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Abstract. In this paper, we establish Hermite-Hadamard type inequalities

for uniformly p-convex functions and uniformly q-convex functions. Also, we

obtain some new inequalities of Hermite-Hadamard type for functions whose

derivatives in absolute value belong to the class of uniformly p-convex func-

tions.
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1. Introduction

Many of integral inequalities are based on a convexity assumption of a certain

function and the theory of inequality is one of the most important field study of
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convex analysis and abstract analysis. The major inequalities in these fields are

Hermite-Hadamard inequalities, which can be stated as follows:

Let f : I ⊂ R → R be a convex function and a, b ∈ I with a < b, then the

following inequalities holds:

f(
a+ b

2
) ≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

Recently, the generalizations, improvements, variations and applications for con-

vexity and the Hermite-Hadamard inequality have attracted the attention of many

researchers (see [2],[7],[8],[9]). For example:

1) A function f is called a p-function if for all x, y ∈ [a, b] and t ∈ [0, 1] one has

the inequality ([4]):

f(tx+ (1− t)y) ≤ f(x) + f(y),

and Hermite-Hadamard inequality for a p-function f is

f(
a+ b

2
) ≤ 2

b− a

∫ b

a

f(t)dt ≤ 2(f(a) + f(b)).

2) A function f : I = [a, b] → (0,+∞) is said to belong to the class Q(I) if for

all x, y ∈ [a, b] and t ∈ (0, 1), satisfies the inequality ([5]):

f(tx+ (1− t)y) ≤ f(x)

t
+
f(y)

1− t

and for a function f ∈ Q(I), one has the inequality

f(
a+ b

2
) ≤ 4

b− a

∫ b

a

f(t)dt.

2. Preliminaries on uniformly p-convex function and uniformly

q-convex functions

In this section, we consider the basic concepts and results, which are needed to

obtain our main results.

In [1, Definition 10.5], the class of uniformly convex functions is defined. In the

following we generalize the definition of uniformly convex functions in two ways:
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Definition 2.1. Let f : R→ R be a function. Then, f is called uniformly p-convex

function with modulus ψ : [0,+∞)→ [0,+∞] if ψ is incresaing, ψ vanishes only at

0, and

f(tx+ (1− t)y) + t(1− t)ψ(|x− y|) ≤ f(x) + f(y),(1)

for each x, y ∈ R and t ∈ [0, 1].

Definition 2.2. Let f : R → R be a function. Then, f is called a uniformly q-

convex function with modulus ψ : [0,+∞)→ [0,+∞) if ψ is incresaing, ψ vanishes

only at 0, and

f(tx+ (1− t)y) + t(1− t)ψ(|x− y|) ≤ f(x)

t
+
f(y)

1− t
,(2)

for each x, y ∈ R and t ∈ (0, 1).

In order to prove our main theorems, we need the following lemma that has been

proved in [3].

Lemma 2.3. Let f : Io → R be a differentiable function on Io, a, b ∈ Io with a < b.

If f ′ ∈ L1[a, b], then the following equality holds:

f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t)dt =
b− a

2

∫ 1

0

(1− 2t)f ′(ta+ (1− t)b)dt.

The next theorem gives a new result of the Hermite-Hadamard inequalities for

uniformly p-convex functions:

Theorem 2.4. Let f : R → R be uniformly p-convex function with modulus ψ.

Then,

f(
a+ b

2
) +

1

8(b− a)

∫ b−a

a−b
ψ(|t|)dt ≤ 2

b− a

∫ b

a

f(t)dt

≤ 2(f(a) + f(b))− 1

3
ψ(|a− b|).

Proof. In (1), set t = 1
2 , then we have

(3) f(
x+ y

2
) +

1

4
ψ(|x− y|) ≤ f(x) + f(y).
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Now, set x = ta+ (1− t)b and y = (1− t)a+ tb in (8) and integrate on [0, 1] with

respect to t. We get

f(
a+ b

2
) +

1

4

∫ 1

0

ψ(|(2t− 1)(a− b)|)dt ≤
∫ 1

0

f(ta+ (1− t)b)dt+

∫ 1

0

f((1− t)a+ tb)dt.

