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Abstract. The aim of this paper is to introduce the notion of fuzzy points

and weak filters in BE-algebras and investigate their properties. We generalize

some results of the set of fuzzy points in BCI-algebras to commutative and

self-distributive weak BE-algebras. Then we establish some relations among

filters, fuzzy filters and weak filters in BE-algebras.
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1. Introduction

K. Iséki introduced the concept of a BCK-algebra in 1966 [5]. H.S. Kim and Y.

H. Kim introduced the notion of a BE-algebra as a generalization of a BCK-algebra

[9]. By using the concept of the upper sets, they provided conditions equivalent to

a filter in BE-algebras.
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From them some mathematicians studied and developed many concepts in this

algebraic structure, for instance, some properties of filters of BE-algebras were in-

vestigated by S. S. Ahn and K. S. So in [1].

Lately, in 2011, A. Rezaei and A. B. Saeid introduced the concept of fuzzy BE-

algebras and perused their structure [11]. They got some of the theorems in fuzzy

BE-algebras and level subalgebras and some characterizations of fuzzy subalgebras

are also created.

Since the set of fuzzy points and weak filters are two important notions in the al-

gebraic structures like BCI/BCK-algebras, we extend these notions to BE-algebras

and discuss further properties of these concepts [6,10]. So, in this paper, we general-

ize the concepts of fuzzy points in BCI-algebras to BE-algebras. Finally, we present

the concepts of fuzzification of weak BE-algebras and weak filters of a BE-algebra

and some properties of these notions are investigated. We verify some useful prop-

erties of this notion in BE-algebras such as relation fuzzy filters and week filters.

We use the notion of fuzzy points in BE-algebras to develop other new concepts

such as m-polar fuzzy subalgebras, m-polar fuzzy filters in these structures [2,3,4].

We can also investigate the variety and some subvarieties of these specific type of

BE-algebras.

2. Preliminaries

In this section, we review the definitions and specifications that might be used

in this article. For more details, we refer the reader to [1,4,6,7].

Definition 2.1. [4] An algebra (X,→, 1) of type (2, 0) is called a BE-algebra, if it

satisfies the following axioms:

(BE1) x→ x = 1,

(BE2) x→ 1 = 1,

(BE3) 1→ x = x,

(BE4) x→ (y → z) = y → (x→ z).

For all x, y, z ∈ X.

A binary relation ≤ defined on X by x ≤ y if and only if x → y = 1. A non-

empty subset A of a BE-algebra X is said to be a subalgebra of X if it is closed

under the operation →. Since that x→ x = 1 for all x ∈ X, it is clear that 1 ∈ A.

A BE-algebra X satisfies the following properties:
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(BE5) x→ (y → x) = 1,

(BE6) x→ ((x→ y)→ y) = 1.

A BE-algebra X is said to be commutative if (x → y) → y = (y → x) → x for all

x, y ∈ X. A BE-algebra X is called self-distributive if x → (y → z) = (x → y) →
(x → z) for all x, y, z ∈ X. A nonempty subset F of a BE-algebra X is called a

filter if [1]:

i) 1 ∈ F, ii) x→ y ∈ F and x ∈ F imply y ∈ F .

We can show that a subset F of a BE-algebra X is a filter if:

(a) x ∈ F and y ∈ F imply x ∧ y ∈ F and y ∧ x ∈ F ,

(b) x ∈ F and x ≤ y implies y ∈ F .

Where x ∧ y = (y → x)→ x.

If X is a commutative BE algebra and x → y = y → x = 1, then x = y for all

x, y ∈ X. We note that ≤ is reflexive by (BE1). If X is self-distributive, then

the relation ≤ is transitive. Because by assumption x ≤ y and y ≤ z, we give

x → z = 1 → (x → z) = (x → y) → (x → z) = x → (y → z) = x → 1 = 1. Hence

x ≤ z. If X is a commutative, then ≤ is antisymmetric. So, if X is a commutative

self-distributive BE algebra, then the relation ≤ is a partially ordered relation on

X. If X is a self-distributive BE algebra, then for all x, y, z ∈ X we obtain

(i) if x ≤ y, then z → x ≤ z → y and y → z ≤ x→ z,

(ii) y → z ≤ (z → x)→ (y → x).

