FRACTIONAL ¢-DIFFERINTEGRAL OPERATOR RELATED TO
UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

SH. NAJAFZADEH
DEPARTMENT OF MATHEMATICS, PAYAME NOOR UNIVERSITY
POST OFFICE BOX: 19395-3697, TEHRAN, IRAN
E-MAIL:NAJAFZADEH1234@QYAHOO.IE

(Received: 28 February 2019, Accepted: 3 August 2020)

ABSTRACT. In this paper, we introduce a new subfamily of univalent functions
defined in the open unit disk involving a fractional g-differintegral operator.
Some results on coefficient estimates, weighted mean, convolution structure

and convexity are discussed.
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1. INTRODUCTION

Let A,, denote the family of analytic and univalent functions in the open unit

disk U= {z € C: |z| < 1}, expressed in the type:

(1) fe)=z- > a¥, (>0, neN={1,2,..}).

k=n-+1
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The g-shifted factorial is defined for w, q € C, by:

1 , n=0,

(2) (w,q) =
(liw)(]'*wq)(]'*quil) ) nGNa

and according to the basic analogue of the gamma function:

Ly(w+n)(1—g)"

(3) (@, a)n = , (n>0),
Lg(w)
where the g-gamma function is given by:
0 q)oo(l —q)' 7Y
() Ry = @=L g gy,

(¢Y: @)oo
If |g| < 1, the relation (2) is meaningful for n = co as a convergent product defined
by:

(5) (0, @)oo = [J(1 — we?).
=0

The corresponding relation for g-gamma function is given by:

1—-q¢¥)(y
0 (1 +y) = L8]
—4q
Jackson’s g-derivative and g-integral of a function f(z) defined on a subset of C,

respectively introduced by:

OV
(7) Dq,zf(z) - Z(].*q) ) ( #07 q#o)v
and
®) | rwdta) = 20— 03 ¢ 1 (0")

0 k=0
See [3] and [4]. Also [1, 6] and [8] are useful.

According to the relation:
iy 4D

we conclude that the g-shifted factorial (1) reduces to the familiar Pochhammer

symbol:

(10) (W) =ww+1)---(w+n-—1).
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The fractional g-integral operator I;’, f(z) of a function f(z) of order w is given by:

I9.f(2) = D 2 f(2)
(11) 1

= ]_"q(w)/o (Z - tQ)w—lf(t)d(t, q), (w > 0),

where f(z) is holomorphic in a simply connected region around the origin. On the

other hand, the ¢-binomial function (z — tq),,—1 is single-valued when:

—tq¥ tq"
z

)

(12) arg ( <, <1, and |argz| <.

The fractional g-derivative operator Dy’, f(z) of a function f(z) of order w is intro-

duced as:

Dy f(2) = Dy 1, f(2)
43 I N N O 0<w<1
Ao we 2 —1tq) _w ,q), 0<w<1).
The extended fractional g-derivative operator for a function f(z) of order w is given
as follows, see [7]:

(14) D,V f(z) =D 1" f(2), (m—1<w<n, meNy=NU{0}).

Now, we consider a fractional g-differintegral operator (2, for a function f(z) of
the form (10) by:

(15) S

For more details see [5], see also [2].

We say that f € A, is in the class Q) («, B8,7,1), if it satisfies the inequality:

20, f(2)

(18) (v + (@ =1 = B)) frlz) + 7202 f(2)

<1,

where 0 <t <1, -1<v<a<l,0<f8<land fi(z) = (1 —t)z+tf(2).
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2. MAIN RESULTS

In this section, the sharp coefficient bounds and weighted mean for functions in

the family Q) («, B,7,t) are found.

Theorem 2.1. Let f(z) = z2— > apz" be analytic in U. Then f € Q. (o, B,7,t)
k=n-+1
if and only if:

1.

