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Abstract. In this paper we investigate wavelet-finite difference method for

solving two-dimensional model of drug release in the cardiovascular tissue from

the stent. We use a double tensor product to rich a two dimensional wavelet.

By using this two dimensional wavelet in space and finite difference method

for variable t we convert the drug release model to a system of equation. The

Lax-Richtmyer theorem shows that this system is convergent and we obtain a

good approximation for a solution of our problem.
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1. Introduction

One of the leading reasons of death in the industrialized world are arterial dis-

eases. Due to the restriction or obstruction of the affected arteries, they may oc-

casion a reduction of the blood flow to main organs and to muscles. A stent is

a small tube-like structures that is incorporated constantly into a stenotic artery.

Application of stent, may be occur some problems, that Leading to re-narrowing

of the treated vessel. To overcome this event drug-eluting stents (DES) have been

recently defined. Drug release depends on many factors, such as the geometry and

location of the vessel, the geometry of the stent, the coating properties as its chemi-

cal composition and porosity, and drug characteristics as for example its diffusivity.

A helpful implement to design an proper drug delivery system are mathematical

models and prediction of drug release shows an main subject [1, 2]. Some authors

considered the convection-diffusion equations. They modeled the spatial and tem-

poral distribution of drug concentration within the vessel wall [3, 4]. Also they

demonstrated how numerical simulations are viable tools to study these phenom-

ena. However, to be effective they have to account properly for the expansion of the

struts and their interaction with the vascular wall. Indeed, these aspects influence

the outcome of the stenting procedure.

The paper is organized as follows. Section 2 is devoted to the description of the

model and its initial and boundary conditions. In Section 3 we briefly explain the

wavelet and multiresolution analysis (MRA). In Section 4 we present a wavelet-finite

difference method for solving the two-dimensional model of drug release from the

stent.

2. Description of the model

Let the volume averaged solid concentration of the free drug inside the arterial

wall and the dissolved drug inside the coating are given by a and c, respectively.

Therefore the convection-diffusion system of equations [5, 6, 7], defined by

∂a

∂t
+
Klag

kw
uw∇a−Dw4a = 0, in Ωw,(1)

∂c

∂t
−Dc∇c = 0, in Ωc,

that we apply to characterize the drug release in the stent coating Ωc and in the

arterial wall Ωw, where the indexes c, and w, mention to the values inside Ωc and
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Ωw, respectively. Also, Dw defines the diffusion coefficient of the drug in the tissue

and Dc that in the stent coating. The reduction of convective transport because

of incidence of the solid bits with the structure of the porous wall, is shown by

Klag, that’s called the hindrance coefficient (0 ≤ Klag ≤ 1). Moreover, kw is an

additional partition coefficient that defines the ratio between the drug bound to the

tissue matrix and that dissolved in the fluid. Finally,

(2) uw = − kb
µb
∇p,

where ∇p = (p1, p2), kb and µb are the hydraulic permeability of the arterial wall

and the viscosity of the blood plasma respectively and p is the pressure. In Fig.1,

the geometries of the stent in the arterial wall is shown. The system of partial

Figure 1. The geometries of the stent in the arterial wall.

differential equations (1) needs the suitable boundary and initial conditions. The

boundary conditions for equations (1), are given by

−Dc
∂c

∂nc
= Pc

(
c

kcεc
− a

kwεw

)
, on Γ,

Dw
∂a

∂nw
= −Dc

∂c

∂nc
, on Γ,

a = 0, on Γbl ∩ Γs,

−Dw
∂a

∂nw
= Pw

a

kwεw
, on Γadv,

−Dc
∂c

∂nc
= 0, in Ωc\Γ,(3)

The graph of the stent S in contact with the vessel wall V, is shown in Fig.2. Suppose



56 Z. KALATEH BOJDI, A. ASKARI HEMMAT, M. KEBRYAEE

Figure 2. Stent S in contact with the vessel wall V.

that the drug concentration is stored into the coating and is zero inside the tissue.