In what follows, let (X,→, 1) or simply X would mean a BE-algebra, unless other-

wise specified.

A fuzzy set µ in X is a map µ : X → [0, 1]. Let µ be a fuzzy set of X, for t ∈ [0, 1]

the set µt = {x ∈ X : µ(x) ≥ t} is called a level subset of X. A fuzzy set µ of X is

called a fuzzy BE-subalgebra of X if it satisfies:

min{µ(x), µ(y)} ≤ µ(x→ y) for all x, y ∈ X.

Definition 2.2. A fuzzy set µ in X is called a fuzzy filter of X if for all x, y ∈ X
it satisfies [6]:

(F1) µ(x) ≤ µ(1),

(F2) min{µ(x→ y), µ(x)} ≤ µ(y).

Let µ be a fuzzy filter of X. Then the filters µα, α ∈ [0, 1], are called level filters

of X. Any filter of a BE-algebra X can be realized as a level filter of some fuzzy

filters of X [13].
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Let (X,→, 1) and (Y,−→, 1) be two BE-algebras. Then a mapping f : X −→ Y

is called a homomorphism if f(x → y) = f(x) −→ f(y) for all x, y ∈ X. It is

clear that if f : X −→ Y is a homomorphism, then f(1) = 1. If f is an onto

homomorphism, then for any fuzzy set µ in Y we define a mapping f : X −→ [0, 1]

such that µf (x) = µ(f(x)) for all x ∈ X. Clearly the map µf is well-defined and

fuzzy set in X [13].

Definition 2.3. [10] Let F be a non-empty subset of X and α ∈ (0, 1] we define a

fuzzy set αχF as

αχF (x) =

α x ∈ F

0 otherwise

Definition 2.4. [13] Let µ and ν be fuzzy sets in X. Then the cartesian product

of µ and ν is defined by

(µ× ν) = min{µ(x), ν(y)}

for all x, y ∈ X.

Theorem 2.5. [13] Let µ be a fuzzy subset of X. Then the following conditions

are equivalent:

(1) µ is a fuzzy filter in X,

(2) for all x, y, z ∈ X, x→ (y → z) = 1 implies µ(z) ≥ min{µ(x), µ(y)},
(3) for any α ∈ (0, 1] the α-level subset µα = {x ∈ X : µ(x) ≥ α} is a filter, when

µα 6= ∅.

3. Algebra structure of the set of fuzzy points in BE-algebras

In this section, we define the set of fuzzy points in BE-algebras and discuss their

properties.

Definition 3.1. Suppose that λ is the family of all fuzzy sets in X. Then xα ∈ λ
is called a fuzzy point of X if:

xα(y) =

α x = y

0 x 6= y
.
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The set of all fuzzy points on X is denoted by X̃. So

X̃ = {xα : x ∈ X,α ∈ (0, 1]}

We define a binary operation on X̃ as shown below:

xα → yσ = (x→ y)min(α,σ)

We can immediately see that (X̃,→) satisfies the following conditions:

for any xα, yσ, zγ ∈ X̃
(BE1

′
) xα → xα = (x→ x)min(α,α) = 1min(α,α) = 1α,

(BE2
′
) xα → 1σ = (x→ 1)min(α,σ) = 1min(α,σ),

(BE3
′
) 1α → xσ = (1→ x)min(α,σ) = xmin(α,σ),

(BE4
′
)

xα → (yσ → zγ) =xα → (y → z)min(σ,γ)

=(x→ (y → z))min(α,min(σ,γ))

=(x→ (y → z))min(α,σ,γ)

=(y → (x→ z))min(α,σ,γ)

=yσ → (x→ z)min(α,γ)

=yσ → (xα → zγ).

