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1. Introduction

Singular and weakly singular integral equations have major importance in mod-

eling phenomena in many branches of physics and engineering fields such as atomic

scattering [33], radar ranging [25], optical fiber evaluation [19], seismology [14], X-

ray radiography [9], plasma diagnostics [1] and microscopy [2].

Abel integral equation as a special case of singular integral equation can be derived

directly from a physical or engineering phenomena, so many authors strived to find

numerical methods for solving this class of integral equations. In [20] a mechani-

cal quadrature method has been employed to solve some of the first Abel integral

equations. Diago et al. have proposed a numerical method for solving a nonlinear

Volterra integral equation of Abel type in [10]. The Homotopy perturbation method

has been employed to solve a system of generalized Abel integral equations in [18].

An efficient algorithm has been used for numerical solving of singular integral equa-

tions of Abel type in [27]. Taylor expansion and Block–pulse functions using the

collocation method have adopted to solve the second kind Volterra integral equa-

tions of Abel type by Shahsavaran in [32].

Wavelets as a family of functions constructed from dilation and translation of a

single function due to orthogonality property are appropriate basis for numerical

approximation of solutions of the integral equations. Orthogonal polynomials (such

as Jacobi, Laguerre and etc), piecewise constant basis function (block pulse, Haar

and Walsh), and sine - cosine functions in fourier series are other classes of orthog-

onal basis functions. In [6] Chelyshkov has introduced a new class of orthogonal

basis functions.

The aim of this paper is to introduce a matrix method by using the orthogonal

Chelyshkov wavelet for solving linear and nonlinear Abel and system of Abel inte-

gral equations in the following forms:

f(t) =

∫ t

0

fs(x)

(t− x)ν
dx, 0 < ν < 1, s ≥ 1, s ∈ N,(1)

f(t) = g(t) +

∫ t

0

fs(x)

(t− x)ν
dx, 0 < ν < 1, s ≥ 1, s ∈ N,(2)
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
f1(t) = g1(t) +

∫ t

0

(
a(x)

(t− x)ν1
fs11 (x) +

b(x)

(t− x)ν2
fs22 (x))dx,

f2(t) = g2(t) +

∫ t

0

(
d(x)

(t− x)ν3
fs31 (x) +

e(x)

(t− x)ν4
fs42 (x))dx,

(3)

for 0 < νk < 1, sk ≥ 1 and sk ∈ N (k = 1, . . . , 4), where these are known as the

first kind, the second kind and the system of Abel integral equations, respectively.

In order to describe the work, the outlines of the paper is as follows: In section 2 the

Chelyshkov wavelets function is introduced. The operational matrices are extracted

in section 3. Section 4 is related to the convergence analysis of the method. In

section 5 the proposed methed is described. The validity and applicability of the

method is demonstrated with some examples in section 6. Finally the last section

is related to conclusions and some suggestions for further works.

2. Chelyshkov wavelets

Chelyshkov functions (ChFs), can be derived by the aid of Rodrigues formula:[34]

pm(x) =
1

(N −m)!

1

xN−m
dN−m

dxN−m
(xN+m+1(1− x)N−m),m = 0, 1, . . . , N.

Also theses basis functions have the analytical forms:[26]

pm(x) =

N−m∑
q=0

(−1)q
(
N −m
q

)(
N +m+ q + 1

N −m

)
xm+q,m = 0, 1, . . . , N.

This class of polynomials is orthogonal functions in the interval [0, 1], with respect

to the weight function w(x) = 1, as follows:∫ 1

0

pn(x)pm(x)dx =
1

2n+ 1
δnm,(4)

where δnm is the so called Kroneker deta function.

Now by using ChFs, Chelyshkov wavelet functions (ChWs) can be defined as follows:[24]

ψn,m(x) =


√

2p(2m+ 1)pm(2px− n), n2p ≤ x <
n+1
2p ,

0, o.w.
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where n = 0, 1, ..., 2p − 1,m = 0, 1, ..., N . The class of ChWs constitute an

orthonormal system of functions on the interval [0, 1], with respect to the weight

function w(x) = 1, as follows:

∫ 1

0

ψn,m1(x)ψn,m2(x)dx = δm1m2 .