Now,

1

4

∫ 1

0

ψ(|(2t− 1)(a− b)|)dt =
1

4

∫ a−b

b−a
ψ(|u|) du

2(a− b)

=
1

8(b− a)

∫ b−a

a−b
ψ(|t|)dt.

Also, we have
∫ 1

0
f((1 − t)a + tb)dt =

∫ 1

0
f((1 − t)b + ta)dt = 1

b−a
∫ b
a
f(t)dt.

Therefore

f(
a+ b

2
) +

1

8(b− a)

∫ b−a

a−b
ψ(|t|)dt ≤ 2

b− a

∫ b

a

f(t)dt.

In the other hand, Put x = a and y = b in (1) and integrate on [0, 1] with respect

to t. Then, we obtain∫ 1

0

f(ta+ (1− t)b)dt+

∫ 1

0

t(1− t)ψ(|a− b|)dt ≤
∫ 1

0

(f(a) + f(b))dt,

so

1

b− a

∫ b

a

f(t)dt+
1

6
ψ(|a− b|) ≤ f(a) + f(b),

finally

2

b− a

∫ b

a

f(t)dt ≤ 2(f(a) + f(b))− 1

3
ψ(|a− b|).

Which completes the proof.

�

If in Theorem 2.4, we set ψ(t) = β
2 t

2, β > 0. Then, we obtain the following

important inequality.

Corollary 2.5. Let f : R→ R be uniformly p-convex function with modulus ψ(t) =

β
2 t

2, β > 0, then

(4) f(
a+ b

2
) +

β

24
(b− a)2 ≤ 2

b− a

∫ b

a

f(t)dt ≤ 2(f(a) + f(b))− β

6
(b− a)2.
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Example 2.6. It is easy to see that, the following equality holds, for all α ∈ (0, 1)

and x, y ∈ R.

(5) (αx+ (1− α)y)2 + α(1− α)(x− y)2 = αx2 + (1− α)y2.

Hence, we conclude that the function f(t) = t2 for t ∈ R is uniformly p-convex with

modulus ψ(t) = t2 for all t ≥ 0. Hence, in view of (4) for a, b ∈ R with a > 0, b > 0

one has

(
a+ b

2
)2 +

1

12
(b− a)2 ≤ 2

3
(a2 + ab+ b2) ≤ 5a2 + 2ab+ 5b2

3
.

Here we shall offer some applications of Lemma 2.3 connected with Hermite-

Hadamard’s integral inequality for convex functions which are very interesting.

Theorem 2.7. Let f : Io → R be a differentiable function on Io, a, b ∈ Io with

a < b. If |f ′| is uniformly p-convex function with modulus ψ on Io and f ′ ∈ L1[a, b].

then the following inequality holds:

|f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t)dt| ≤ b− a
4

(|f ′(a)|+ |f ′(b)|)− b− a
32

ψ(|a− b|).

Proof. In view of Lemma 2.3 and uniformly p-convexity of |f ′|, one has

|f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t)dt| ≤ b− a
2

∫ 1

0

|(1− 2t)||f ′(ta+ (1− t)b)|dt

≤ b− a
2

∫ 1

0

|1− 2t|(|f ′(a)|+ |f ′(b)|+ t(t− 1)ψ(|a− b|))dt

≤ b− a
2

(∫ 1

0

|1− 2t||f ′(a)|dt+

∫ 1

0

|1− 2t||f ′(b)|dt+

∫ 1

0

|1− 2t|t(t− 1)ψ(|a− b|))dt
)

≤ b− a
4

(|f ′(a)|+ (f ′(b)))− b− a
32

ψ(|a− b|).

Hence, The proof is complete. Also, note that∫ 1

0

|1− 2t|dt =
1

2
,∫ 1

0

|1− 2t|t(t− 1)ψ(|a− b|)dt = − 1

16
ψ(|a− b|).