Example 3.2. Let X = {a, b, c, 1}. Define a binary operation (→) on X as follows:

→ a b c 1

a 1 a a 1

b 1 1 a 1

c 1 a 1 1

1 a b c 1

Then (X,→, 1) is a BE-algebra. In this example we give X̃ = {aα, bσ, cγ , 1θ :

α, σ, γ, θ ∈ (0, 1]}. Obviously, X̃ is satisfied in (BE1
′
) and (BE4

′
). Assume that α =

0.5, σ = 0.7 and γ = 0.75, we have aα → 1σ = (a → 1)min(0.5,0.7) = 1min(0.5,0.7) =

10.5 6= 1σ. Also 1γ → aσ = (1 → a)min(0.75,0.7) = amin(0.75,0.7) = a0.7 6= aσ. Then

(BE2
′
) and (BE3

′
) are not confirmed.
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Remark 3.3. The conditions (BE2) and (BE3) does not hold in (X̃,→), generally.

For this reason, we will call (X̃,→) a weak BE-algebra. Also, if X is a commutative

BE-algebra, then the condition xα → yσ = yσ → xα = 1min(α,σ) implies xα = yσ

is not true in (X̃,→). Therefore the binary relation ≤ is not a partial order on X̃.

Then we will call (X̃,→) a weak commutative BE-algebra.

We can also establish the following conditions: for any xα, yσ, zγ ∈ X̃.

(BE5
′
)

xα → (yσ → xα) =xα → (y → x)min(α,σ)

=(x→ (y → z))min(α,min(σ,γ))

=1min(α,min(σ,γ)

=1min(α,σ).

(BE6
′
)

xα → ((xα → yσ)→ yσ) = xα → (((x→ y)min(α,σ))→ yσ)

=xα → ((x→ y)→ y)min(α,σ)

=(x→ ((x→ y)→ y))min(α,σ)

=1min(α,σ).

(BE7
′
) xα → (yσ ∧ xα) = 1min(α,σ), where (xα ∧ yσ) = (yσ → xα)→ xα.

We also recall that if µ is a fuzzy subset of a BE-algebra X, then we have:

µ̃ = {xα : µ(x) ≥ α, xα ∈ X̃, α ∈ (0, 1]}

for any α ∈ (0, 1]

X̃α = {xα : xα ∈ X̃}, µ̃α = {xα : xα ∈ µ̃}

We have X̃α ⊆ X̃, µ̃ ⊆ X̃, µ̃α ⊆ µ̃ and µ̃α ⊆ X̃α.

Theorem 3.4. (X̃α,→, 1α) is a BE-algebra.
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proof. The proofs of (BE1), (BE2) and (BE3) are completely clear.

(BE4)

xα → (yα → zα) =xα → (y → z)min(α,α)

=(x→ (y → z))min(α,min(α,α))

=(x→ (y → z))min(α,α,α)

=(y → (x→ z))min(α,α,α)

=yα → (x→ z)min(α,α)

=yα → (xα → zα).

Therefore (X̃α,→, 1α) is a BE-algebra, for any α ∈ (0, 1].

3.1. Weak filters in BE-algebras. Now, we introduce and discuss the notion of

weak filters in a BE-algebra X.

Definition 3.5. Suppose that µ is a fuzzy set of X. Then µ̃ is called a weak filter

if:

i) xα ∧ yσ ∈ µ̃ and yσ ∧ xα ∈ µ̃, for any xα, yσ ∈ µ̃.

ii) xα ∈ µ̃ and xα ≤ yσ imply ymin(α,σ) ∈ µ̃.

Example 3.6. For BE-algebra thought out in Example 1 we define a fuzzy set

µ : X → [0, 1] as follows:

µ(x) =

1 x = 1

0 otherwise

Since µ(a) = µ(b) = µ(c) = 0 and µ(1) = 1, we have µ̃ = {1α}, for any α ∈ (0, 1].

