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Abstract    The aim of this study was to investigate the trend of bias in genomic 

estimated breeding values (GEBVs) arising from selective genotyping of the candi-

date population in an ongoing selection scheme. The bias was calculated as the re-

gression of true breeding values (TBVs) on GEBVs. A simulation study was per-

formed under two scenarios with selection intensities (SI) of 0.798 and 1.755 for 

three traits with heritability (h2) of 0.1, 0.25 and 0.4 in 10 consecutive generations. 

Regression of TBVs on GEBVs was close to one for the first generation when se-

lective genotyping was random, and it continuously receded from one as selection 

shifted to choose animals with high EBVs from generations 2 to 10. Biasedness 

became larger with increased SI and decreased h2. Further, biasedness increased 

over the generations but the rate of change in biasedness decreased dramatically 

after the second generation and became almost steady after generation 4 which may 

be due to Bulmer effect. The findings showed that scaling down the GEBVs, using 

a scale parameter, might help removing biasedness in generation 4 onwards. 
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Introduction 

Development of the genome wide dense markers has 

made it possible to implement the marker information 

in animal breeding programs (VanRaden et al., 2009). 

Genomic selection (GS) will result in greater response 

to selection mainly due to the shorter generation inter-

val that achieve by GS than that obtain by traditional 

selection (VanRaden et al., 2009). Genomic selection 

exploits linkage disequilibrium (LD) between markers 

and quantitative trait loci (QTLs) (Meuwissen et al., 

2001; Meuwissen and Goddard, 2004). Because the 

markers cover the whole genome, all casual variants of 

the traits are covered by the markers and this method is 

potentially capable of justifying all genetic variation. 

The availability of an appropriate model for estimating 

the effect of markers plays a key role in genomic selec-

tion programs and has a significant effect on accurate  

 and unbiased prediction of genetic merits of young 

animals without phenotypic record (Ehsani et al., 

2010). As a result of the recombination effect, linkage 

phase between markers and QTLs breakdowns over 

generations, it is essential to re-estimate the marker 

effect after several generations of genomic evaluation. 

Moreover, changes in variance components of subse-

quent generations due to selection (Van Grevenhof et 

al., 2012) represent one of the most important sources 

of biased predictions of genetic merits using the best 

linear unbiased prediction (BLUP). The basic assump-

tion behind the BLUP is the random contribution of 

parental candidates to the next generation (Robinson, 

1991). Mainly due to the cost of genotyping, two types 

of selection are applied in GS breeding schemes com-

pared to the conventional progeny test scheme. Pre-  
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selection of animals for genotyping is mainly based on 

the estimated breeding values (EBVs) using infor-

mation from their relatives and a final selection of elite 

animals based on the genomic estimated breeding val-

ues (GEBVs). The preselection of candidates for geno-

typing which is called selective genotyping (SG) vio-

lates the basic assumption behind BLUP and causes 

biased prediction of GEBVs before the final selection 

(Kuehn et al., 2007). Several studies have confirmed 

that bias arises as a subset of animals are selected for 

genotyping (VanRaden et al., 2009; Ducrocq, 2011; 

Patry and Ducrocq, 2011; Vitezica et al., 2011). More-

over, the statistical methods may influence the magni-

tude of bias (Vitezica et al., 2011). The source of in-

formation as response variable and different mixed 

model equations has been tested to evaluate their per-

formance to overcome bias. Vitezica et al (2011) im-

plemented a two-step procedure, including a conven-

tional mixed model that uses pedigree relationship ma-

trix and phenotypes, and a model in which daughter 

yield deviations (DYDs) were used as response varia-

ble, compared to three different single-step procedures 

(a model that uses the genomic and pedigree relation-

ship matrix simultaneously, a model with genetic dif-

ferences among genotyped and non-genotyped indi-

viduals corrected by considering the difference be-

tween pedigree and genomic relationships for geno-

typed animals, and a single-step method with corrected 

genomic relationship matrix (G) as proposed by Powell 

et al., 2010). They concluded that single-step proce-

dures were unbiased and more accurate than two-step 

procedures. Moreover, they showed that a corrected G 

matrix was more comprehensive because it accounted 

for SG on prediction of GEBVs.  

