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Abstract. We investigate possible extensions of various types of continuity of

aggregation functions to their super- and sub-additive transformations. More

specifically, we examine lifts of classical, uniform, Lipschitz and Hölder conti-

nuities and differentiability. The classical, uniform, and Lipschitz continuities

turn out to be preserved by super- and sub-additive transformations (albeit for

uniform continuity and the super-additive case we prove it only in dimension

one), while the Hölder continuity and differentiability are not.
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1. Introduction

In the last few years, aggregation functions have been a prolific and rewarding

topic of investigation in pure and applied mathematics. A large number of results
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on these functions have been proved and collected in monographs, such as [1] and

[2]. An extensively studied sub-topic in aggregation functions appear to be their

transformations, among which the super- and sub-additive ones (introduced in [3])

have received particular attention; see e.g. [4, 5, 6, 7, 8, 10, 11, 12].

Preceding a formal definition to be given in the next section, the super- and

sub-additive transformations of an aggregation function A may be viewed as the

smallest and largest (in the point-wise ordering) functions that are, respectively,

super-additive and dominating A, and sub-additive and dominated by A; informally,

one may speak about the super-additive and sub-additive ‘envelope’ of A.

This paper extends some of the ideas initiated by [4] and [9]. In the two papers,

the question of ‘lifting’ continuity of an aggregation function to its super- and sub-

additive transformations was stated and solved in the one-dimensional and multi-

dimensional case, respectively. As a follow-up we consider the question of lifting

different types of continuity of an aggregation function to its super- and sub-additive

transformations. In more detail, we are interested in Lipschitz, Hölder and uniform

continuity and also in the problem of differentiability inheritance. Interestingly,

it turns out that the classical, uniform, and Lipschitz continuities are preserved

by super- and sub-additive transformations (however, for uniform continuity and

super-additivity we prove this only in dimension one), while differentiability and

the Hölder continuity is not.

Our paper is structured as follows. In Section 2 we summarize some basic con-

cepts of the theory of aggregation functions, introduce their super- and sub-additive

transformations and list some useful auxiliary results. In Section 3 we provide ex-

amples of differentiable aggregation functions whose super- and sub-additive trans-

formations are not differentiable, demonstrating thus the fact that differentiability

is not inherited by super- and sub-additive transformations in general. In Section 4

we construct examples of Hölder continuous aggregation functions whose super- nor

sub-additive transformations are no longer Hölder continuous, showing that Hölder

continuity does not lift, either. In contrast with these negative findings, in Section 5

we prove that Lipschitz continuity is preserved by both the super- and sub-additive

transformations. In Section 6 we give a proof of uniform continuity inheritance

for sub-additive transformations, leaving the case of super-additive transformation
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open except in dimension one. The concluding Section 7 contains a few remarks

and suggestions for further research.

2. Preliminaries

Throughout, for simplicity we will let D denote the interval [0,∞[ and we will

let the domains of all our functions be Dn for some n ≥ 1. For the purpose of this

paper, an aggregation function will be an arbitrary mapping A : Dn → D that is

increasing in every coordinate and such that A(0) = A(0, . . . , 0) = 0. At this point

we recall that such a function A is super-additive and sub-additive, respectively, if

A(u + v) ≥ A(u) + A(v), resp. A(u + v) ≤ A(u) + A(v) for every u, v ∈ Dn such

that u+ v ∈ Dn.

For an aggregation function A, its super-additive and sub-additive transforma-

tions, A∗ and A∗, are defined for every x ∈ Dn by

(1) A∗(x) = sup


k∑
j=1

A(x(j)) : x(j) ∈ Dn,

k∑
j=1

x(j) = x


and

(2) A∗(x) = inf


k∑
j=1

A(x(j)) ; x(j) ∈ Dn,

k∑
j=1

x(j) = x

 .

As the terms suggest, A∗ is super-additive while A∗ is sub-additive. We also note

that A∗ may not be defined. However, by a result of [4], if there is a point x̄ ∈ Dn

such that A∗(x̄) =∞ then one necessarily has A∗(x) =∞ for all x ∈ Dn such that

x 6= 0. If this does not happen we will simply say that A∗ is well-defined.