(17) + t] ay

N

> [ Fy2—w)Ty(k+1)(k—1—7)
o D@ (k + 1 = w)(a —7)(1 - B)

Proof. Let |z| =1 and (17) holds true. So we have:

2@ ) | = 10+ (@ = 9)(1 = ) fule) — 129 1(2)

_ N T2 —w)Ty(k+ 1)
| k=n+1 FQ(Q)Fq(k +1-— w) (k - l)akzk
e & e e
k=n+1 q .

T2 —w)Ty(k+1
Z(( )Lq(k+1)

S T, 2T,k + L —w)

k=n-+1

(k—1—7)+t(04—7)(1—/8))ak—(04—7)(1—6)|-

By (17), the above inequality is less than or equal to zero, so f(z) € Q¥ _(«a, 8,7,1).
To prove the converse, let f(2) € Q. («a, B,7,t), thus:

2 (2. /(2)

(v + (@ =71 = B)) felz) + 720 f(2)

_ Z Ty(2—w)ly(k+1) (k _ 1)akzk
k=n+

| T T (=)

= - <1.
(@=nN1-Bz- ¥ (Ha—0-B) - BEFIRED Japsh

k=n-+1

Since for all z € U, Re{z} < |2], so we get:

S Dg(2—w)ly (k+1) k
2 T, (- Daxz

T1
(a=7)A-p8z— X

k=n+

Re < 1.

I'y@2—w)ly(k
(Ha =0 - 8) - PR et
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By letting z — 1 through positive values and choosing the values of z such that
22 (Qgizf(z))/, 2Qy . f(z) and fi(2) are real, we conclude:

oo

Fq(Q — w)Fq(k +1)
> (VR T 1))

k=n-+1
<(a—9)(1-pB)— Z (t(a -1 -=8)— ’YlE‘qg)F Qz’lirj(lkjulji)ak
k=n-+1 e !
So, we get:

o0

2 <11:qg); le;rj(fji; (k=1=9)+tla—7)01- 6))ak <(a—9)(1-5),
k=n-+1 q q

and this complete the proof. O

Remark 2.2. We note that the function:

> (a—7)(1-p) K
(18) F(z)=2z— — z7,
2 TN 1) e~ = 5)

shows that the inequality (17) is sharp.
Also by applying Theorem 2.1, if f(z) € Q' (a, B,7,t), then for k = n + 1:
Lq(2)Lg(k 41— w)(ar—)(1 - f)
L2 =w)lg(k+1)(k —1—7) +t0q(2)Tq(k + 1 —w)(a —7)(1 - 5)

Now, we introduce weighted mean property.

(19) Qg <

Theorem 2.3. If f and g belong to Q' (a, B,7,t), then the weighted mean of f

and g 1s also in the same class.

Proof. We have to prove that:

is in the class Q' (o, 8,7,1).
Since f(2) =z— Y. arpz¥and g(z) =2— > bp2*, so:

k=n-+1 k=n-+1
s 1-— 1
hin(2) =2 — Z (( m)ak—2|—( +m)bk>zk.
k=n-+1

To prove hy,(z) € @ ,(a, 8,7,t), by Theorem 2.1, we need to show that:

o0

) Dy(2 = w)Ty(k+ 1)(k = 1) (1~ m)ay + (14 m)by
L_k;nﬂ <Fq(2)rq(k+l—w)(a—v)(l—ﬁ) +t)( 2 ) <1l
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But, for this we have:

oo

_ 1—m (k_l_'Y)Fq(Q_w)Fq(k+1)
=050 2 (aya-anene+1-w

k=n+1
L+m, — (k—1—79)T4(2 —w)Ty(k+1)
+ (—— +t)b
(= hg;l<afwu75WAmmw+1fw> )b
By (17), we get:
1-m 1+m
L<—+—=1
2 + 2
Hence the result follows. O

3. CONVOLUTION PRESERVING AND CONVEXITY

In this section, we show that the family Q' (a, 3,7,t) is closed under convolu-

tion. Also we conclude that this class is a convex set.