In spite of the fact that several studies have ex-

plored the bias in prediction of GEBVs for a given 

generation of selection, there is still a necessity to in-

vestigate the trend of bias in consecutive ongoing gen-

erations of selection. Therefore, this study aimed to 

explore the trend of bias in a population under selec-

tion for consecutive generations.  

 

Materials and methods  

Data 

To explore the trend of bias in a population under se-
lection, a non-overlapping population with equal sex 

ratio was simulated using QMSim software (Sargolzaei 

and Schenkel, 2009). Two selection intensity (SI) sce-
narios of 0.798 and 1.755 were simulated with two 

selection proportions (SP) of 50 (SP50) and 10 percent 
(SP10). To achieve mutation-drift equilibrium, a his- 

 torical population was simulated that started with 200 

individuals with equal number of males and females, 

mated at random and gradually increased to 4000 and 

20000 individuals in generation 1000. The difference 

in the number of individuals for the two scenarios were 

to end up with equal number of 1000 males after selec-

tion in order to make it statistically possible for com-

paring their accuracy and bias. Because of the larger 

number of individuals in the second scenario reaching 

a mutation-drift, equilibrium was not achieved after 

1000 generations. Therefore, the random mating con-

tinued to achieve a U-shaped distribution for allelic 

frequencies in all loci in generation 1500 (Figure 1). 

Allele frequencies were equal at the beginning of 

simulation in a bi-allelic model with recurrent mutation 

procedure for both markers and QTLs in all positions. 

Recombination rate was 1 percent per centimorgan 

with a mutation rate equal to 2.5e-5 at both marker and 

QTL positions. In every generation of historical popu-

lation, females produced one progeny with equal prob-

ability of being male or female. To apply SG, follow-

ing the construction of historical population, for the 

10% SP, 1000 genotyped males were selected from a 

10000 males, and for 50% SP from 2000 males origi-

nating from the previous generation based on their 

EBVs. Out of these 1000 genotyped males only 200 

animals were selected based on their GEBVs to mate 

with 2000 and 10000 unselected females to produce 

the next generation.  In the recent population of 10 

 
Figure 1. U-shaped distribution of allele frequencies for the 

second allele in a biallelic model for all positions (mutation-

drift equilibrium) for the last historical generation (one gen-

eration ahead of artificial selection). 
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generations, females produced 2 offspring in both sce-
narios and in each generation to reproduce 4000 and 
20000 animalsto keep all selection criteria constant 
over generations. For each scenario, three traits with 

heritability (h2) of 0.1, 0.25 or 0.4 were simulated. Se-
lection of male animals was random at the first genera-

tion and was based on higher estimated breeding value 

animals from generations 2 to 10. The selection of 
males for genotyping was based only on their EBVs. A 

genome consisting of 30 chromosomes, 100 cM in 
length each with 1000 markers and 50 QTLs were 

simulated for each animal. The total number of mark-
ers and QTLs were 30000 and 1500, respectively, 

spreading randomly across the genome. Each statistics 
presented here was a mean of 20 replications of simu-

lated population. 
  

Statistical analysis 

Estimation of the breeding values for selective geno-

typing of the animals was calculated externally and 

introduced to QMSim as an external BV option. The 

BLUP predictor via an animal model was applied by 

the Henderson’s mixed linear model (Henderson, 

1975). The BLUP predictor has the smallest prediction 

error variance among all possible linear unbiased pre-

dictors. Two kinds of information were used: pheno-

typic records and pedigree data. The numerator rela-

tionship matrix (A) was used in the following mixed 

model equations to derive the BLUP of random addi-

tive effects for the QTLs: 

                                             (1) 

in which, y is the vector of phenotypic records, Z is the 

incidence matrix relating the records to the random 

additive effects (a), is the residual variance and is 

the additive genetic variance. A gamma distribution for 

QTL effects with shape parameter equal to 0.4 was 

used. The mixed model equations were solved by the 

conjugate gradient method. For consecutive genera-

tions, all individuals from previous generations were 

included in the mixed model equations.  

 The statistical model included the random effects 

of SNPs, and was in fact a standard SNP-BLUP model. 