The super- and sub-additive transformations of a given aggregation function A

may also be viewed as the smallest and largest functions (in the ordering f ≤ g if

f(x) ≤ g(x) for every x ∈ Dn) that are super-additive and sub-additive, respec-

tively, and dominate A, resp. are dominated by A. Informally, A∗ is the ‘super-

additive envelope’ of A while A∗ is the ‘sub-additive envelope’ of A.

The following result, proved in [8], is often useful in determining super- and sub-

additive transformations. If A : Dn → D is an aggregation function, let ∇A be

the n-dimensional vector with i-th component (∇A)i equal to lim supt→0+ A(tei)/t,

where ei is the i-th unit vector, i ∈ {1, ..., n}. Similarly, we let ∇A denote the
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n-dimensional vector with i-th component (∇A)i = lim inft→0+ A(tei)/t for i ∈
{1, ..., n}.

Lemma 1. [8] If A : Dn → D is an arbitrary aggregation function, then A∗(x) ≥
∇A·x and A∗(x) ≤ ∇A·x for every x ∈ Dn. 2

We continue with recalling a few concepts related to continuity. For any fixed

α ∈]0, 1[, a function f : Dn → D is α-Hölder continuous if there exists a constant

c > 0 such that |f(x)− f(y)| ≤ c · ||x− y||α for every x, y ∈ Dn, where || · || denotes

the standard Euclidean norm. In the limit case when α = 1 the definition still

makes sense and leads to the concept of Lipschitz continuity.

The previous definitions did not require any relationship between the points

(vectors) x, y ∈ Dn. In our later considerations, however, it will be handy to

consider the pairs satisfying x ≥ y, meaning that the inequality is valid for all the

corresponding coordinates of the two points. In particular, the fact that x ∈ Dn is

equivalent to writing that x ≥ 0, the zero vector of dimension n. We will say that

a function f : Dn → D is ordered α-Hölder continuous if there is some d > 0 such

that |f(x)− f(y)| ≤ d · ||x− y||α for every x, y ∈ Dn such that x ≥ y. The concept

of ordered Lipschitz continuity is defined analogously, letting α = 1.

As one would expect, the concepts of Hölder and Lipschitz continuity are equiv-

alent to their ordered versions, which we will show next.

Lemma 2. A function f : Dn → D is α-Hölder (or Lipschitz) continuous if and

only if it is ordered α-Hölder (or Lipschitz) continuous.

Proof. It is clearly sufficient to prove just the direction that ordered continuity

implies the absolute one. Let f be ordered α-Hölder continuous (or Lipschitz con-

tinuous for α = 1) with multiplicative constant d, and let x, y ∈ Dn be arbitrary.

Since x, y ≥ x ∧ y and the latter point is in Dn, applying ordered continuity one

obtains

|f(x)− f(x ∧ y)| ≤ d · ||x− x ∧ y||α

with a similar inequality obtained if y is interchanged with x. But then,

|f(x)− f(y)| ≤ |f(x)− f(x ∧ y)|+ |f(y)− f(x ∧ y)|
≤ d · ||x− x ∧ y||α + d · ||y − x ∧ y||α

≤ 2d · ||x− y||α .
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This proves that f is α-Hölder (or Lipschitz) continuous in the ‘unordered’ version.

2

3. Differentiability

Among the concepts related to continuity we are interested in this article, differ-

entiability is the strongest. We begin by showing that differentiability does not carry

over from an aggregation function onto its super- and sub-additive transformations

in general. For super-additive transformations we show this on the aggregation

function A : Dn → D given by

(3) A(x) = ||x||3 − ||x||2 + ||x||

where, for a change ‖·‖ will, and for the purpose of this proof only, denote the sum

of the coordinates of the point x.

We will often use the symbol 1 ∈ Dn to denote the all-one vector, so that for any

x ∈ D the dot product 1·x is simply the sum of the coordinates of x.

