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1. INTRODUCTION

Singular and weakly singular integral equations have major importance in mod-
eling phenomena in many branches of physics and engineering fields such as atomic
scattering [33], radar ranging [25], optical fiber evaluation [19], seismology [14], X-
ray radiography [9], plasma diagnostics [1] and microscopy [2].

Abel integral equation as a special case of singular integral equation can be derived
directly from a physical or engineering phenomena, so many authors strived to find
numerical methods for solving this class of integral equations. In [20] a mechani-
cal quadrature method has been employed to solve some of the first Abel integral
equations. Diago et al. have proposed a numerical method for solving a nonlinear
Volterra integral equation of Abel type in [10]. The Homotopy perturbation method
has been employed to solve a system of generalized Abel integral equations in [18].
An efficient algorithm has been used for numerical solving of singular integral equa-
tions of Abel type in [27]. Taylor expansion and Block—pulse functions using the
collocation method have adopted to solve the second kind Volterra integral equa-
tions of Abel type by Shahsavaran in [32].

Wavelets as a family of functions constructed from dilation and translation of a
single function due to orthogonality property are appropriate basis for numerical
approximation of solutions of the integral equations. Orthogonal polynomials (such
as Jacobi, Laguerre and etc), piecewise constant basis function (block pulse, Haar
and Walsh), and sine - cosine functions in fourier series are other classes of orthog-
onal basis functions. In [6] Chelyshkov has introduced a new class of orthogonal
basis functions.

The aim of this paper is to introduce a matrix method by using the orthogonal
Chelyshkov wavelet for solving linear and nonlinear Abel and system of Abel inte-

gral equations in the following forms:

(1) f(t):/ot(tfi(gudx,o<u<1,321,seN,

f*(x)

" )de,0<1/<1,321,s€N,
—x
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RO =)+ [ (D @+ B
¢ (3)
Rl =0n(0) + [ (R f o)+ ()
for 0 <y, < 1,8, > 1and sy € N (k=1,...,4), where these are known as the

first kind, the second kind and the system of Abel integral equations, respectively.
In order to describe the work, the outlines of the paper is as follows: In section 2 the
Chelyshkov wavelets function is introduced. The operational matrices are extracted
in section 3. Section 4 is related to the convergence analysis of the method. In
section 5 the proposed methed is described. The validity and applicability of the
method is demonstrated with some examples in section 6. Finally the last section

is related to conclusions and some suggestions for further works.

2. CHELYSHKOV WAVELETS

Chelyshkov functions (ChFs), can be derived by the aid of Rodrigues formula:[34]

1 1 avm
N —m)l gN-m dgN-m

pm(x) = ( ($N+m+l(1 —.I)Nim),mz 0,1,...,N.

Also theses basis functions have the analytical forms:[26]
N—m
N—m\(N+m+q+1
m(T) = —1) ™t m =0,1,...,N.
e qz_;m(q)( W a0

This class of polynomials is orthogonal functions in the interval [0, 1], with respect

to the weight function w(x) =1, as follows:

1
2n+1

6717” K

(4) /0 D ()P (x)dx =

where 6,,,, is the so called Kroneker deta function.

Now by using ChFs, Chelyshkov wavelet functions (ChWs) can be defined as follows:[24]

20(2m + Dpp (22 —n), 35 <o < BE,
¢n,er(z) =
0, 0.w.
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where n = 0,1, ...,22 —1,m = 0,1, ..., N. The class of ChWs constitute an
orthonormal system of functions on the interval [0, 1], with respect to the weight

function w(z) = 1, as follows:

1
/0 B () () = Gy

2.1. Function approximation. Define L?([0, 1]):={y|y is measurable on [0, 1] and
fol y?(z)dr < oo}, equipped with the inner product:

(w(@) () = fy y(@)i(e)de.
Any function f € L%([0,1]) can be expanded via ChWs as follows:

f(l‘) = Z Z cn,mwn,m(x)a

n=0m=0

2P—1 N

~ Z Z Cn,mwn,m(x)

n=0 m=0
(6) = CT(a),

where:

o = (2m 4 1) / F (@) (2)d(2).