Theorem 3.1. Let f(z) =z —Y o axz” and g(z) = z— Y07, 1 biz" be in the
class Q0 (a, B,7,t), then (f * g)(2) defined by:

o0

(20) (f*xg)(z)=2— Z apbrz”,

k=n-+1
belongs to Q. (a, B,'y,t), where:

(k—1—)(a—=7)1—=B)Te(2—w)ly(k+1)
W2 —t(a=7)*(1 = B)?Ty(2y(k+1—-q) ~

(21) B<1-
and

(22) W =(k—1—9Tg(2—w)Ty(k+ 1)+ t(a —7)(1 — BTG (2T (k + 1 — w).

Proof. By Theorem 2.1, it is sufficient to show that:

i (k- 1_7)AI‘q(2—w)Fq(k’+1) +1)akbk <L

jomr1 (@ =) (1= B)0(2)Tg(k +1 - w)

By applying Cauchy-Schwarz inequality, from (17), we get:

oo

(k=1 =72 = w)ly(k + 1) +t{a = 7)1 = B)T4(2)Tq(k +1 —w)
2 tla=7)1=B)T(2)0(k+1—w) Vabe < 1.

k=n-+1
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Hence, we find the largest /3 such that:

2 (k= 1= )0y(2 = w)Ty(k+ 1)+ ta = 1)(1 = AT )T, (k +1 - w)
> A axbi
o (@ — )~ BLy@)Ty(k +1 - w)

oo

(k= 1= 9)Ty(2 = w)ly(k+1) + te—)(1 = HL2ITy k1= w
e (@ =71 = BTe(2)T4(k + 1 — w) Vagby, < 1,

k=n+1

or equivalently:

( _
(@ =)A= B)l(2)Lg(k + 1 —w)
apby < =
m< [(k_1_'Y)Fq(Q_w)Fq(k+1)+t(a_7)(1_B)Fq(Q)Fq(k'i‘l_w)]
)

(k—1- 'Y)Fq(2 - w)Fq(k

+ (=Bl @k +1-w) 1-5
(k—1—7)Tq(2 — w)Tq(k +

— N =BT, (2T (k+1—w) 1-8

This inequality holds if,

(a0 =7)(1 = BI2)(k + 1 —w)
w

<WX 1-0
T1=B7 (k+ 1902 - w)lg(k + 1)+ t(a — 7)1 - BTk +1 —w)’

where W is given in (22). So
1-5
(k= 1= g2 — @)k + 1) + ta— 7) (1 — AT )Tyl + 1 — w)
L (a=7)(1-p)?
= W2 .

After a simple calculation, we obtain the required result. O

Remark 3.2. With the same assumptions of Theorem 3.1, (f % g)(z) belongs to
Q’:]U,z(aaﬁaﬁ/at); where:

aX —k+1

X-1 7
W2 — (1 - %) (a = 7)’Ty(2)Ty(k + 1 —w)
(=71 =Bry2—w)ly(k+1) ~

¥ <

X =

and W is given in (22).

Theorem 3.3. The class (v, 3,7,t) is a conver set.
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Proof. 1t is enough to show that if f;(z) (j = 1,2,...,m) be in the class Qp’  (a, 8,7, 1),

then the function:

m

(23) H(z) = Zajmzx

is also in Qg (a, B,7,1), with 6; > 0 and Z;ﬂ:l d; = 1. By (23), we obtain:

H(z) = zmjéj (z — i a;w-zk)
j=1

k=n-+1
=z= ) <Z5jak,j)zk-
k=n+1 j=1
But by Theorem 2.1, we have:
N (k—1—7g(z —w)Ty(k+1) m
k:znﬂ <(O‘ -1 - 5)qfq(2)Fq(kq+ —w) © t) (; 5a‘ak,j)

— S S (k—1—7)T4(z —w)Ty(k +1) AYY
_Z< Z ((a—'y)(l—ﬁ)l—‘q@)Fq(k‘—l—l—w)+t)ak’])5]

by (17), we have:

So by Theorem 2.1, we get the required result. O
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