It is evident that (∇A) = 1, the all-one vector of dimension n. Also, a straight-

forward calculation shows that for every x ∈ Dn such that ||x|| ≤ 1 one has

(4) A(x) = ||x||3 − ||x||2 + ||x|| ≤ ||x|| .

Thus, (4) shows that A(x) is dominated for ||x|| ≤ 1 by the additive (and hence

super-additive function ‖x‖ = 1 · x, so that A∗(x) ≤ 1 · x for ||x|| ≤ 1. But Lemma

1 implies that A∗(x) ≥ (∇A)·x = 1 · x, so that at least in the set {x ∈ Dn : ||x|| ≤ 1}
we conclude that A∗(x) = 1 · x.

To prove our claim we will show that A∗ does not have a partial derivative

at any point ei ∈ Dn representing the i-th unit vector. Indeed, for an arbitrary

i ∈ {1, 2, . . . , n} and for every t ≥ 0 it is obvious that A∗(tei) = t if t ∈ [0, 1] and

A∗(tei) ≥ A(tei) = t3 − t2 + t for t ∈ [1,∞[. Noting that A∗(ei) = 1, one obtains

lim
t→1−

A∗(tei)− 1

t− 1
= 1 while lim inf

t→1+

A∗(tei)− 1

t− 1
≥ lim
t→1+

A(tei)− 1

t− 1
= 2

which implies that the partial derivative of A∗ does not exist at any ei.

Based on this we can easily construct a differentiability counterexample for sub-

additive transformations by observing that the above function A is a composition

f ◦g of the function g(x) = ‖x‖ with the monotonous (and hence invertible) function
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f(t) = t3−t2+t in the interval [0,∞[. Taking B = f−1◦g we can mimic the previous

calculations by showing that B∗(x) = (∇B)·x = 1 · x; note that, for example, in

this setting the inequality (4) is equivalent to f(t) ≤ t for t ∈ [0, 1], which is in turn

equivalent to t ≤ f−1(t) for t ∈ [0, 1]. The fact that B∗ has no derivative and any

unit vector point ei follows by a similar calculation as above.

4. Hölder continuity

In this section we will show that, in general, Hölder continuity does not extend

from an aggregation function onto its super- and sub-additive transformation. We

will demonstrate this on an example for super-additivity, the case of sub-additivity

being analogous. We precede the analysis by a series of auxiliary results.

Lemma 3. Let a, b, c be positive real numbers such that a ≥ b and c ≥ a− b. Then,

cα ≥ aα − bα for every α ∈]0, 1].

Proof. We only need to consider α < 1, and it is clearly sufficient to prove that

(a − b)α ≥ aα − bα. Letting a = b + t for this is equivalent to showing that the

function h(t) = tα + bα − (t + b)α is non-negative for any t ≥ 0. But it is easy to

see that for 0 < α < 1 and b > 0 the derivative f ′(t) = αtα−1 − α(t + b)α−1 is

non-negative and as f(0) = 0 we conclude that f is non-decreasing for t ≥ 0. This

proves our inequality. 2

Lemma 4. For arbitrary x, y ∈ Dn such that x ≥ y and for any α ∈]0, 1] it holds

that (1 + ||x||)α − (1 + ||y||)α ≤ ||x− y||α.

Proof. Let a = 1+ ||x||, b = 1+ ||y|| and c = ||x−y||. From ||x|| = ||x−y+y|| ≤
||x − y|| + ||y|| we obtain ||x|| − ||y|| ≤ ||x − y|| and so c ≥ a − b, with a ≥ b ≥ 0.

The result now follows from Lemma 3. 2

Lemma 5. For every x ∈ D one has (1 + ||x||)α − 1 ≤ α(1·x).

Proof. Consider the function h(x) = 1 + 1 ≤ α(1·x)− (1 + ||x||)α, with h(0) = 0.