Here C and ¥(z) are the following 2P x (N + 1) —vectors:

C = [coo, <-CO(N+1)5 -+ €C(2r—1)05 mvC(2p—1)(N+1)}T7
U(z) = [Yoo(x), s Yon+1) (@), WP2o—1)0(T), ooy iar—1yvi1) (2)] "

3. CHWS—OPERATIONAL MATRICES OF INTEGRATION

In this section, based on ChWs function, we will construct an operational matrix
of fractional integration. For this purpose, we apply the Rieman-Liouville integra-

tion operator as follows:

(7) u(z) = F(ly) /O = Y (bt x> 0.
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The fractional integration of order v of ChW-vector, ¥(¢), can be expanded into
the ChW-series as follows:

(8) F(ly) /0 (z — )" W(t)dt = PYU(x),

where PV is called the ChW-operational matrix of integration.
Now by the so called convolution operator of two functions we can write:

xT

1 v—1 _ L xufl % T
F(V)O/ (17 - t) ¢n,m(t)dt - F(V){ wn,m( )}

By taking Laplace transform, we have:

x

O Ll @0 ) = G L 5 L)),

0
where
(10) L:{xy—l} _ %’
and
(11)

N] o |

Ll Ha) = 25+ 28] ( )<N+]§jj+l>(2p)3+qemw

q—O

N i+q . ) —s
() Y )
o N—j z 2r szl

z=0

By substituting (3.4) and (3.5) in (3.3), and using inverse Laplace transform, we
get:
N—j

Iy () = /(25 + 128 ) (-1)" (Nq—j> <N tita+t 1) (zp)j+qr T((j+q) +1)

N —j (G+q9 +v+1)

R A RN RS> Co (YT (Y ey

ita s (+a)—= ; Zv ;
Z j+aq),1 I'(z+1) (i+1) (i+1)
. ( )2” XF2+V—|—1X(x_ 2p ) ule-
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Now we can expand I”1); ;(z) into ChW-basis as follows

Illwihjl (Ji) = Z Z C(i17j17i2,j2)¢i2,j2(37),

i2=0 j2=0
where
<lei17j1 (CC), Vi »J2 (CC)>
<’l/)7327j2 (I), 11[}1'2 ,J2 (‘T)>
and (,) denotes the inner product in L?[0,1],n = 0,1,...,2?—1,m =0,1,..., N.

c(ir, ji1,12,j2) =

By the view of the orthogonality property of ChW functions, the entries of the
(2P(M 4+ 1)) x (2°(M + 1)) integration operational matrix P¥, can be calculated as

follows:

ig+1

5P pN*jl N —j; N+j1+q+1 -
clivgings) = [ Wi+ 128 _1q1< )( , )21”1 .
(i1, J1, 92, J2) [V(21+1) qlzzjo( ) o N_i (27)

i

] i J ; N—j1 .
F((]lJrql)Jrl) 11 Jtaty 21 - P N — 71
- - —) — 2 1)22 —1)n

q1=0

N+ji+a+1\, pvita TS g\, 1 ) I'(z+1) (iy + 1), 7
o (2%) x Y (55) X m— s X (2 — )
N —j; = z 2p IN'z4+v+1) 2p
R UE Y 7T SR S G LA
2P 120 q2 N —jg '

where
i1=0,1,...,2°-1,5,=0,1,...,N,io =0,1,...,2° —1,jo=0,1,...,N.

3.1. Operational matrix for the product of two ChWs. The product of ¥(z),
U7 (z) and 2P(N + 1)-vector C can be expanded into the ChW as:

(12) U(z)0T (2)C =~ U(C)¥(x),
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The elements of the (2P(N + 1) x 2P(N + 1))-matrix U(C'), can be calculated as

follows:

1
" :/ Gy (@)eny(@) i =1, 22 (N +1),j = 1,... 2(N + 1),
0
r=1,...,2°(N +1),

where ¢, is the r-th entry of vector C.

4. CONVERGENCE ANALYSIS

This section is concerned with introducing the corresponding convergence theo-

rem.

Theorem 4.1. Suppose f € L*[0,1], and V(z) is a ChWs—vector. A sequence
fn(x) deﬁned by fn(x) = Z Ckwk(m)7 n e N: with

k=1

=< f(x)’wk(x) > k=12 ..n

oo
converges to f(x) in the vector space of U(x)’s components if and only if > |ci|* <

.