Thus the initial conditions are given by

c = c0, in Ωc,

a = 0, in Ωw.(4)

The reduced form of the system of equations (1), is illustrated as follows [6]:

∂a

∂t
+
Klag

kw
uw∇a−Dw4a = 0, in Ωw,

Dw
∂a

∂nw
+ α(t)a = β(t)c0, on Γ,

Dw
∂a

∂nw
+ Pw

a

εwkw
= 0, on Γadv,

a = 0, on Γbl ∪ Γs.(5)

where Pw is the permeability of the tissue and εw is the its porosity.

3. 2-D MRA and wavelet method

A family of orthogonal wavelets defining a discrete wavelet transform and charac-

terized by a maximal number of vanishing moments for some given support, called

the Daubechies wavelets [8]. Corresponding to each wavelet type of this class, there

is a scaling function ϕ which generates an orthogonal MRA.
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Let ϕ be the Daubechies wavelet scaling function. Therefore ϕ is compact support

and

(6) ϕ(x) =

N−1∑
k=0

akϕ(2x− k),

where {ak} are the filter coefficients and N is an even positive integer. Hence

supp (ϕ) ⊂ [0, N − 1].

Suppose ϕ(x) is normalized such that:
∫∞
−∞ ϕ(x) dx = 1. We introduce [9]

(7) θ(x) := (ϕ ∗ ϕ(−·))(x),

where ”∗” denotes the convolution of two functions f and g defined by

(f ∗ g) =

∫
f(x− y)g(y)dy.

The function θ is called the autocorrelation function of ϕ.

Theorem 1. The function θ, defined as above, have the following properties [9, 10]:

(1) θ(x) =
∑N−1

k=−N+1 ckθ(2x− k), that ck = c−k = 1
2

∑N−1−k
i=0 aiak+i, k ≥ 0,

(2) supp (θ) ⊆ [−N + 1, N − 1],

(3) θ(k) = δ0,k, k ∈ Z,

(4) c2k = δ0,k and ck = θ(k
2 ), k ∈ Z, therefore θ(x) =

∑N−1
k=−N+1 θ(

k
2 )θ(2x−k),

where N is an even positive integer in definition of the Daubechies wavelet, the

sequence {ck}k∈Z is called the scaling filter and δ0,k is the Kronecker delta function.

Definition 1. [8] A sequence of closed subspaces {V j}j∈Z in L2(R) is called a

multiresolution analysis for L2(R) with scaling function ϕ, if

1. Vj ⊆ Vj+1 ⊆ L2(R),

2.
⋂

j∈Z Vj = {0}, and
⋃

j∈ZVj = L2(R)

3. f(·) ∈ Vj ⇔ f(2−j ·) ∈ V0,
4. f(·) ∈ V0 ⇔ f(· − n) ∈ V0, for all n ∈ Z,
5. There exist a function ϕ ∈ V0, called scaling function, such that

{ϕ(· − k)}k∈Z is an orthonormal basis for V0.

Let ”⊕” denotes the direct sum notation. A simple consequence of condition 1

is

(8) V1 = V0 ⊕W0,
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where W0 is the orthogonal complement of V0 in V1.

If {Vj}j∈Z is a multiresolution analysis for L2(R) with scaling function φ and

wavelet ψ, then {V ′

j = Vj ⊗ Vj}j∈Z is a multiresolution analysis of L2(R2), that

”⊗” is tensor product. Let {V (x)
j }j∈Z be a multiresolution analysis for L2(R) at

x direction and {V (y)
j }j∈Z be a multiresolution analysis for L2(R) at y direction.

Using Eq. (8), one can easily show that

V
′

1 = V
(x)
1 ⊗ V (y)

1 = (V
(x)
0 ⊕W (x)

0 )⊗ (V
(y)
0 ⊕W (y)

0 )(9)

= (V
(x)
0 ⊗ V (y)

0 )⊕ (V
(x)
0 ⊗W (y)

0 )⊕ (W
(x)
0 ⊗ V (y)

0 )⊕ (W
(x)
0 ⊗W (y)

0 )

= V
′

0 ⊕W
′1
0 ⊕W

′2
0 ⊕W

′3
0 .