For its partial derivatives we obtain ∂h/∂xi = α−α(1+ ||x||)α−1xi||x||−1. It is easy

to check that the inequality ∂h/∂xi > 0 is equivalent with (1 + ||x||)1−α||x|| > xi,

which is obviously valid for every x ∈ D such that x 6= 0. Therefore h(x) ≥ 0,

establishing our claim. 2
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We are now in position to present the announced examples, and we begin with

an example of an α-Hölder continuous aggregation function A such that its super-

additive transformation A∗ is not β-Hölder continuous for any β ∈]0, 1[. Indeed, for

an arbitrary α ∈]0, 1[ consider the function Aα : Dn → D given by

(5) Aα(x) = (1 + ||x||)α − 1 .

By Lemmas 4 and 2 the function Aα is α-Hölder continuous; in what follows we

determine A∗ with the help of our auxiliary results.

For 1 ≤ i ≤ n the i-th coordinate of the vector (∇Aα)i introduced above is equal

to lim supt→0+((1+t)α−1)/t, which is equal to the one-sided (right) derivative of the

function h(t) = (1+ t)α at zero. It follows that (∇Aα)i = α for every i ∈ {1, . . . , n},
so that ∇Aα = α1. Applying Lemma 1 we obtain A∗α ≥ α1·x. But the function

h : Dn → D : x 7→ α1·x is linear and hence also super-additive. Further, by Lemma

5, h dominates Aα, and so A∗α ≤ h (by the ‘envelope’ property of super-additive

transformations). We conclude that A∗α = h.

It remains to show that A∗α is not β-Hölder continuous for any β ∈]0, 1[. Namely,

if this was the case, then for every x, y ∈ Dn one would have A∗α(x) − A∗α(y) =

α1·(x− y) ≤ ||x− y||β , which is clearly absurd—consider, for example, x = xe1 for

arbitrarily large x > 0 and y = 0.

Now we will construct a similar example to the previous one which will show that

Hölder continuity, in general, is not preserved by sub-additive transformations. For

β > 1, let us consider the aggregation function Bβ : Dn → D given by

Bβ(x) = A1/β(x) = (1 + ‖x‖)1/β − 1.

By the previous arguments, Bβ is α-Hölder continuous, where α = 1/β ∈]0, 1[.

Also, it can easily be showed that the vector ∇Bβ is equal to 1/β = α1. Applying

Lemma 1 we obtain that Bβ∗ ≤ α1 · x. Observe that α1 · x is dominated by Bβ

and thus, in fact, Bβ∗ = α1 · x. Now, if Bβ∗ was γ-Hölder continuous, the inequality

Bβ∗ (x)−Bβ∗ (y) = α1 · (x−y) ≤ ‖x− y‖γ would hold for all x ≥ y. But this is not

the case, for the same reasons as given earlier for A∗α. 2
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5. Lipschitz continuity

In this section we show that, in contrast with α-Hölder continuity, the Lipschitz

continuity (which is the ‘limit’ case of Hölder’s for α = 1 does carry over from

an aggregation function to its super- and sub-additive transformations. We again

begin with a lemma that may be of independent interest.

Lemma 6. For any k ≥ 1, let u(1), u(2), . . . , u(k) be points in Dn. Then,

(6)

k∑
j=1

∥∥∥u(j)
∥∥∥ ≤ √n ·

∥∥∥∥∥∥
k∑
j=1

u(j)

∥∥∥∥∥∥ .
Proof. Clearly, since u(j) ≥ 0, our vectors satisfy the inequality

∥∥u(j)
∥∥ ≤ 1·u(j),

and hence also

(7)

k∑
j=1

∥∥∥u(j)
∥∥∥ ≤ k∑

j=1

1·u(j) = 1·v , where v =

k∑
j=1

u(j) .

Letting v = (v1, v2, . . . , vn), so that 1·v =
∑n
i=1 vi, it now remains to use the well-

known inequality

(8)

n∑
i=1

vi ≤
√
n ·

√√√√ n∑
i=1

v2
i

in combination with (7) to obtain the result, as the right-hand side of (8) is equal

to the right-hand side of (6). 2

We would like to point out that the multiplicative constant
√
n on the right-hand

side of the the inequality (6) depends only on the dimension of the points and not

on their quantity k.

With the help of this result we prove that Lipschitz continuity carries over to

super-additive transformations.