Proof. Let f, be converged to f. Hence, for n € N, we have:

0<[If =D entnll3
k=1

Z/ (f = ertop)’da,
0 k=1
_ / £ (o) / 27(0) D cxtutoll o + / (S avuto)as
' 2 — ' i 3 C X X ' 3 C i 2 X
g/o 2 (2)da / 240) Yt |d +/o(,; wor(2)) 2,
1 1 n
= [ P [ (S anta)?a,

k=1

1 1
- / 2 ()de / (22 () + E03(x) + -+ AR (x)) da,
0 0
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n

=18 = > lewl,

k=1

Therefore:
0<IfI13 = lexl?,
k=1

So for any f € L?[0,1], we have:
> lenl* < If(@)]]3 < oo,
k=1

Hence:

oo
Z ek]? < oo.
k=1

o0
Now, suppose that > |cx|? < 0o. So if ne€ N, then :
k=1

0<IIf = Fll3 = 11D ewtbn — Y cutbull3,

k=1 k=1
=1 Y enull3,
k=n+1
1 0
- [(3 an@)?
0 k=n-+1
00 1
<(Y ck/ Ui (x) dx)?,
k=n-+1 0
o0 1
< Y | vix)de,
k=n-+1 0
= Z .
k=n+1

By the assumption, as n goes to infinity, the last term will go to zero, and the proof

is completed. O
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5. IMPLEMENTATION OF THE METHOD
Suppose f,g,a(z) € L?[0,1]. So we can write:

f(z) ~ CTU(x), g(2) = GT ¥ (), a(z) = ATU(x)

Now we present some theorems to approximate the integral part of equations
(1.1) and (1.2) and the system of integral equations (1.3) for linear case (s = 1) and

nonlinear cases (s > 1).
Lemma 5.1. If f(t) =~ CTU(t) then:
i) = CTus—1(C)¥(t),s €N,
where U(C) is the operational matriz of product of two ChWs.
Proof. For s = 2, we have:
F21) = FO L) ~ (CTU(E) (T (1)C) = CTUC)(2),
and by using the induction on s, the proof is complete. O

Theorem 5.2. The integral parts of the integral equations (1.1) and (1.2) for the

case s > 1, can be expressed in terms of the ChWs—basis as follows:

¢ fo 2PN
/ G _(gydx ~ 37 Miy(t) = M7 (),
0 =1

where
M; ~ CTU~Y(C)Pe;.
and e; = 1[0,...,0,1,0,...,0|7 fori=1,...,2P(N +1).

Proof. Putting
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and so
1 t

A~ Trrs—1 \Ij(t) s
MWO/C U (C)O/(t_x)yd bi(t)dt

Using the operatioal matrix of integration, we write:

~ CTU(C)P / (1) (1)t
0

So we have:
M; =~ CTU*~Y(C)PVe;.
O

Theorem 5.3. The integral parts of the system of integral equations (1.83) for the

case s =1, can be expressed in terms of the ChWs—basis as follows:

2PN
/ ‘zix) () UL 1 5 0t = OTw (1),
0 i=1

where
O; ~ CTU(A)P"e;.
i=1,...,2°P(N +1).

Proof. Putting

we have

and so we obtain:

So that we write:

0; ~ CTU(A)P” / W () (t)dt
0

Considering the orthogonality property of ChWs basis, the result will be obtained.
O
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Theorem 5.4. The integral parts of the system of integral equations (1.3) for the
case s =1, can be expressed in terms of the ChWs—basis as follows:
¢ 2N
)

/ %dm ~ Y Qui(t) = Qu(A) (),
0 =1

where
Qi = CTU1(CYU(A)PVe;.
and e; = [0,...,0,1,0,...,0]T withi=1,...,2P(N +1).

Proof. Putting

Qi~ / / G dw (e,

we have
1t
. CTUs—1(C)¥(x)¥T(x)A '
Qi ~ O/O/ (t—2) dx; (t)dxdt,
and we get:
1 t
0 ~ / CTU1(C)U(4) / (t‘l’_(?)udwi(t)dt.
0 0

Finally we obtain:

Q; =~ CTUs~1(C)U(A)P” / W (t)e;(t)dt.
0
Thus by using the orthogonality property of ChWs basis, the result will be followed.
|

Now, by using the above theorems, the system of integral equations (1.3), for

sp>1,(k=1,...,4) can be rewritten as follows:

Cl = Gl + QS1 (A) + Q32 (B)7(13)
CQ = GQ + st(D) +QS4(E)'

where the vectors Qs,, for k = 1,2,3,4 are obtained by using theorems (5.3)
and (5.4). Eq (5.1) is a linear or nonlinear system of 2(2P?(N + 1) equations for
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2(2P(N + 1)) unknown coeflicient vectors Cy and Cy that can be solved by using
Newton-Raphson method in MATLAB software.

6. NUMERICAL RESULTS

In this section, some examples are considererd to show the efficiency and appli-
cability of our method. The error function is defined by e, (t) = f(t) — fm(t), where

f(¢) is the exact solution, and f,,(¢) is the approximate solution of the considering

equation.