2.1. Function approximation. Define L2([0, 1]):={y|y is measurable on [0, 1] and∫ 1

0
y2(x)dx <∞}, equipped with the inner product:

〈y(x), ψ(x)〉 =
∫ 1

0
y(x)ψ(x)dx.

Any function f ∈ L2([0, 1]) can be expanded via ChWs as follows:

f(x) =

∞∑
n=0

∞∑
m=0

cn,mψn,m(x),

≈
2p−1∑
n=0

N∑
m=0

cn,mψn,m(x)

= CTΨ(x),(6)

where:

cn,m = (2m+ 1)

∫ 1

0

f(x)ψn,m(x)d(x).

Here C and Ψ(x) are the following 2p × (N + 1) –vectors:

C = [c00, ...c0(N+1), ..., c(2p−1)0, ..., c(2p−1)(N+1)]
T ,

Ψ(x) = [ψ00(x), ..., ψ0(N+1)(x), ...ψ(2p−1)0(x), ..., ψ(2p−1)(N+1)(x)]T .

3. ChWs–Operational matrices of integration

In this section, based on ChWs function, we will construct an operational matrix

of fractional integration. For this purpose, we apply the Rieman-Liouville integra-

tion operator as follows:

Iνu(x) =
1

Γ(ν)

∫ x

0

(x− t)ν−1u(t)dt, x > 0.(7)
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The fractional integration of order ν of ChW–vector, Ψ(t), can be expanded into

the ChW-series as follows:

1

Γ(ν)

∫ x

0

(x− t)ν−1Ψ(t)dt = P νΨ(x),(8)

where P ν is called the ChW–operational matrix of integration.

Now by the so called convolution operator of two functions we can write:

1

Γ(ν)

x∫
0

(x− t)ν−1ψn,m(t)dt =
1

Γ(ν)
{xν−1 ∗ ψn,m(x)}.

By taking Laplace transform, we have:

L{ 1

Γ(ν)

x∫
0

(x− t)ν−1ψn,m(t)dt} =
1

Γ(ν)
{L{xν−1} ∗ L{ψn,m(x)}},(9)

where

L{xν−1} =
Γ(ν)

sν
,(10)

and

L{ψi,j}(x) =
√

(2j + 1)2
p
2 [

N−j∑
q=0

(−1)q
(
N − j
q

)(
N + j + q + 1

N − j

)
(2p)

j+q
e

−i
2p s

Γ((j + q) + 1)

s(j+q)+1

(11)

−
N−j∑
q=0

(−1)q
(
N − j
q

)(
N + j + q + 1

N − j

)
(2p)

j+q
j+q∑
z=0

(
j + q

z

)
(

1

2p
)
(j+q)−z

e
−(i+1)

2p s × Γ(z + 1)

sz+1
].

By substituting (3.4) and (3.5) in (3.3), and using inverse Laplace transform, we

get:

Iνψi,j(x) =
√

(2j + 1)2
p
2

N−j∑
q=0

(−1)q
(
N − j
q

)(
N + j + q + 1

N − j

)
(2p)

j+q Γ((j + q) + 1)

Γ((j + q) + ν + 1)

(x− i

2p
)
j+q+ν

u(x− i

2p
)−

√
(2j + 1)2

p
2

N−j∑
q=0

(−1)q
(
N − j
q

)(
N + j + q + 1

N − j

)
(2p)

j+q

×
j+q∑
z=0

(
j + q

z

)
(

1

2p
)
(j+q)−z

× Γ(z + 1)

Γz + ν + 1
× (x− (i+ 1)

2p
)
z+ν

u(x− (i+ 1)

2p
).
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Now we can expand Iνψi,j(x) into ChW-basis as follows

Iνψi1,j1(x) =

n∑
i2=0

m∑
j2=0

c(i1, j1, i2, j2)ψi2,j2(x),

where

c(i1, j1, i2, j2) =
〈Iνψi1,j1(x), ψi2,j2(x)〉
〈ψi2,j2(x), ψi2,j2(x)〉

.

and 〈, 〉 denotes the inner product in L2[0, 1], n = 0, 1, . . . , 2p−1,m = 0, 1, . . . , N.