Theorem 1. Let A : Dn → D be an arbitrary aggregation function. If A is Lipschitz

continuous and A∗ is well-defined, then A∗ is also Lipschitz continuous.

Proof. Let x,y ∈ Dn be any pair of points such that x ≥ y. Take an arbitrary

ε > 0. By the definition of a super-additive transformation, there exists some k ≥ 1
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and a sequence x(1),x(2), . . . ,x(k) of points in Dn summing to x such that

(9) A∗(x)−
k∑
j=1

A(x(j)) ≤ ε .

Obviously, there also exists a sequence y(1),y(2), . . . ,y(k) of points in Dn summing

to y and such that x(j) ≥ y(j) for every j ∈ {1, 2, . . . , n}. Moreover, clearly

A∗(y) ≥
k∑
j=1

A(y(j)) .

Also, by the assumed Lipschitz (and hence also ordered Lipschitz) continuity, there

exists a constant c > 0 such that

A(x(j))−A(y(j)) ≤ c
∥∥∥x(j) − y(j)

∥∥∥
for every j ∈ {1, 2, . . . , k}. Taking into account all the above facts and using the

inequality (6) from Lemma 6 applied to u(j) = x(j) − y(j) we obtain

A∗(x)−A∗(y) ≤ ε+

k∑
j=1

A(x(j))−
k∑
j=1

A(y(j)) ≤ ε+

k∑
j=1

c
∥∥∥x(j) − y(j)

∥∥∥
≤ ε+ c

√
n

∥∥∥∥∥∥
k∑
j=1

(
x(j) − y(j)

)∥∥∥∥∥∥ = ε+ c
√
n ‖x− y‖ .

Since for the given x ≥ y our ε > 0 was chosen arbitrarily, the above chain of

inequalities implies that A∗(x) − A∗(y) ≤ c
√
n ‖x− y‖. This means that A∗ is

ordered Lipschitz continuous and hence also Lipsichtz continuous, by Lemma 2. 2

A similar method applies to proving an analogous result for sub-additive trans-

formations.

Theorem 2. Let A : Dn → D be an arbitrary aggregation function. If A is Lipschitz

continuous, then so is A∗.

Proof. The argument is analogous to what has been used in the proof of the

previous theorem. Let x ≥ y. By the definition of infimum, for every ε > 0 there

exists a k ∈ N and a sequence y(1),y(2), . . . ,y(k) of points in Dn summing to y such

that
k∑
j=1

A(y(j))−A∗(y) ≤ ε .
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It is also easy to show that there is a sequence x(1),x(2), . . . ,x(k) of points in Dn

summing to x and satisfying x(j) ≥ y(j) for j ∈ {1, 2, . . . , k}, such that

A∗(x) ≤
k∑
j=1

A(x(j)).

By the assumption that A is Lipschitz continuous, there exists some c > 0 such that

A(x(j))−A(y(j)) ≤ c
∥∥∥x(j) − y(j)

∥∥∥ .
The above inequalities imply:

A∗(x)−A∗(y) ≤ ε+

k∑
j=1

A(x(j))−
k∑
j=1

A(y(j)) ≤ ε+

k∑
j=1

c
∥∥∥x(j) − y(j)

∥∥∥
≤ ε+ c

√
n

∥∥∥∥∥∥
k∑
j=1

(
x(j) − y(j)

)∥∥∥∥∥∥ = ε+ c
√
n ‖x− y‖ .

By the same reasoning as in the previous proof we conclude that the function A∗

is Lipschitz continuous. 2

6. Uniform continuity

In [9] it was proved that continuity of an aggregation function extends to its

super- and sub-additive transformations. The question that remains to be answered

in this context is if a similar result holds also for extension of uniform continuity.

We begin with sub-additive transformations, as the corresponding result assumes

only continuity of the aggregation function at the origin (and its proof simplifies

the approach used in [9]).

Theorem 3. Let A : Dn → D be an aggregation function. If A is continuous at the

origin, then A∗ is uniformly continuous.

Proof. Let ε > 0 be arbitrary; we need to show that there is some δ > 0 such that

for any x, y ∈ Dn with x ≥ y, the inequality ‖x− y‖ < δ implies A∗(x)−A∗(y) < ε.