Ezxamplel. Consider the following Abel integral equation of the second kind:

(14) fit)y=g(t) — / \}:%dx,o <t<1,
0

where
g(t) = cos(t) + sin(t) + \/%(fresnels(\/?(—cos(t) + sin(t)) + fresnelc(\/?(cos(t) + sin(t)))),

fresnels(v) = fsm(%ﬁ)du, and, fresnelc(v) = fcos(%“z)du.
0 0

and the exact solution is f(t) = sin(t) + cos(t).

=2
104 p‘ T
—*—N=3
—+—N=4
6 # 7'* 4& N=5 | 4]
107 B¢ ’f‘*@& ““* M ** f*ﬂs& f’ o
* S ——N-8
8
L S W o~ . - 1 N
z x X R N
< N \ "N b
107 ek * A
4
2 %
* ]
107125 % AW LK
*f@é%*\#* M s
¥ | \
T \ * *
[ * *
10 n L L L

L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 1. The error of approximate solutions for different values
of N (Example 1).

We have applied our method to solve the Abel integral equation in Example 1.
Figure 1 shows by increasing the number of the ChW basis vectors elements we
will have better approximations. For more details, Figure 2 compares the error
functions for N =3 and N = 4.
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(a) (b)

FIGURE 2. The error of the numerical results by using ChW basis
with p =4 (Example 1).

Ezxample2. Consider the following Abel integral equation:

(15) f(t) Qﬁ/jl%d:r,()gtg 1
0

with the exact solution:
f(t) =1—e™erfc(V/7t),

where:

erfe(t) = % /e_xzdx.

is the famous error function.

TABLE 1. Comparing the errors of approximate solutions for some

p (Example 2).

p=1 p=2 p=3 p=4

x=0.1 8.732e -03 -8.373 e-03 5.3333 e-03 -5.659¢-06
x=0.2 -1.129e¢ -02 7.7367e-03 -4.407 e-06 9.341e-07

x=0.3 -9.673e -06 1.087 e-04 -3.999 e-06 4.462e-07

x=0.4 9.909e -03 1.25 e-06 1.113 e-06  -9.976e-08
x=0.5 1.059¢ -03 -1.342 e-06 -1.316 e-06 1.281 e-08
x=0.6 1.738e-04 -4.845e-06 5.196 e-07  8.488 e-09
x=0.7 -1.36e-04 6.459 e-06 -2.225e-09 1.264 e-09
x=0.8 -8.437e¢-06 1.22 e-06 -6.449 e-08 -4.758 e-10
x=0.9 1.452¢ -04 -1.927 e-07 3.219 e-08 -4.098 e-09

35
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By using our method, some approximations of solution of the equation has been
extracted. Table 1 shows that by increasing p of the Chelyshkov wavelet basis, the
accuracy of the method has increased.

Ezxample 3. Consider a nonlinear Abel integral equation of the first kind in the

following form:
(16) /de — g(t)’o <t< 17

where g(t) = %t%(6$ + 7) and the exact solution is f(t) = t.

w104 p=2,N=4

0O o1 02 03 04 05 06 07 08 09 1

FIGURE 3. The error of approximate solutions (Example 3).

TABLE 2. Comparing the errors of approximate solutions of the

present method with Ref[30] (Example 3).

e20(t) (Ref [30]) e4(t) (The present method)

x=0.1 2.7026e -05 4.242 e-05
x=0.2 6.2518e -06 1.394 e-05
x=0.3 1.0315e -05 -8.769 e-13
x=0.4 1.9049e -05 6.617 e-13
x=0.5 2.4287e -05 -1.324 e-12
x=0.6 2.2919e -05 1.719 e-12
x=0.7 1.7833e -05 3.245 e-12
x=0.8 1.6220e -05 4.784 e-13
x=0.9 2.2109e -05 -4.877 e-12

Using our method, the nonlinear Abel integral equation of the first kind in Ex-

ample 3, has been solved. Figure 3 shows the results. Also Table 2 compares the
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obtained results with the results in Ref[30]. By applying only four elements of the

vector basis much more accurate results will be obtained.

Ezxample/. Consider the following nonlinear system of Abel integral equations:

L) — 2t /fl B@+BE) G ).

t—x

-0+ [ L

w\»—‘

where
300625 2 3125 a
t) =2 — 2¢3 5 5
Gi(t) =17 =28+ Tt ommet
2187 1
t)y =13 —1* - ———t3
g2(t) T

and (f1(t), f2(t)) = (t2,3) is the exact solution.