The proposed model was as follows: 

                                                       (2) 

in which, yi, is the vector for the phenotypic values 

records for the quantitative traits, μ is  the intercept, Q 

is the incidence matrix of the effects of SNPs, g is the 

unknown vector related to the effects of SNPs, and ei is  

 the residual effects. Genomic estimated breeding val-

ues were then estimated using the equation below: 

                                                                                                      (3) 

in which, y is the vector of GEBVs calculated from 

the sum of all n QTLs effects multiplied by their corre-

sponding covariates coming from genotypes of each 

individuals in every given position.   

There are different statistics to calculate the bias 

when predicting the genomic merit. The statistics de-

veloped are linear regression of true breeding values 

(TBVs) on estimated breeding values (EBVs), linear 

correlation coefficient between subsequent predictions, 

and variance of the genomic prediction differences 

(recent minus previous prediction) (Reverter et al., 

1994). In a simulation study that the true QTL effects 

are known it is easy to use regression of true breeding 

values on estimated breeding values to calculate the 

bias. Therefore, we used this statistics bias. A regres-

sion coefficient of one denotes an unbiased prediction 

while any deviation from one indicates bias. Accuracy 

of evaluation was measured using correlation of TBVs 

and GEBVs. 

To show the effect of selection on variance, the var-

iance of allele frequencies was calculated using the 

following equation ( Falconer, 1996)]: 

                                                    (4) 

in which, q is the frequency for the intended allele and 

N is the number of individuals in the population.  

 

Results and discussion 

Distribution of allele frequencies (Figure 1) as well as 

the average LD (Table 1) for the last generation of his-

torical population showed a mutation-drift equilibrium 

in all loci and a fairly random assortments of haplotype 

blocks along genome.  

Regression of TBVs on GEBVs for two scenarios 

and three traits in terms of their h2 showed an unbiased 

prediction for GEBVs for all scenarios and traits in the 

first generation that SG was at random (Figure 2). The 

values were close to one regardless of SI and h2. These 

findings were in agreement with many previous studies 

as expected from the theory of BLUP that is based on 

random selection of individuals to contribute to the 

genetic pool of the next generations (Vitezica et al., 

2011; Zhao et al., 2012; Hsu et al., 2017). The regres-

sion values deviated rapidly from the unity and conse-

quently the bias appeared when SG started from gener-

ation two and beyond based on higher breeding values 
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Figure 2. Trend of regression coefficient of true breeding 

values on genomic estimated breeding values in a population 

undergoing selection for 10 generations; close characters are 

for 50 percent selection proportion. Open characters are for 

10 present selection proportion; rectangle, circles and trian-

gles are for heritabilities of 0.1, 0.25 and 0.4, respectively. 
 

instead of a random selection. Regressions dropped 
dramatically by almost a factor of two to three times 

but differed for every SI or h2. The values became 
0.42, 0.49, and 0.55 for SP50 and 0.27, 0.36, and 0.42 

for SP10 for traits with h2 of 0.1, 0.25 and 0.40, respec-
tively (Table 2). It seems that truncation selection not 
only reduces the variance of population both pheno-
typically and genetically which is called Bulmer effect 

(Bulmer, 1971) but also is a key driver for bias in the 

Table 1. Average linkage disequilibrium (LD) for the last 

generation of historical population according to genetic dis-

tance between markers 

Standard deviation Average LD 

(R2) 

Genome length 

(cM) 

0.0007 0.264 [0, 0.05) 

0.0006 0.169 [0.05, 0.1) 

0.0003 0.098 [0.1, 0.2) 

0.0001 0.056 [0.2, 0.3) 

0.0001 0.038 [0.3, 0.4) 

0.0001 0.029 [0.4, 0.5) 

0.0001 0.023 [0.5, 0.6) 

0.0001 0.019 [0.6, 0.7) 

0.0001 0.017 [0.7, 0.8) 

0.0000 0.015 [0.8, 0.9) 

0.0000 0.013 [0.9, 1) 

0.0000 0.009 [1, 2) 

0.0000 0.005 [2, 3) 

0.0000 0.004 [3, 4) 