This 2-D multiresolution analysis requires one scaling function

Φ(x, y) = φ(x)φ(y) ∈ V
′

0 ,

and three wavelets

Ψ1(x, y) = φ(x)ψ(y), Ψ2(x, y) = ψ(x)φ(y), Ψ3(x, y) = ψ(x)ψ(y),

where Ψi is the wavelet associated to W
′i for i = 1, 2, 3, respectively.

Define Vj = span{θ(2j · −k), k ∈ Z}, that j ∈ Z. Moreover, {θ(· − k), k ∈ Z} is

a Riesz basis for V0 [10]. Thus by [Theorem 1.6, Sec. 2.1, [11]] and [Theorem 1.7,

Sec.2.1, [11]] , {Vj}j∈Z generates an MRA with scaling function θ.

Therefore, any a ∈ L2(R2) can be approximated with arbitrary precision by

element aJ ∈ V ′J = V
(x)
J ⊗ V (y)

J , for some suitable J ∈ Z. More precisely, we have

the following approximation:

(10) a(x, y, t) ≈ aJ(x, y, t) =
∑
k∈Z

∑
l∈Z

aJ(xk, yl, t)θ(2
Jx− k)θ(2Jy − l),

where (x, y) ∈ [0, lX ] × [0, lY ] ⊆ R2, t ∈ [0, T ] and aJ(xk, yl, t) are suitable coeffi-

cients corresponding to collocation points, xk = k2−J and yl = l2−J .

The first and second derivatives of the function θ defined by

θ(x) =

∫
ϕ(t)ϕ(t− x)dt are

θ′(l) =

∫
ϕ(t)ϕ′(t− l)dt, θ′′(l) = −

∫
ϕ′(t)ϕ′(t− l)dt.

Define

Γ1
l =

∫
ϕ(t)ϕ′(t− l)dt, Γ2

l =

∫
ϕ′(t)ϕ′(t− l)dt.
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Since ϕ is compact support on [0, N − 1], we have:

Γ1
−l = −Γ1

l , Γ2
−l = Γ2

l , θ′(l) = Γ1
l , θ

′′(l) = −Γ2
l , |l| ≤ N − 2.

MATLAB software is used to compute Γ1 and Γ2. Thus we compute derivatives of

the function θ at the point xl = l2−J .

3.1. Wavelet method. Suppose x ∈ [0, lX ] and y ∈ [0, lY ]. We transferred the

physical domain at an interval [0, 1] in each direction. Let J be arbitrary. We

estimate the solution for equation (5) with corresponding initial and boundary con-

ditions at a fixed time level n using the following approximation:

a(ξ, η) ≈
∑
k∈Z

∑
l∈Z

aklθ(2
Jξ − k)θ(2Jη − l) ≈

2J−1∑
k=1

2J−1∑
l=1

aklθ(2
Jξ − k)θ(2Jη − l)

+

0∑
k=−∞

2J−1∑
l=1

a0lθ(2
Jξ − k)θ(2Jη − l) +

∞∑
k=2J

2J−1∑
l=1

a2J lθ(2
Jξ − k)θ(2Jη − l)

+

2J−1∑
k=1

0∑
l=−∞

ak0θ(2
Jξ − k)θ(2Jη − l) +

2J−1∑
k=1

∞∑
l=2J

ak2J θ(2
Jξ − k)θ(2Jη − l),

where akl = a(ξk, ηl) and ξJk = k/2J , ηJl = l/2J are collocation points. For simplic-

ity, let ξk = ξJk , ηl = ηJl . Therefore by boundary conditions we have

a(ξ, η) ≈
2J−1∑
k=1

2J−1∑
l=1

aklθ(2
Jξ − k)θ(2Jη − l) +

2J−1∑
k=1

0∑
l=−∞

ak0θ(2
Jξ − k)θ(2Jη − l)

+

2J−1∑
k=1

∞∑
l=2J

ak2J θ(2
Jξ − k)θ(2Jη − l).
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The first and second order partial derivatives of a in the directions of ξ and η are:

∂a

∂ξ
(ξp, ηq) = 2J

2J−1∑
k=1

akqθ
′(p− k) = 2J

2J−1∑
k=1

akqΓ1
p−k,

∂2a

∂ξ2
(ξp, ηq) = 22J

2J−1∑
k=1

akqθ
′′(p− k) = −22J

2J−1∑
k=1

akqΓ2
p−k,

∂a

∂η
(ξp, ηq) = 2J


2J−1∑
l=1

aplθ
′(q − l) + ap0

0∑
l=2−N+q

θ′(q − l) + ap2J

N−2+q∑
l=2J

θ′(q − l)


= 2J


2J−1∑
l=1

aplΓ
1
q−l + ap0

0∑
l=2−N+q

Γ1
q−l + ap2J

N−2+q∑
l=2J

Γ1
q−l

 ,

∂2a

∂η2
(ξp, ηq) = 22J


2J−1∑
l=1

aplθ
′′(q − l) + ap0

0∑
l=2−N+q

θ′′(q − l) + ap2J

N−2+q∑
l=2J

θ′′(q − l)


= −22J


2J−1∑
l=1

aplΓ
2
q−l + ap0

0∑
l=2−N+q

Γ2
q−l + ap2J

N−2+q∑
l=2J

Γ2
q−l

 ,

for p = 1, 2, · · · , 2J −1 and q = 0, 1, · · · , 2J . Thus the discretization of equation (5)

at given collocation points ξp and ηq, p = 1, 2, · · · , 2J − 1, q = 0, 1, · · · , 2J , is

∂a

∂t
(ξp, ηq) =

Klag

kw

kb
µb

2J

p1
lx

2J−1∑
k=1

akqΓ1
p−k +

p2
ly


2J−1∑
l=1

aplΓ
1
q−l

+ ap0

0∑
l=2−N+q

Γ1
q−l + ap2J

N−2+q∑
l=2J

Γ1
q−l




− Dw22J

 1

(lx)2

2J−1∑
k=1

akqΓ2
p−k +

1

(ly)2


2J−1∑
l=1

aplΓ
2
q−l

+ ap0

0∑
l=2−N+q

Γ2
q−l + ap2J

N−2+q∑
l=2J

Γ2
q−l


 ,(11)

The first derivative of a with respect to time, are estimated

(12)
∂a

∂t
≈ an+1 − an

∆t
.
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Therefore

an+1(ξp, ηq) =
Klag

kw

kb
µb

2J∆t

p1
lx

2J−1∑
k=1

ankqΓ1
p−k +

p2
ly


2J−1∑
l=1

anplΓ
1
q−l

+ anp0

0∑
l=2−N+q

Γ1
q−l + anp2J

N−2+q∑
l=2J

Γ1
q−l




− Dw22J∆t

 1

(lx)2

2J−1∑
k=1

ankqΓ2
p−k +

1

(ly)2


2J−1∑
l=1

anplΓ
2
q−l

+ anp0

0∑
l=2−N+q

Γ2
q−l + anp2J

N−2+q∑
l=2J

Γ2
q−l


+ anpq.(13)

Also, for the boundary conditions on Γ and Γadv, for p = 1, 2, · · · , 2J − 1 we can

write

Dw2J

lx

2J−1∑
k=1

an+1
k0 Γ1

p−k + α(tn+1)an+1
p0 = β(tn+1)c0,

Dw2J

lx

2J−1∑
k=1

an+1
k2J

Γ1
p−k +

Pw

εwkw
an+1
p2J

= 0.(14)

By equations (13) and (14) we have the following system

(15) Āan+1 = B̄an + C̄,

or

(16) an+1 = Aan +B,

where A = Ā−1B̄ and B = Ā−1C̄.

4. The convergence of the proposed method

First, we recall the Lax-Richtmyer theorem [12, 13].

Theorem 2. A consistent finite-difference scheme for a partial differential equation

for which the initial-value problem is well posed is convergent if and only if it is

stable.