Using continuity of A at the origin it follows that for ε/2 there exists a δ > 0

with the property that, given any z ∈ Dn with ‖z‖ < δ, one has A(z) < ε/2.
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Let x, y ∈ Dn be any pair of points such that x ≥ y and ‖x− y‖ < δ. By the

definition of A∗, for ε/2 there exists a sequence (y(j)) of points in Dn, 1 ≤ j ≤ k

for some k ≥ 1, such that A∗(y) + ε/2 >
∑k
j=1A(y(j)), or equivalently,

(10) −A∗(y) < ε/2−
k∑
j=1

A(y(j)) .

Define now x(j) = y(j) for j ∈ {1, . . . , k} and x(0) = x − y ∈ Dn. Clearly,∑k
j=0 x

(j) = x, and

(11) A∗(x) ≤
k∑
j=0

A(x(j)) .

Letting z = x(0) we have
∥∥x(0)

∥∥ < δ, and by the first part of the proof we also have

A(x(0)) < ε/2. This together with (10), (11) and A(x(j)) = A(y(j)) for 1 ≤ j ≤ k

implies

A∗(x)−A∗(y) < ε/2 +

k∑
j=0

A(x(j))−
k∑
j=1

A(y(j)) = ε/2 +A(x(0)) < ε ,

completing the proof. 2

The situation for super-additive transformations appears to be more complex.

We first offer an auxiliary result, in which the norm ‖x‖ of a point x ∈ Dn is the

sum of its coordinates.

Proposition 1. Let A : Dn → D be a uniformly continuous aggregation function

such that A∗ is well-defined. Then, sup{A(x)/ ‖x‖ : x ∈ Dn, x 6= 0} is finite.

Proof. The assumption that A∗ is well-defined implies that, for any positive

constant c, the quantity sup{A(x)/ ‖x‖ ; x ∈ Dn, 0 < ‖x‖ ≤ c} is a positive real

number. All that remains to be shown is that this extends to points x ∈ Dn of

arbitrarily large norm.

Take an arbitrary but fixed ε > 0. By uniform continuity of A there exists a δ > 0

such that for arbitrary x ∈ Dn\{0} and for any y ∈ Dn, y ≤ x with ‖x− y‖ ≤ δ

one has A(x) − A(y) < ε. For such an x let t be the unique positive integer such

that (t− 1)δ < ‖x‖ ≤ tδ. By the observation made above we may assume that, say,

t ≥ 3.
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For j = 1, . . . , t define y(j) = bjx for bj = (j−1)δ/ ‖x‖; note that
∥∥y(j)

∥∥ = (j−1)δ

and, in particular, y(1) = 0. Since
∥∥y(j+1) − y(j)

∥∥ = δ for 1 ≤ j ≤ t− 1, by uniform

continuity of A we have A(y(j+1)) − A(y(j)) < ε, and, by the same token, also

A(x)−A(y(t)) < ε. Summing up these t inequalities gives A(x) < tε. Further, from

(t − 1)δ < ‖x‖ one obtains t < 1 + ‖x‖ /δ, which together with A(x) < tε gives

A(x) < (ε/δ) ‖x‖ + ε. But then, A(x)/ ‖x‖ < (ε/δ) + ε/ ‖x‖. As ε (and hence δ)

were constants in the above arguments while x was arbitrary, the last inequality

shows that the ratio A(x)/ ‖x‖ is bounded for any x ∈ Dn with a sufficiently large

norm. 2

For lifting uniform continuity to super-additive transformations we just consider

the one-dimensional case.

Theorem 4. Let A : D → D be a uniformly continuous aggregation function. If

A∗ exists, then it is uniformly continuous.

Proof. Since we are going to deal with functions of one variable we will use lower-

case subscripts to denote sequences of real numbers. Suppose that A is uniformly

continuous on D. To show that A∗ is also uniformly continuous on D we need to

establish, for every ε > 0, the existence of a δ > 0 with the property that whenever

x, y ∈ D are such that x > y and x− y < δ, one has A∗(x)−A∗(y) < ε.