By the view of the orthogonality property of ChW functions, the entries of the

(2p(M + 1))× (2p(M + 1)) integration operational matrix P ν , can be calculated as

follows:

c(i1, j1, i2, j2) =

i2+1
2p∫

i2
2p

[
√

(2j1 + 1)2
p
2

N−j1∑
q1=0

(−1)q1
(
N − j1
q1

)(
N + j1 + q1 + 1

N − j1

)
(2p)

j1+q1

Γ((j1 + q1) + 1)

Γ((j1 + q1) + ν + 1)
(x− i1

2p
)
j1+q1+ν

u(x− i1
2p

)−
√

(2j1 + 1)2
p
2

N−j1∑
q1=0

(−1)q1
(
N − j1
q1

)

(
N + j1 + q1 + 1

N − j1

)
(2p)

j1+q1 ×
j1+q1∑
z=0

(
j1 + q1
z

)
(

1

2p
)
(j1+q1)−z

× Γ(z + 1)

Γ(z + ν + 1)
× (x− (i1 + 1)

2p
)
z+ν

u(x− (i1 + 1)

2p
)]×

√
2p(2j2 + 1)

N−j2∑
q2=0

(−1)q2
(
N − j2
q2

)(
N + j2 + q2 + 1

N − j2

)
(2px− i2)i2+q2dx.

where

i1 = 0, 1, . . . , 2p − 1, j1 = 0, 1, . . . , N, i2 = 0, 1, . . . , 2p − 1, j2 = 0, 1, . . . , N.

3.1. Operational matrix for the product of two ChWs. The product of Ψ(x),

ΨT (x) and 2p(N + 1)–vector C can be expanded into the ChW as:

Ψ(x)ΨT (x)C ≈ U(C)Ψ(x),(12)

where

U(C) = 〈Ψ(x)ΨT (x)C,Ψ(x)〉.
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The elements of the (2p(N + 1) × 2p(N + 1))–matrix U(C), can be calculated as

follows:

ui,j =

∫ 1

0

ψi(x)ψr(x)crψj(x), i = 1, . . . , 2p(N + 1), j = 1, . . . , 2p(N + 1),

r = 1, . . . , 2p(N + 1),

where cr is the r-th entry of vector C.

4. Convergence analysis

This section is concerned with introducing the corresponding convergence theo-

rem.

Theorem 4.1. Suppose f ∈ L2[0, 1], and Ψ(x) is a ChWs–vector. A sequence

fn(x) defined by fn(x) =
n∑
k=1

ckψk(x), n ∈ N, with

ck =< f(x), ψk(x) >, k = 1, 2, ..., n.

converges to f(x) in the vector space of Ψ(x)’s components if and only if
∞∑
k=1

|ck|2 <
∞.

Proof. Let fn be converged to f . Hence, for n ∈ N, we have:

0 ≤ ||f −
n∑
k=1

ckψk||22

=

∫ 1

0

(f −
n∑
k=1

ckψk)2dx,

=

∫ 1

0

f2(x)dx−
∫ 1

0

| 2f(x)

n∑
k=1

ckψk(x)| dx+

∫ 1

0

(

n∑
k=1

ckψk(x))2dx,

≤
∫ 1

0

f2(x)dx−
∫ 1

0

| 2fn(x)

n∑
k=1

ckψk(x) | dx+

∫ 1

0

(

n∑
k=1

ckψk(x))2dx,

=

∫ 1

0

f2(x)dx−
∫ 1

0

(

n∑
k=1

ckψk(x))2dx,

=

∫ 1

0

f2(x)dx−
∫ 1

0

(c21ψ
2
1(x) + c22ψ

2
2(x) + · · ·+ c2nψ

2
n(x)) dx,
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= ||f ||22 −
n∑
k=1

|ck|2,

Therefore:

0 ≤ ||f ||22 −
n∑
k=1

|ck|2,

So for any f ∈ L2[0, 1], we have:

n∑
k=1

|ck|2 ≤ ||f(x)||22 <∞,

Hence:

∞∑
k=1

|ck|2 <∞.