�
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Theorem 2.8. Let f : Io → R be a differentiable function on Io, a, b ∈ Io with

a < b. Let r, s > 1 be such that 1
r + 1

s = 1. If |f ′|s is uniformly p-convex function

with modulus ψ on Io and f ′ ∈ L1[a, b]. then the following inequality holds:

(6)

|f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t)dt| ≤ b− a
2(r + 1)

1
r

(
|f ′(a)|s + |f ′(b)|s − 1

6
ψ(|a− b|)

) 1
s

.

Proof. By Lemma 2.3 and Hölder’s inequality, we conclude

|f(a) + f(b)

2
− 1

b− a

∫ b

a

f(t)dt| ≤ b− a
2

∫ 1

0

|(1− 2t)||f ′(ta+ (1− t)b)|dt

≤ b− a
2

(∫ 1

0

|1− 2t|rdt
) 1

r
(∫ 1

0

|f ′(ta+ (1− t)b)|sdt
) 1

s

≤ b− a
2

1

(r + 1)
1
r

(
|f ′(a)|s

∫ 1

0

dt+ |f ′(b)|s
∫ 1

0

dt+ ψ(|a− b|)
∫ 1

0

t(t− 1)dt

) 1
s

≤ b− a
2(r + 1)

1
r

(
|f ′(a)|s + |f ′(b)|s − 1

6
ψ(|a− b|)

) 1
s

.

Hence, the proof is complete. �

Example 2.9. Let f(t) = t
2+s
s , for all t ∈ R. Hence, |f ′(t)|s =

(
2+s
s

)
|t|2. In view

of example 2.6, |f ′(t)|s is uniformly p-convex with modulus ψ(t) =
(
2+s
s

)
t2. Let

r, s > 1 be such that 1
r + 1

s = 1. Hence, from theorem 2.8 and inequality (6), one

has

|a
2+s
s + b

2+s
s

2
− s

(b− a)(2 + 2s)

(
b

2+2s
s − a

2+2s
s

)
|

≤ (b− a)(2 + s)

2(r + 1)
1
r s

(
a2 + b2 − 1

6
(a− b)2

) 1
s

3. Hermite-Hadamard inequality for uniformly q-convex functions

The next theorem gives a new result of the Hermite-Hadamard inequalities for

uniformly q-convex functions:

Theorem 3.1. Let f : R → R be a uniformly q-convex function with modulus ψ.

Then,

(7) f(
a+ b

2
) +

1

8(b− a)

∫ b−a

a−b
ψ(|t|)dt ≤ 4

b− a

∫ b

a

f(t)dt.
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Proof. In (2), set t = 1
2 , then we have

(8) f(
x+ y

2
) +

1

4
ψ(|x− y|) ≤ 2f(x) + 2f(y).

Now, set x = ta+ (1− t)b and y = (1− t)a+ tb in (8) and integrate on [0, 1] with

respect to t. We get

f(
a+ b

2
) +

1

4

∫ 1

0

ψ(|(2t− 1)(a− b)|)dt ≤ 2

∫ 1

0

f(ta+ (1− t)b)dt+ 2

∫ 1

0

f((1− t)a+ tb)dt.

Hence

1

4

∫ 1

0

ψ(|(2t− 1)(a− b)|)dt =
1

4

∫ a−b

b−a
ψ(|u|) du

2(a− b)

=
1

8(b− a)

∫ b−a

a−b
ψ(|t|)dt.

Also, we have
∫ 1

0
f((1 − t)a + tb)dt =

∫ 1

0
f((1 − t)b + ta)dt = 1

b−a
∫ b
a
f(t)dt.

Therefore

f(
a+ b

2
) +

1

8(b− a)

∫ b−a

a−b
ψ(|t|)dt ≤ 4

b− a

∫ b

a

f(t)dt.

that completes the proof. �

Example 3.2. In view of example 2.6, we know that the function f(t) = t2 for

t ∈ R is uniformly q-convex with modulus ψ(t) = t2 for all t ≥ 0. Hence, in view of

(7) for a, b ∈ R with a > 0, b > 0, one has

(
a+ b

2
)2 +

1

12
(b− a)2 ≤ 4

3
(a2 + ab+ b2).
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