Thus, let ε > 0 be given. Uniform continuity of A on D implies that to the

value ε/2 there exists a δ′ > 0 such that for any x, y ∈ D with x > y one has

A(x)−A(y) < ε/2. Let α > 0 be a real number for which A(x) ≤ αx for every x ∈ D;

its existence is guaranteed by Proposition 1. Define now δ = min{δ′, ε/(4α)}.

Let now x, y be arbitrary points of D satisfying 0 < x− y < δ. By definition of

A∗, to ε/2 there exists a sequence {xj}kj=1 of points in D such that
∑k
j=1 xj = x

and

(12) A∗(x) < ε/2 +

k∑
j=1

A(xj) .

Without loss of generality assume that x1 ≤ . . . ≤ xk. We will consider two cases.
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Case 1: xk ≥ x− y. We introduce the sequence {yj}kj=1 of points in D by letting

yj = xj for j < k and yk = xk − (x− y). Observe that
∑k
j=1 yj = y and so

(13) A∗(y) ≥
k∑
j=1

A(yj) .

Of course we have A(xj) = A(yj) for j < k, and as xk − yk = x − y < δ by the

beginning of the proof one sees that A(xk) − A(yk) < ε/2. Combining this with

(12) and (13) gives

A∗(x)−A∗(y) < ε/2 +

k∑
j=1

A(xj)−
k∑
j=1

A(yj) = ε/2 +A(xk)−A(yk) < ε .

Case 2: xj ≤ x − y for every j ≤ k. Let ` be the smallest positive integer for

which
∑
j≤` xj ≥ x− y; such an ` clearly exists. Since

∑
j<` xj < x− y, we have

(14)
∑
j≤`

xj =
∑
j<`

xj + x` < 2(x− y) < 2δ = ε/(2α) .

With the help of A(z) ≤ αz for every z ∈ D we then obtain from (14) the estimate

(15)
∑
j≤`

A(xj) ≤ α
∑
j≤`

xj < αε/(2α) = ε/2 .

Define now the sequence {yj}kj=` of points in D by letting y` =
∑
j≤` xj − (x − y)

and yj = xj for j > `. It can be checked that
∑
j≥` yj = y, so that, as before in

(13), we again have

(16) A∗(y) ≥
k∑
j=`

A(yj) .

Collecting the information contained in the inequalities (12), (16) and (15) gives

A∗(x)−A∗(y) < ε/2 +

k∑
j=1

A(xj)−
k∑
j=`

A(yj) ≤ ε/2 +
∑
j≤`

A(xj) < ε

and this completes the proof. 2
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7. Concluding remarks

In this paper we have considered lifting of various continuity types of aggrega-

tion functions to their super- and sub-additive transformations. We have shown

that differentiability and Hölder continuity are not preserved by super- and sub-

additive transformations in general by providing examples illustrating this fact.

We have also showed that the Lipschitz continuity is preserved by both super-

and sub-additive transformations and that the uniform continuity is preserved by

sub-additive transformations. Lifting of uniform continuity to super-additive trans-

formations has been proved for one-dimensional aggregation functions only, leaving

the multi-dimensional case open.

We have focused on aggregation functions defined on [0,∞[n for n ≥ 1. However,

aggregation functions have also been considered on compact domains, with [0, 1]n

being a representative case. Questions analogous to the ones considered in this

paper can also be posed for this other type of aggregation functions. However, our

negative results on lifting differentiability and Hölder continuity and the positive

results on preservation of Lipschotz continuity can easily be adapted to the case

of a compact domain, and since continuous functions on a compact domain are

automatically uniformly continuous, lifting of uniform continuity to both super-

and sub-additive transformations for a compact domain follows from [9].
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[6] Kouchakinejad, F., Šipošová, A.: A note on the super-additive and sub-additive transforma-

tions of aggregation functions: The multi-dimensional case. Kybernetika 53 (2017), 129–136.
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[10] Šipošová, A.: A note on the superadditive and the subadditive transformations of aggregation

functions. Fuzzy Sets and Systems 299 (2016), 98–104.
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