Now, suppose that
∞∑
k=1

|ck|2 <∞. So if n∈ N, then :

0 ≤ ||f − fn||22 = ||
∞∑
k=1

ckψk −
n∑
k=1

ckψk||22,

= ||
∞∑

k=n+1

ckψk||22,

=

∫ 1

0

(

∞∑
k=n+1

ckψk(x))2 dx,

≤ (

∞∑
k=n+1

ck

∫ 1

0

ψk(x) dx)2,

≤
∞∑

k=n+1

c2k

∫ 1

0

ψ2
k(x)dx,

=

∞∑
k=n+1

c2k.

By the assumption, as n goes to infinity, the last term will go to zero, and the proof

is completed. �
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5. Implementation of the method

Suppose f, g, a(x) ∈ L2[0, 1]. So we can write:

f(x) ≈ CTΨ(x), g(x) ≈ GTΨ(x), a(x) ≈ ATΨ(x)

Now we present some theorems to approximate the integral part of equations

(1.1) and (1.2) and the system of integral equations (1.3) for linear case (s = 1) and

nonlinear cases (s > 1).

Lemma 5.1. If f(t) ≈ CTΨ(t) then:

fs(t) ≈ CTUs−1(C)Ψ(t), s ∈ N,

where U(C) is the operational matrix of product of two ChWs.

Proof. For s = 2, we have:

f2(t) = f(t)f(t) ≈ (CTΨ(t))(ΨT (t)C) = CTU(C)Ψ(t),

and by using the induction on s, the proof is complete. �

Theorem 5.2. The integral parts of the integral equations (1.1) and (1.2) for the

case s > 1, can be expressed in terms of the ChWs–basis as follows:

t∫
0

fs(x)

(t− x)ν
dx ≈

2pN∑
i=1

Miψi(t) = MTΨ(t),

where

Mi ≈ CTUs−1(C)P νei.

and ei = [0, . . . , 0, 1, 0, . . . , 0]T for i = 1, . . . , 2p(N + 1).

Proof. Putting

Mi '
1∫

0

t∫
0

fs(x)

(t− x)ν
ψi(t)dxdt,

Now, by using the Lemma (5.1), we have

Mi ≈
1∫

0

t∫
0

CTUs−1(C)Ψ(x)

(t− x)ν
ψi(t)dxdt,
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and so

Mi ≈
1∫

0

CTUs−1(C)

t∫
0

Ψ(t)

(t− x)ν
dxψi(t)dt.

Using the operatioal matrix of integration, we write:

Mi ≈ CTUs−1(C)P ν
1∫

0

Ψ(t)ψi(t)dt.

So we have:

Mi ≈ CTUs−1(C)P νei.

�

Theorem 5.3. The integral parts of the system of integral equations (1.3) for the

case s = 1, can be expressed in terms of the ChWs–basis as follows:

t∫
0

a(x)f(x)

(t− x)ν
dx '

2pN∑
i=1

Oiψi(t) = OTΨ(t),

where

Oi ≈ CTU(A)P νei.

i = 1, . . . , 2p(N + 1).

Proof. Putting

Oi ≈
1∫

0

t∫
0

f(x)a(x)

(t− x)ν
ψi(t)dxdt,

we have

Oi ≈
1∫

0

t∫
0

(CTΨ(x))(ΨT (x)A)

(t− x)ν
ψi(t)dxdt,

and so we obtain:

Oi ≈
1∫

0

CTU(A)

t∫
0

Ψ(x)

(t− x)ν
dxψi(t)dt.