0.0000 0.003 [4, 5) 
 

 genomic predictions (Van Grevenhof et al., 2012). It 

was reported that reduction in response due to the 

Bulmer effect is always larger for selection based on 

genetic merits of animals than for selection based di-

rectly on phenotypic information (Van Grevenhof et 

al., 2012). Moreover, the impact of the Bulmer effect 
on other parameters such as response to selection and 

accuracy of genomic predictions is the same for GS as 

for traditional BLUP selection (Van Grevenhof et al., 

2012). Reduction of regressions were continued but 

with a lower rate in generations 3 and 4 (Figure 2). It is 

clear that after generation 4, the regressions were al-

most constant up to generation 10. The three times re-

ductions in the regression values after only one genera-

tion of truncation selection in generation two, became 

to almost one tenth reduction for 6 generations of se-

lection after generation 4 (generations 4 to 10). In gen-

eration 4, the values were 0.27, 0.34, and 0.41 for 

SP50 and 0.18, 0.23, and 0.26 for SP10 in the traits 

with h2 of 0.1, 0.25 and 0.40, respectively (Table 2). 

The corresponding values in generation 10 were 0.25, 

0.32, 0.38, 0.14, 0.19, and 0.22, respectively (Table 2). 

The results showed that from generation 1 to 4 the re-

gression values reduced by 73, 66, and 60 percent for 

SP50 and 82, 77, and 74 percent for SP10 in the traits 

with h2 of 0.1, 0.25 and 0.40, respectively. The corre-

sponding reductions from generation 4 to generation 

10 were only 2, 3, 2, 4, 4, and 4 percent, respectively. 

This pattern of reduction in the regression coefficients 

of TBVs on EBVs showed that the main biasedness 

happened at the early generations of selection after 

random population.  The results indicated that bias was 

in agreement with the magnitude of SI which is lower 

in smaller SI and vice versa. But it was in contrast to h2 

where the bias was higher for lower heritable traits and 

vice versa. The results indicated that for a trait with a 

given heritability, for example 0.1, when the intensity 

of selection increased from 0.798 to 1.755 (50% selec-

tion proportion to 10% selection proportion) the bias 

increased harmoniously, because of the reduction in 

the genetic and ultimately phenotypic variances. This 

reduction in the genetic variance ended up with reduc-

tion in heritability due to selection. It can be concluded 

that any sources that change the variance and heritabil-

ity, also affect the estimations which result in biased 

predictions. The results also showed the effect of in-

creasing heritability in a given selection intensity 

which improved the estimations and helped to reduce 

the bias. The interesting point was that even though the 

reduction in variance was higher for higher heritable 

traits due to selection based on genetic merits, biased-

ness was lower for such traits. Nevertheless, the reduc-  
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Table 2. The Regression of TBVs on GEBVs over generations 1 to 10 

 50% Selection proportion 10% Selection proportion 

Generation h2=10 h2=25 h2=40 h2=10 h2=25 h2=40 

1 1. 03 0. 98 1. 00 1. 00 1. 00 0.99 

2 0. 42 0. 49 0. 56 0. 28 0. 36 0. 42 

3 0.31 0. 38 0. 43 0. 19 0.00 0. 29 

4 0. 27 0. 34 0. 41 0. 18 0. 23 0. 26 

5 0. 27 0. 33 0. 40 0. 17 0. 21 0. 26 

6 0. 27 0. 33 0. 40 0. 16 0. 21 0. 24 

7 0. 257 0. 32 0. 40 0. 16 0. 21 0. 25 

8 0. 27 0. 32 0. 38 0. 15 0. 19 0. 24 

9 0. 27 0. 32 0. 39 0. 15 0. 19 0. 23 

10 0. 25 0. 32 0. 38 0. 14 0. 19 0. 22 
 

 
Figure 3. Trend of accuracy of genomic estimated breeding 

values in a population undergoing selection for 10 genera-

tions; Close characters are for 50 percent selection propor-

tion. Open characters are for 10 present selection proportion; 

Rectangle, circles and triangles are for heritabilities of 0.1, 

0.25 and 0.4, respectively.  

tion in variance is a key driver for biased estimation of 
the breeding values, with greater resemblance between  

 
parents and offspring generation resulting in more ac-

curate, less biased, predictions. 