It can be easily verified that µ̃ is a weak filter of X̃.

Theorem 3.7. Let F be a non-empty subset of X and α ∈ (0, 1]. Then the following

conditions are equivalent:

i) F is a filter of X,

ii) αχF is a fuzzy filter,

iii) α̃χF is a weak filter.

proof. i =⇒ ii) Suppose that F is a filter of X. Let x, y ∈ X be such that

x, y ∈ F . We have αχF (x) = α and αχF (y) = α. Since F is a filter, x ∧ y ∈ F and
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y ∧ x ∈ F and hence αχF (x ∧ y) = α = αχF (y ∧ x) such that

αχF (x ∧ y) ≥ min(αχF (x), αχF (y))

and

αχF (y ∧ x) ≥ min(αχF (x), αχF (y)).

If x /∈ F or y /∈ F , min(αχF (x), αχF (y)) = 0 such that

αχF (x ∧ y) ≥ min(αχF (x), αχF (y))

and

αχF (y ∧ x) ≥ min(αχF (x), αχF (y)).

Now, let x, y ∈ X and x ≤ y, we must show that αχF (x) ≤ αχF (y). If x ∈ F , we

have αχF (x) = α, since F is a filter y ∈ F and αχF (x) = α such that αχF (x) ≤
αχF (y). If x /∈ F , αχF (x) = 0 and we obtain αχF (x) ≤ αχF (y).

ii =⇒ iii) Suppose that αχF is a fuzzy filter of X, and let xβ , yσ ∈ α̃χF
, for β, σ ∈

(0, 1]. Hence αχF (x) ≥ β and αχF (y) ≥ σ. Since αχF is a fuzzy filter, αχF (x∧y) ≥
min{αχF (x), αχF (y)} ≥ min(β, σ) and αχF (y ∧ x) ≥ min{αχF (x), αχF (y)} ≥
min(β, σ) such that xβ ∧ yσ ∈ α̃χF

and yσ ∧ xβ ∈ α̃χF
. Now, let xβ ∈ α̃χF

and xβ ≤ yσ. Therefore αχF (x) ≥ β and x ≤ y. Since αχF is a fuzzy filter

αχF (y) ≥ αχF (x) ≥ β ≥ min(β, σ) such that ymin(β,σ) ∈ α̃χF
.

iii =⇒ i) If 1 /∈ F , then αχF (1) = 0. But α̃χF
is a weak filter, then αχF (x) ≤

αχF (1) = 0, for all x ∈ X. Hence αχF (x) = 0, for every x ∈ F . That means F is

empty. This is a contradiction. Therefore 1 ∈ F .

Now, let x, y ∈ X be such that x, x −→ y ∈ F , but y /∈ F . Then αχF (x) = α and

αχF (x→ y) = α and αχF (y) = 0. Since αχF is a fuzzy set, min{αχF (x), αχF (x→
y)} = α ≤ αχF (y) = 0. Hence α ≤ 0. As α ∈ (0, 1], we have a contradiction. So

y ∈ F and hence F is a filter of X.

Theorem 3.8. A fuzzy subset µ of X is a fuzzy filter iff µ̃ is a weak filter.

proof. Suppose that µ̃ is a week filter, we desire to prove that µ is a fuzzy filter.

Let x, y ∈ X and α = min{µ(x), µ(y)}. Then xα, yα ∈ µ̃ and because µ̃ is a weak

filter, we have xα∧yα ∈ µ̃ and yα∧xα ∈ µ̃ such that µ(x∧y) ≥ α = min{µ(x), µ(y)}
and µ(y ∧ x) ≥ α = min{µ(x), µ(y)}. By assumption x, y ∈ X and x ≤ y, we must

show that µ(x) ≤ µ(y). If α = µ(x), then xα ∈ µ̃ and since x ≤ y, we have
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x → y = 1. Hence (x → y)α = 1α. Then we obtain xα → yα = 1α. By use these

fact that µ̃ is a weak filter, we give yα ∈ µ̃ such that µ(y) ≥ α = µ(x).