So that we write:

Oi ≈ CTU(A)P ν
1∫

0

Ψ(x)ψi(t)dt.

Considering the orthogonality property of ChWs basis, the result will be obtained.

�
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Theorem 5.4. The integral parts of the system of integral equations (1.3) for the

case s = 1, can be expressed in terms of the ChWs–basis as follows:

t∫
0

a(x)fs(x)

(t− x)ν
dx ≈

2pN∑
i=1

Qiψi(t) = Qs(A)TΨ(t),

where

Qi ≈ CTUs−1(C)U(A)P νei.

and ei = [0, . . . , 0, 1, 0, . . . , 0]T with i = 1, . . . , 2p(N + 1).

Proof. Putting

Qi ≈
1∫

0

t∫
0

fs(x)a(x)

(t− x)ν
dxψi(t)dxdt,

we have

Qi ≈
1∫

0

t∫
0

CTUs−1(C)Ψ(x)ΨT (x)A

(t− x)ν
dxψi(t)dxdt,

and we get:

Qi ≈
1∫

0

CTUs−1(C)U(A)

t∫
0

Ψ(x)

(t− x)ν
dxψi(t)dt.

Finally we obtain:

Qi ≈ CTUs−1(C)U(A)P ν
1∫

0

Ψ(t)ψi(t)dt.

Thus by using the orthogonality property of ChWs basis, the result will be followed.

�

Now, by using the above theorems, the system of integral equations (1.3), for

sk > 1, (k = 1, . . . , 4) can be rewritten as follows: C1 = G1 +Qs1(A) +Qs2(B),

C2 = G2 +Qs3(D) +Qs4(E).
(13)

where the vectors Qsk , for k = 1, 2, 3, 4 are obtained by using theorems (5.3)

and (5.4). Eq (5.1) is a linear or nonlinear system of 2(2p(N + 1) equations for
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2(2p(N + 1)) unknown coefficient vectors C1 and C2 that can be solved by using

Newton-Raphson method in MATLAB software.

6. Numerical results

In this section, some examples are considererd to show the efficiency and appli-

cability of our method. The error function is defined by em(t) = f(t)−fm(t), where

f(t) is the exact solution, and fm(t) is the approximate solution of the considering

equation.

Example1. Consider the following Abel integral equation of the second kind:

f(t) = g(t)−
t∫

0

f(x)√
t− x

dx, 0 ≤ t ≤ 1,(14)

where

g(t) = cos(t) + sin(t) +
√

2π(fresnels(

√
2t

π
(−cos(t) + sin(t)) + fresnelc(

√
2t

π
(cos(t) + sin(t)))),

fresnels(v) =
v∫
0

sin(πu
2

2 )du, and, fresnelc(v) =
v∫
0

cos(πu
2

2 )du.

and the exact solution is f(t) = sin(t) + cos(t).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-14

10-12

10-10

10-8

10-6

10-4

e
N

(t
)

p=2

N=3

N=4

N=5

N=6

N=8

Figure 1. The error of approximate solutions for different values

of N (Example 1).

We have applied our method to solve the Abel integral equation in Example 1.

Figure 1 shows by increasing the number of the ChW basis vectors elements we

will have better approximations. For more details, Figure 2 compares the error

functions for N = 3 and N = 4.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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N
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)
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(a)
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-1
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6

e
N

(t
)

10-10 p=4, N=4

(b)

Figure 2. The error of the numerical results by using ChW basis

with p = 4 (Example 1).

Example2. Consider the following Abel integral equation:

f(t) = 2
√
t−

t∫
0

f(x)√
t− x

dx, 0 ≤ t ≤ 1,(15)

with the exact solution:

f(t) = 1− eπterfc(
√
πt),

where:

erfc(t) =
2√
π

∞∫
t

e−x
2

dx.

is the famous error function.