We show that the scheme is stable and consistent. Suppose P (apq) represent

the PDE operator of Equation (11) at fixed point (ξp, ηq), and Pn(apq) indicate
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the approximating wavelet-finite difference operator for a fixed time-level, that the

exact solution is apq. Let Vpq be a continuous function of t with a sufficient number

of continuous derivatives to enable P (Vpq) to be evaluated at point n∆t. Then the

truncation error En(Vpq) at the point n∆t for all p = 0, 1, ..., 2J , q = 0, 1, ..., 2J , is

defined by

(17) En(Vpq) = Pn(Vpq)− P (V n
pq),

where V n
pq = Vpq(n∆t).

The Equation (11) is said to be consistent with the PDE (13), if the truncation

error, En(Vpq), tend to zero as ∆t tend to zero [12].

The following theorem, shows that our method presented in section 3.1 yields a

consistent approximation that is first order in time and spectral accuracy in space.

Theorem 3. Let a(x, y, t) be as in (10) and its derivatives of order two, with respect

to x, y and t exist. Then the recursive formula defined in (13) is convergent.

Proof. Let us to expand an+1
pq and anpq appearing in Equation (13) around the point

(ξp, ηq, n∆t) ∈ Ω× [0, T ], then we have

anpq + ∆t(
∂a

∂t
)npq +O(∆t)

=
Klag

kw

kb
µb

2J∆t

p1
lx

2J−1∑
k=1

ankqΓ1
p−k +

p2
ly


2J−1∑
l=1

anplΓ
1
q−l

+ anp0

0∑
l=2−N+q

Γ1
q−l + anp2J

N−2+q∑
l=2J

Γ1
q−l




− Dw22J∆t

 1

(lx)2

2J−1∑
k=1

ankqΓ2
p−k +

1

(ly)2


2J−1∑
l=1

anplΓ
2
q−l

+ anp0

0∑
l=2−N+q

Γ2
q−l + anp2J

N−2+q∑
l=2J

Γ2
q−l


+ anpq.(18)
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for n = 0, 1, 2, ..., p = 1, 2, ..., 2J − 1, q = 0, 1, ..., 2J . In light of Equation (11) we

can write

(
∂a

∂t
)n(ξp, ηq) =

Klag

kw

kb
µb

2J

p1
lx

2J−1∑
k=1

ankqΓ1
p−k +

p2
ly


2J−1∑
l=1

anplΓ
1
q−l

+ anp0

0∑
l=2−N+q

Γ1
q−l + anp2J

N−2+q∑
l=2J

Γ1
q−l




− Dw22J

 1

(lx)2

2J−1∑
k=1

ankqΓ2
p−k +

1

(ly)2


2J−1∑
l=1

anplΓ
2
q−l

+ anp0

0∑
l=2−N+q

Γ2
q−l + anp2J

N−2+q∑
l=2J

Γ2
q−l


 .(19)

Hence the truncated error will be found by subtracting Equations (18) and (19).

i.e.,

En(apq) = O(∆t).

Here, we used spectral collocation scheme in space, clearly En(apq) vanishes as ∆t

tends to zero and lX and lY tend to infinity [14]. Now, we show that the our method

is stable.

In the pervious section, the Equation (13) can be represented as

(20) an+1 = Aan +Bn, n = 0, 1, 2, ... .

where the vector Bn is generated by the boundary conditions. If each eigenvalue of

A has a modulus ≤ 1, i.e. ρ(A) ≤ 1, we say Equation (20) is stable. The eigenvalues

of A can be evaluated numerically [12].

Therefore by the Lax-Richtmyer theorem, the scheme is convergent. �

5. Numerical results

Consider the following parameters:

Klag = 1, kw = 20, Dw = 2.2× 10−9, Pw = 10−8, εw = 0.61, kb = 2× 10−14,

µb = 0.72× 10−2, Dc = 1.0× 10−11, Pc = 1.0× 10−8, ∆L = 5× 10−6, kc = 1,

εc = 0.1, c0 = 1, p1 = p2 = 100, lX = 1.8× 10−3, lY = 0.4× 10−3

We solve numerically equation (5) by proposed method. The absolute value of



64 Z. KALATEH BOJDI, A. ASKARI HEMMAT, M. KEBRYAEE

Figure 3. Eigenvalues of A at ∆t = 0.005 and ∆t = 0.01 for J = 2, 3, 4, 5.

eigenvalues of the matrix A is plotted in the Fig.3 . It shows that the upper bound

for the absolute value of A’s eigenvalues, for different J and ∆t is 1. Thus the

scheme is stable in time.

