. Let (H, ·) be a strongly Hv-group and f be good homomorphism

and projection (f2 = f), then (H,
−
θ) is a strongly Hv-group.

Proof. By proposition 3.2, it is enough to show that Hv-group (H,
−
θ) is strongly,

i.e. x
−
θ (y

−
θ z) ⊆ (x

−
θ y)

−
θ z, for all (x, y, z) ∈ H3. We have

x
−
θ (y

−
θ z) = ∪

a∈y
−
θz
x
−
θ a = ∪

a∈y
−
θz

[x · a ∪ f(x) · a ∪ x · f(a)]
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such that a ∈ (y · z) ∪ (f(y) · z) ∪ (y · f(z)). Therefore

x
−
θ (y

−
θ z) ⊆ [x · (y · z)] ∪ [x · (f(y) · z)] ∪ [x · (y · f(z))]∪

[f(x) · (y · z)] ∪ [f(x) · (f(y) · z)] ∪ [f(x) · (y · f(z))]∪

[x · f(y · z)] ∪ [x · f(f(y) · z)] ∪ [x · f(y · f(z))]

⊆ [(x · y) · z] ∪ [(x · f(y)) · z] ∪ [(x · y) · f(z)]∪

[(f(x) · y) · z] ∪ [(f(x) · f(y)) · z] ∪ [(f(x) · y) · f(z)]∪

[(x · f(y)) · f(z)] ∪ [(x · f(y)) · f(z)] ∪ [(x · f(y)) · f(z)]

⊆ ∪
b∈x

−
θy

[b · z, f(b) · z, b · f(z)]

= ∪
b∈x

−
θy
b
−
θ z = (x

−
θ y)

−
θ z.

Thus (H,
−
θ) is a strongly Hv-group. �
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