Table 1. Comparing the errors of approximate solutions for some

p (Example 2).

p = 1 p = 2 p = 3 p = 4

x=0.1 8.732e -03 -8.373 e-03 5.3333 e-03 -5.659e-06

x=0.2 -1.129e -02 7.7367e-03 -4.407 e-06 9.341e-07

x=0.3 -9.673e -06 1.087 e-04 -3.999 e-06 4.462e-07

x=0.4 9.909e -03 1.25 e-06 1.113 e-06 -9.976e-08

x=0.5 1.059e -03 -1.342 e-06 -1.316 e-06 1.281 e-08

x=0.6 1.738e -04 -4.845 e-06 5.196 e-07 8.488 e-09

x=0.7 -1.36 e -04 6.459 e-06 -2.225 e-09 1.264 e-09

x=0.8 -8.437e -06 1.22 e-06 -6.449 e-08 -4.758 e-10

x=0.9 1.452e -04 -1.927 e-07 3.219 e-08 -4.098 e-09
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By using our method, some approximations of solution of the equation has been

extracted. Table 1 shows that by increasing p of the Chelyshkov wavelet basis, the

accuracy of the method has increased.

Example 3. Consider a nonlinear Abel integral equation of the first kind in the

following form:

t∫
0

f2(x) + f3(x)

(t− x)
1
2

dx = g(t), 0 ≤ t ≤ 1,(16)

where g(t) = 16
105 t

5
2 (6x+ 7) and the exact solution is f(t) = t.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-12

-10

-8

-6

-4

-2

0

2
10-4 p=2, N=4

Figure 3. The error of approximate solutions (Example 3).

Table 2. Comparing the errors of approximate solutions of the

present method with Ref[30] (Example 3).

e20(t) (Ref [30]) e4(t) (The present method)

x=0.1 2.7026e -05 4.242 e-05

x=0.2 6.2518e -06 1.394 e-05

x=0.3 1.0315e -05 -8.769 e-13

x=0.4 1.9049e -05 6.617 e-13

x=0.5 2.4287e -05 -1.324 e-12

x=0.6 2.2919e -05 1.719 e-12

x=0.7 1.7833e -05 3.245 e-12

x=0.8 1.6220e -05 4.784 e-13

x=0.9 2.2109e -05 -4.877 e-12

Using our method, the nonlinear Abel integral equation of the first kind in Ex-

ample 3, has been solved. Figure 3 shows the results. Also Table 2 compares the
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obtained results with the results in Ref[30]. By applying only four elements of the

vector basis much more accurate results will be obtained.

Example4. Consider the following nonlinear system of Abel integral equations:
f1(t)− 2f2(t) +

∫ t

0

f1
2(x) + f22 (x)

(t− x)
1
5

dx = g1(t),

f2(t)− f1(t) +

∫ t

0

f1(x)f2(x)

(t− x)
1
3

dx = g2(t),

(17)

where

g1(t) = t2 − 2t3 +
390625

1573656
t
34
5 +

3125

9576
t
24
5 ,

g2(t) = t3 − t2 − 2187

5236
t
17
3 ,

and (f1(t), f2(t)) = (t2, t3) is the exact solution.
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Figure 4. Comparing the approximate errors by changing p in

the used ChW-basis with N = 3 ( Example 4 ).
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Figure 5. Comparing the approximate errors by changing p in

the used ChW-basis with N = 4 ( Example 4 ).

The solution of the system of equations has been approximated by applying the

numerical ChW method. Figures 4 and 5 show that by increasing p, much more

accurate results will be obtained.
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Example 5. Consider the following system of linear Abel integral equations:



f(t) = t+ t2 − 25

6552
t
8
5 (130t

6
5 + 182t

1
5 − 210x+ 273)

+

∫ t

0

(
1

(t− x)
1
5

f(x) +
1

(t− x)
2
5

g(x))dx,

g(t) = t− t2 − 25

924
t
6
5 (55t

6
5 + 66t

1
5 − 140x+ 154)

+

∫ t

0

(
1

(t− x)
3
5

f(x) +
1

(t− x)
4
5

g(x))dx,

(18)

where (f(t), g(t)) = (t+ t2, t− t2) is the exact solution.
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Figure 6. The error of approximate solution of the system in Ex-

ample 5.