As shown in Figure 3, the accuracies of prediction 

were 0.42, 0.59, and 0.71 for SP50, and 0.57, 0.71, and 

0.79 for SP10 for traits with h2 of 0.1, 0.25 and 

0.40, respectively (Table 3). The accuracy increased by 

increasing h2
 as expected, and was less dependent on 

SI while selection started based on higher EBVs from 

generation 2 onward. This phenomenon is mainly due 

to dramatic reduction of genetic variance as shown by 

calculations of the variance of allelic frequencies (Fig-

ure 4). The pattern of reduction in accuracies was the 

same as for the regression coefficients as well as for 

the variances of allelic frequencies (Figures 2, 3, and 

4). 
It is well known that reduction in the accuracy of 

genomic predictions is a result of selection (Bijma, 
2012). It seems the main driver for such patterns is the 
genetic variance in each generation (Figure 5). Reduc-
tion in genetic variance results in the reduction of her-
itability as a consequence. Since selection impacts on 
the variance components, heritability estimates are less 
accurate in the population undergoing selection (Ce-
sarani et al., 2019). It was reported that under different 
scenarios of genotyping, random selection results in 
the most accurate heritability estimates. Moreover,  

Table 3. Correlations of TBVs and GEBVs over generations 1 to 10 

 50% Selection proportion 10% Selection proportion 

Generation h2=10 h2=25 h2=40 h2=10 h2=25 h2=40 

1 0. 42 0. 59 0. 71 0. 570 0. 71 0. 79 

2 0. 27 0. 42 0. 53 0. 30 0. 42 0. 5 

3 0. 23 0. 38 0. 47 0. 24 0. 35 0. 43 

4 0. 21 0. 34 0. 45 0. 24 0. 34 0. 401 

5 0. 21 0. 34 0. 454 0. 23 0. 33 0. 41 

6 0. 21 0. 35 0. 45 0. 23 0. 33 0. 39 

7 0. 20 0. 35 0. 46 0. 23 0. 34 0. 40 

8 0. 21 0. 34 0. 43 0. 22 0. 31 0. 39 

9 0. 22 0. 34 0. 45 0. 22 0. 31 0. 37 

10 0. 21 0. 34 0. 45 0. 21 0. 31 0. 37 
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Figure 4. Trend of the change in variances of allele frequencies in a population undergoing selection for 10 

generations; close characters are for 50 percent selection proportion (left). Open characters are for 10 present 

selection proportion (right); Rectangle, circles and triangles are for heritabilities of 0.1, 0.25 and 0.4, respec-

tively. Variance of the change in allele frequencies calculated using the formula below: p×(1-p)/2N (Falconer, 

1996). 

 
Figure 5. Trend of change in additive genetic variances over 

generations in the population undergoing selection for 10 

generations. Close characters are for 50 percent selection 

proportion. Open characters are for 10 present selection pro-

portion; Rectangle, circles and triangles are for heritabilities 

of 0.1, 0.25 and 0.4, respectively. 

 among statistical methods, the single-step GBLUP is 
less affected by selection in terms of variance compo-
nents and heritability estimates (Cesarani et al., 2019). 
A most recent study showed that accounting for in-
breeding and using single-step GBLUP reduces the 
biasedness and increases the accuracy of prediction 
(Gowane et al., 2019). Results showed that scaling 
down the GEBVs using a scale parameter helped re-
moving the biasedness in generations4 onwards.  

 

Conclusions 

Trends of regression coefficients showed that the bias 
was large when selection started from a random popu-
lation. Despite the fact that SI influenced bias, it was 
not the case for the accuracies after starting selection. 
Exploring the trends of genetic variances, shown by 
the variances of allelic frequencies, indicated that the 
main driver for accuracy and bias was the change in 
the genetic variance. Our data showed that the bias 
would not be a big issue anymore due to more homo-
geneous populations across generations. 
 

References 

Bijma, P., 2012. Accuracies of estimated breeding values 
from ordinary genetic evaluations do not reflect the 
correlation between true and estimated breeding values in 
selected populations. Journal of Animal Breeding and 
Genetics  129, 345-358. 

Bulmer, M.G., 1976. The effect of selection on genetic 
variability. Genetic Research 28, 101-17. 