Conversely, suppose that µ is a fuzzy filter of X, we show that µ̃ is a weak filter.

Let xα, yσ ∈ µ̃. Hence µ(x) ≥ α and µ(y) ≥ σ. Since µ is a fuzzy filter, µ(x ∧ y) ≥
min{µ(x), µ(y)} ≥ min(α, σ) and µ(y ∧ x) ≥ min{µ(x), µ(y)} ≥ min(α, σ) such

that xα ∧ yσ ∈ µ̃ and yσ ∧ xα ∈ µ̃. Now, let xα ∈ µ̃ and xα → yα = 1α. Therefore

µ(x) ≥ α and x ≤ y. Since µ is a fuzzy filter µ(y) ≥ µ(x) ≥ α ≥ min(α, σ) such

that ymin(α,σ) ∈ µ̃.

Remark 3.9. A weak filter µ̃ has the following property:

xα → yβ = 1min(α,β) and xα ∈ µ̃ =⇒ xmin(α,β) ∈ µ̃.

Clearly, let xα, yβ ∈ X̃ such that xα → yβ = 1min(α,β) and xα ∈ µ̃.

Now, xα ∈ µ̃ implies that α ≤ µ(x). Suppose that µ(x) = t. By use definition

we obtain 1t ∈ µ̃. Therefore t ≤ µ(1). But t = µ(x) ≥ β ≥ min(α, β). So

1min(α,β) ∈ µ̃. Using definition we obtain xmin(α,β) ∈ µ̃.

Theorem 3.10. Let f : X −→ Y be onto homomorphism. For a fuzzy set µ in Y ,

µ̃ is a weak filter in Y if and only if µ̃f is a weak filter in X.

proof. At first we show that the fuzzy set µ in Y is a fuzzy filter if and only if

µf is a fuzzy filter in X. Assume that µ is a fuzzy filter of Y . For any x, y ∈ X, we

have

µf (1) = µ(f(1)) = µ(1) ≤ µ(f(x)) = µf (x). Also

µf (y) =µ(f(y))

≥min{µ(f(x)), µ(f(x)→ f(y))}

=min{µ(f(x)), µ(f(x→ y))}

=min{µf (x), µf (x→ y)}.

Hence µf is a fuzzy filter of X.

Conversely, assume that µf is a fuzzy filter of X. Let y ∈ Y . As f is onto, then

there exists x ∈ X such that f(x) = y. Then µ(1) = µ(f(1)) = µf (1) ≥ µf (x) =

µ(f(x)) = µ(y).

Now, let x, y ∈ Y . Then there exist a, b ∈ X such that f(a) = x and f(b) = y.
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Hence we get

µ(y) =µ(f(b))

=µf (b)

≥min{µf (a), µf (f(a→ b)}

=min{µ(f(a)), µ(f(a→ b))}

=min{µ(f(a)), µ(f(a)→ f(b))}

=min{µ(x), µ(x→ y)}.

So µ is a fuzzy filter in Y . Hence for a fuzzy set µ in Y by use Theorem 3.8, µ̃ is

a weak filter in Y if and only if µ is a fuzzy filter in Y if and only if µf is a fuzzy

filter in X if and only if µ̃f is a weak filter in X.

The appendix theorem describe weak fuzzy filters in self-distributive BE-algebras.

Theorem 3.11. Let µ be a fuzzy set of a self-distributive BE-algebra X. Then µ̃

is a weak filter iff µ̃ satisfies in the following conditions:

i) xα ∈ µ̃ and ymin(α,σ) /∈ µ̃ implies xα → yσ ∈ µ̃.

ii) xα ∈ µ̃ and xα → yσ ∈ µ̃ implies ymin(α,σ) ∈ µ̃.

proof. Obviously, (i) and (ii) are equivalent. Suppose that µ̃ is a weak filter, we

must prove that µ̃ satisfies (i). Assume xα ∈ µ̃ and ymin(α,σ) /∈ µ̃. Using (BE5
′
)

and self-distributivity of X, we obtain 1α → (xα → yσ) = (1α → xα) → (1α →
yσ) = [1α → (1α → yσ)]→ xα.