Figure 6 shows the error of the results for solving the system of Abel integral

equations in Example 5, with N = 4 and p = 4.

Example 6. Consider the following system of Abel integral equations of the first

kind with variable coefficients:
∫ t

0

(
(x2 − 1)f1(x)

(t− x)
1
2

+
xf2(x)

(t− x)
1
3

)dx = g1(t),∫ t

0

(
x3f1(x)

(t− x)
1
4

+
(1− x)f2(x)

(t− x)
1
5

)dx = g2(t),

(19)
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where

g1(t) =
16

15
t
9
2 − 16

15
t
5
2 +

27

40
t
11
3 +

243

440
t
14
3 ,

g2(t) =
128

231
t
23
4 +

125

252
t
14
5 − 125

1197
t
19
5 − 625

1596
t
24
5 ,

and (f1(t), f2(t)) = (t2, t2 + t3) is the exact solution.
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Figure 7. Comparing of the approximate errors by incremental

changing in p in the used ChW-basis with N = 8 ( Example 6 ).

Increasing p causes to much more accurate results which are shown in Figure 7.

Example7. Consider the following nonlinear system of Abel integral equations:


2f(t) +

∫ t

0

f2(x) + g2(x)

(t− x)
1
2

dx = 2
√
t+

4

3
t
3
2 ,

g(t) +

∫ t

0

f(x)g(x)

(t− x)
1
3

dx =
√
t+

9

10
t
5
3 ,

(20)

where (f(t), g(t)) = (
√
t,
√
t) is the exact solution.

Table 3. The error of approximate solutions of f(t) and g(t) (Ex-

ample 7).

x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 0.9

eN (t) 8.197e− 4 1.696e− 7 1.731e− 7 1.483e− 7 1.195e− 7
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Figure 8. The error of approximate solutions of the system in

Example 7.

The solution of the system of equations has been approximated by applying the

numerical ChW method. Figure 8 and Table 3 show the results.

Example 8. Consider the following nonlinear system of singular integral equa-

tions:


f1(t)− 2f2(t) +

∫ t

0

f21 (x)

(t− x)
1
2

dx+

∫ t

0

f1(x)f22 (x)

(t− x)
1
3

dx = g1(t),

f2(t) + 2f1(t) +

∫ t

0

f1(x)f2(x)

(t− x)
1
4

dx+

∫ t

0

f22 (x)

(t− x)
1
5

dx = g2(t),

(21)

where g1(t) = 3t2− t+ 16
315 t

5
2 (16t2 + 36t+ 21)− 243

52360 t
11
3 (−81t3 + 90t2 + 102t− 119)

g2(t) = t2 + 3t− 128
21945 t

11
4 (64t2 − 95) + 125

9576 t
14
5 (25t2 − 60t+ 38)

and (f1(t), f2(t)) = (t+ t2, t− t2) is the exact solution.

Figure 9 and Table 4 show the error of numerical solutions for the system of

nonlinear singular integral equations in Example 8, with N = 8 and p = 2.

7. Conclusion

In this paper, the authors employed a spectral method for solving generalized

linear or nonlinear integral equation and system of integral equations of Abel type.
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Figure 9. The error of approximate solutions of the system in

Example 8.

Table 4. The error of approximate solutions of f1(t) and f2(t)

(Example 8).

x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 0.9

eN (t) 2.245e− 14 1.479e− 13 1.103e− 12 −2.328e− 12 4.369e− 10

The presented operational method, based on Chelyshkov wavelet functions, con-

verts the problem to a system of linear and nonlinear equations. Finally, we have

presented some numerical examples to show the accuracy and applicability of our

method. This method can be used for other classes of integral equations as well.
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