Let J = 5. The Figure 4 - Figure 7 show that for a fixed x, the value of a

decreases as y increases. As we expected the value of a increases as t increases.

Figure 4. Comparison of a(x, y, t) at x = 1.125e− 04, for different y.

6. Conclusion

In this paper we constructed a wavelet-finite difference approximation for solving

two-dimensional model of drug release in the cardiovascular tissue from the stent.

A double tensor product is used to rich a two dimensional wavelet, converted the
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Figure 5. Comparison of a(x, y, t) at x = 7.875e− 04, for different y.

Figure 6. Comparison of a(x, y, t) at x = 1.35e− 03, for different y.

drug release model to a system of matrix equations. We applied the Lax-Richtmyer

theorem to prove the convergent of our system. Finally we constructed several

examples to show the sharpness of our method. In fact these examples show that

for a fixed x the value of a, the free drug inside the arterial wall, decreases as the

value of y increases. Also the graphs show that the value of a increases as the value

of t, time, increases.
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Figure 7. Comparison of a(x, y, t) at x = 1.6875e− 03, for different y.

Appendix

General Matrices Form

In general, we assume every element of the matrix is corresponding to a collocation point. For

the collocation points (ξp, ηq), and (ξk, ηl), that are corresponding elements of the square matrix

B1, we can write

(B1)i,j =



1 +
Klag

kw

kb
µb

2J∆t
(
p1
lx

+ p2
ly

)
Γ1
0 −Dw22J

(
1

(lx)2
+ 1

(ly)2

)
Γ2
0, p = k, q = l,

Klag

kw

kb
µb

2J∆t p2
ly

Γ1
q−l −Dw22J 1

(ly)2
Γ2
q−l, p = k, q 6= l, |q − l| ≤ N − 2,

Klag

kw

kb
µb

2J∆t p1
lx

Γ1
p−k −Dw22J 1

(lx)2
Γ2
p−k, p 6= k, q = l, |p− k| ≤ N − 2,

Klag

kw

kb
µb

2J∆t p2
ly

∑N−2+2J

l=2J
Γ1
2J−l −Dw22J 1

(ly)2

∑N−2+2J

l=2J
Γ2
2J−l, p = k, q = 2J ,

Klag

kw

kb
µb

2J∆t p2
ly

∑0
l=2−N Γ1

−l −Dw22J 1
(ly)2

∑0
l=2−N Γ2

−l, p = k, q = 0.

Consider the matrix A1 = (apq) with apq = 0 for p 6= k and q 6= l and apq = 1.

In a similar way, we denote the boundary conditions by matrices A2 and A3 defined by

(A2)i,j =


Dw2J 1

lx
Γ1
p−k, q = 0, 1 ≤ k ≤ 2J − 1, |p− k| ≤ N − 2,

Dw2J 1
lx

Γ1
0 + α(tn+1), q = 0, p = k.

(A3)i,j =


Dw2J 1

lx
Γ1
p−k, q = 2J , 1 ≤ k ≤ 2J − 1, |p− k| ≤ N − 2,

Dw2J 1
lx

Γ1
0 + Pw

εwkw
, q = 2J , p = k.
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Now we put matrices A2 and A3 in the last rows of matrix A1 and call the resulting matrix Ā.

So corresponding to the changed rows, we set the corresponding elements in the matrix B1 equal

zero and call the resulting matrix B̄.

Finally, we define vector C̄ with dimension equal to the dimension of B̄, where all elements except

the corresponding elements to the matrix A2 are zero and the non-zero elements are β(tn+1)C0.
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