Trend of bias in prediction of genomic estimated breeding values 

 

63 

 

Cesarani, A., Pocrnic, I., Macciotta, N.P.P., Fragomeni, 

B.O.,  Misztal, I., Lourenco D.A.L., 2019. Bias in 

heritability estimates from genomic restricted maximum 

likelihood methods under different genotyping strategies. 

Journal of Animal Breeding and Genetics 136, 40-50. 

Ducrocq, V., 2011. Evidence of biases in genetic evaluations 
due to genomic preselection in dairy cattle. Journal of 
Dairy Science 94, 1011-1020. Ehsani, A., Janss, L., 
Christensen, O., 2010.  Effects of selective genotyping on 
genomic prediction. Processings of the 9th World Congress 
on Genetics Applied to Livestock Production. Germany. 

Falconer, D.S., 1996. Introduction to Quantitative Genetics. 
Prentice Hall, Harlow, England. 

Gowane, G.R., Lee, S.H., Clark, S., Moghaddar, N., Al-
Mamun, H.A., van der Werf, J.H.J.,  2019. Effect of 
selection and selective genotyping for creation of reference 
on bias and accuracy of genomic prediction. Journal of 
Animal Breeding and Genetics 136, 390-407. 

Henderson, C.R., 1975.  Best Linear Unbiased Estimation 
and Prediction under a Selection Model. Biometrics 31, 
423-447. 

Hsu, W.L., Garrick, D.J., Fernando, R.L., 2017. The 
accuracy and bias of single-step genomic prediction for 
populations under selection. G3: Genes, Genomes, 
Genetics 7, 2685-2694. 

Kuehn, L.A., Lewis, R.M., Notter, D.R., 2007. Managing 
the risk of comparing estimated breeding values across 
flocks or herds through connectedness: a review and 
application. Genetics Selection Evolution 39, 225-247. 

Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E., 2001. 
Prediction of Total Genetic Value Using Genome-Wide 
Dense Marker Maps. Genetics  157,  1819-1829. 

Meuwissen, T.H., Goddard, M.E., 2004. Mapping multiple 
QTL using linkage disequilibrium and linkage analysis 
information and multitrait data. Genetics Selection 
Evolution 36, 261-279. 

 Patry, C., Ducrocq,V.,  2011. Evidence of biases in genetic 

evaluations due to genomic preselection in dairy cattle. 

Journal of Dairy Science 94, 1011-1020. 

Powell, J.E., Visscher, P.M., Goddard, M.E., 2010. 

Reconciling the analysis of IBD and IBS in complex trait 

studies. Nature Reviews Genetics 11, 800-805. 

Reverter, A.,  Golden, B.L.,  Bourdon, R.M., Brinks, J.S., 

1994. Technical note: detection of bias in genetic 

predictions. Journal of Animal Science 72, 34-37. 

Robinson, G.K., 1991. That BLUP is a good thing: the 

estimation of random effects. Statistical Science  6, 15-32. 

Sargolzaei, M., Schenkel F.S., 2009. QMSim: a large-scale 

genome simulator for livestock. Bioinformatics 25, 680-

681. 

VanRaden, P.M., Van Tassell, C.P., Wiggans, 

G.R., Sonstegard, T.S., Schnabel, R.D., Taylor, 

J.F., Schenkel, F.S., 2009. Invited review: Reliability of 

genomic predictions for North American Holstein bulls. 

Journal of Dairy Science 92, 16-24. 

Van Grevenhof, E.M., Van Arendonk, J.A., Bijma, P., 2012. 

Response to genomic selection: The Bulmer effect and the 

potential of genomic selection when the number of 

phenotypic records is limiting. Genetics Selection 

Evolution  44, 26. 

 Vitezica, Z.G., Aguilar, I., Misztal, I., Legarra, A., 2011. 

Bias in genomic predictions for populations under 

selection. Genetics Research  9,  357-366. 

Zhao, Y., Gowda, M., Longin, F.H., Würschum, T., Ranc, 

N., Reif, J.C.,  2012. Impact of selective genotyping in the 

training population on accuracy and bias of genomic 

selection. Theoretical and Applied Genetics 125, 707-713.  

 
Communicating editor: Ali K. Esmailizadeh 

   

   

   

   

   

   

   

 