If xα → yσ ∈ µ̃, then ([1α → (1α → yσ)]→ xα ∈ µ̃. So [1α → (1α → yσ)]→ xα ∈ µ̃.

Since xα ∈ µ̃ and µ̃ is a weak filter, we give 1α → (1α → yσ) ∈ µ̃. But from

[1α → (1α → yσ)] → yσ = 1min(α,σ) and since µ̃ is a weak filter, we obtain

ymin(α,σ) ∈ µ̃ which is a contradiction. Thus µ̃ satisfies (i).

Conversely, suppose that µ̃ satisfies (ii), we must show that µ̃ is a weak filter. Let

xα ∈ µ̃ and yσ ∈ µ̃. From (BE7
′
) yσ → (xα∧yσ) = 1min(α,σ) and xα → (yσ ∧xα) =

1min(α,σ). Because µ̃ is a weak filter, (xα ∧ yσ) ∈ µ̃ and (yσ ∧ xα) ∈ µ̃. Now, let

xα ∈ µ̃ and xα → yσ = 1min(α,σ). Since µ̃ is a weak filter, xα → yσ ∈ µ̃. Using (ii),

we obtain ymin(α,σ) ∈ µ̃.

Example 3.12. Let X = {0, a, b, c, d, 1} be a BE-algebra with the following Cayley

table
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→ 0 a b c d 1

0 1 1 1 1 1 1

a d 1 a c c 1

b c 1 1 c c 1

c b a b 1 a 1

d a 1 a 1 1 1

1 0 a b c d 1

It is not difficult to verify that (X,→, 1) is a commutative self-distributive BE-

algebra. Define a mapping µ : X → [0, 1] by µ(1) = µ(a) = µ(b) = 1 and µ(0) =

µ(c) = µ(d) = 0.75 Then µ is a fuzzy filter of X. By routine calculations µ̃ =

{1α, aσ, bγ} for all α, β, γ ∈ (0, 1]. µ̃ is satisfies in condition (ii) of Theorem 3.11.

Therefore µ̃ is a weak filter.

Lemma 3.13. The cartesian product of two weak filters is again a weak filter.

proof. Let µ and ν be fuzzy sets in X such that µ̃ and ν̃ are two weak filters.

Then µ and ν are fuzzy filters of X. Hence µ× ν is a fuzzy filter. By use Theorem

3.8 we obtain µ× ν is a weak filter.

Corollary 3.14. Let µ be a fuzzy subset of X. Then µ̃α is a weak filter in X̃ if

and only if µα is a filter of X, when µα 6= ∅ and α ∈ (0, 1].

proof. Let µ be a fuzzy subset of X. By use Theorems 2.5, 3.8 µ̃α is a weak filter

in X̃ if and only if µ is a fuzzy filter of X if and only if µα is a filter of X.

4. Conclusion

The aim of this paper is to develop the fuzzy filter of BE-algebras. In this paper,

we introduced the concept of the set fuzzy points of a BE-algebra X and investigated

some related properties. Applying this concept, we considered weak BE-algebra.

Also, we introduced a characterization of the weak fuzzy filters in BE-algebras.

Some important issues for future work are:

We can discussed relations between m-polar fuzzy subalgebras, m-polar fuzzy filters

with weak fuzzy filters in BE-algebras. The concepts proposed in this article may
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be extended further to various kind of filters in CI-algebras, for example, (positive)

implicative filters, n-fold (positive) implicative filters. Furthermore, the work pre-

sented in this paper may be extended to several algebraic structures, for example

CI-algebras, Q-algebras, semigroups, semirings and lattice implication algebras.
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