FIGURE 4. Comparing the approximate errors by changing p in
the used ChW-basis with N = 3 ( Example 4 ).

FicUre 5. Comparing the approximate errors by changing p in
the used ChW-basis with N =4 ( Example 4 ).

The solution of the system of equations has been approximated by applying the
numerical ChW method. Figures 4 and 5 show that by increasing p, much more

accurate results will be obtained.
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Ezxample 5. Consider the following system of linear Abel integral equations:

25 8 6 1
t) =t 412 — ——¢5(130¢5 + 182t5 — 210z + 273
ft)=t+ 6552 5 ( + x +273)
+ [ () ¢ g(e))de
0 (t—a:)% (t—x)%g ’

(18)

25
g(t) =t —t* — @t%(s&e% +66t5 — 140z + 154)

t 1 1
+/0 (mf(m) + mg(ﬂﬁ))d%

where (f(t),g(t)) = (t +t2,t — t?) is the exact solution.

x108 p=4, N=4
1 T T T T T T
—+— Error approximation of f(t
Error approximation of g(t
osk P! 0]
0 N e N e e R T o R R P bt
= 05
5
gk
sk
2 L
0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1

FIGURE 6. The error of approximate solution of the system in Ex-

ample 5.

Figure 6 shows the error of the results for solving the system of Abel integral
equations in Example 5, with N =4 and p = 4.
Ezample 6. Consider the following system of Abel integral equations of the first

kind with variable coefficients:

t (3;2_1) 1(x) x fa(x) dp —
/o( (—of  a-ob 91“)’(19)
Latfile)  (A—x)falx),
/o((t—a:)i " (t—x)5 Jdz = 9(1),
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where
(t) = 16,3 10,5 27y 2434
g1 15 15 0 440"
(t) — @t% + ﬁt% 7125 tlng 7625 t%
9208 = 933 252 1197 1596

and (f1(t), f2(t)) = (t3,t* + t3) is the exact solution.

(a) (b)

FIGURE 7. Comparing of the approximate errors by incremental
changing in p in the used ChW-basis with N = 8 ( Example 6 ).

Increasing p causes to much more accurate results which are shown in Figure 7.

Ezxample?. Consider the following nonlinear system of Abel integral equations:

/fzt_x Dy = 2/ + & t2

' (20)
f( )g(z ) \/+ 3

9(t) + 0 (—o)} ts,

where (f(t),g(t)) = (V/t,V/t) is the exact solution.

TABLE 3. The error of approximate solutions of f(t) and g(¢) (Ex-

ample 7).

r=0.1 x=0.3 x=0.5 x=0.7 z=0.9
en(t) 8197e—4 1.696e—7 1.73le—7 1483e¢—7 1.195e—7
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p=2,N=6

0 ’cvgn"’%f o

FIGURE 8. The error of approximate solutions of the system in

Example 7.

The solution of the system of equations has been approximated by applying the
numerical ChW method. Figure 8 and Table 3 show the results.
Ezample 8. Consider the following nonlinear system of singular integral equa-

tions:

f1<t>—2f2<t>+/0 Lo [HEOBD 40 g,

Falt) + 21 /fltix da +/ Lo o)

NH

where g1 (t) = 3t2 — t + £5¢3 (16¢% + 36 +21) — 2835 (—81t3 + 90¢2 + 102¢ — 119)

go(t) =2 + 3t — 25477 (641> — 95) + L2245 (25¢2 — 60t + 38)
and (f1(t), f2(t)) = (t +2,t — t?) is the exact solution.

Figure 9 and Table 4 show the error of numerical solutions for the system of

nonlinear singular integral equations in Example 8, with N =8 and p = 2.

7. CONCLUSION

In this paper, the authors employed a spectral method for solving generalized

linear or nonlinear integral equation and system of integral equations of Abel type.
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8 =2, N=8
2010 T T _—— T

—— Ertor approximation of f, (t)

—s— Error approximation of (1

FIGURE 9. The error of approximate solutions of the system in

Example 8.

TABLE 4. The error of approximate solutions of fi(t) and fa(¢)
(Example 8).

r=0.1 z=0.3 z=0.5 x=0.7 x=0.9
en(t) 2.245e —14 1.479% —13 1.103e —12 —2.328¢ — 12 4.369¢ — 10

The presented operational method, based on Chelyshkov wavelet functions, con-
verts the problem to a system of linear and nonlinear equations. Finally, we have
presented some numerical examples to show the accuracy and applicability of our

method. This method can be used for other classes of integral equations as well.
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