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ABSTRACT. In this paper, we establish Hermite-Hadamard type inequalities
for uniformly p-convex functions and uniformly g-convex functions. Also, we
obtain some new inequalities of Hermite-Hadamard type for functions whose
derivatives in absolute value belong to the class of uniformly p-convex func-

tions.
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1. INTRODUCTION

Many of integral inequalities are based on a convexity assumption of a certain

function and the theory of inequality is one of the most important field study of
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convex analysis and abstract analysis. The major inequalities in these fields are
Hermite-Hadamard inequalities, which can be stated as follows:
Let f: I C R — R be a convex function and a,b € I with a < b, then the

following inequalities holds:

b
a;b)é bia/a f(x)dxgw.

Recently, the generalizations, improvements, variations and applications for con-

A

vexity and the Hermite-Hadamard inequality have attracted the attention of many
researchers (see [2],[7],[8],[9]). For example:

1) A function f is called a p-function if for all z,y € [a,b] and ¢ € [0, 1] one has
the inequality ([4]):

[tz + (1 =t)y) < f(z) + f(y),
and Hermite-Hadamard inequality for a p-function f is

aer)S 2
2 b—a

b
£ /“ﬂmﬁsmﬂ®+f@»

2) A function f : I = [a,b] — (0,400) is said to belong to the class Q(I) if for
all ,y € [a,b] and ¢ € (0,1), satisfies the inequality ([5]):

f(tx+(1—t)y)g@+{(7_y)t

and for a function f € Q(I), one has the inequality

a b
15 < [ s

2. PRELIMINARIES ON UNIFORMLY P-CONVEX FUNCTION AND UNIFORMLY

Q-CONVEX FUNCTIONS

In this section, we consider the basic concepts and results, which are needed to
obtain our main results.
In [1, Definition 10.5], the class of uniformly convex functions is defined. In the

following we generalize the definition of uniformly convex functions in two ways:
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Definition 2.1. Let f : R — R be a function. Then, f is called uniformly p-convex
function with modulus v : [0, +00) — [0, +00] if 9 is incresaing, ¥ vanishes only at

0, and

(1) [z + (1 =t)y) +t(1 =)z —y|) < fz) + f(y),

for each z,y € R and t € [0, 1].

Definition 2.2. Let f : R — R be a function. Then, f is called a uniformly g-
convex function with modulus 1 : [0, +00) — [0, +00) if ¢ is incresaing, 1) vanishes

only at 0, and
(2) [tz + (1 =t)y) + (1 —)(lz —y|) < ——+ 7,
for each z,y € R and t € (0,1).

In order to prove our main theorems, we need the following lemma that has been

proved in [3].

Lemma 2.3. Let f : I° — R be a differentiable function on I°, a,b € I° with a < b.
If f € LYa,b], then the following equality holds:

b 4 !
f(a);rf(b)bia/a f(t)dt:bQ /()(1—2t)f'(ta+(17t)b)dt.

The next theorem gives a new result of the Hermite-Hadamard inequalities for

uniformly p-convex functions:

Theorem 2.4. Let f : R — R be uniformly p-convex function with modulus 1.

Then,

a+b 1 bra 2 [
1O+ o= L wtar< = [

< 2(f(a) + F4)) ~ 3(Ja b))

Proof. In (1), set t = 1, then we have

T+y
2

3) FETYY 4 Tulle —l) < @)+ )
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Now, set x = ta+ (1 —t)b and y = (1 — t)a + tb in (8) and integrate on [0, 1] with
respect to t. We get

a+b 1/t ! !
15 )+1/0 w(|(2t—1)(a—b)|)dt§/0 f(ta—i—(l—t)b)dt—i—/o FI(1 = t)a + th)dt.
Now,
1 a—b
1] e n@=npa =5 [ ez
1 b—a
~ s L, wliar

Also, we have [} f((1 — t)a + th)dt = [} f((1 — )b + ta)dt = ;= [ f(t)dt.
Therefore

a+ b) n 1 b=a
2 S(b — a) a—b

£ W([t)dt < b_Qa/abf(t)dt.

In the other hand, Put # = a and y = b in (1) and integrate on [0, 1] with respect

to t. Then, we obtain

1 1

1
f(ta+(1—t)b)dt+/ t(l—t)¢(|a—bl)dté/ (f(a) + f(b))dt,

0 0 0

SO
b
ﬁ/a f(t)dt+%¢(\a_b|) < f@)+10),

finally

2
b—a

b
[ e <2(5@) + £0) = (e - b

Which completes the proof.
|

If in Theorem 2.4, we set ¥(t) = gt2,ﬂ > 0. Then, we obtain the following

important inequality.

Corollary 2.5. Let f : R — R be uniformly p-convex function with modulus ¢ (t) =
th,ﬂ > 0, then

a+b B

)+ -
2 24

b—a

@ b-af < 2 [ s <20+ F0) - G0 o)
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Example 2.6. It is easy to see that, the following equality holds, for all a € (0,1)
and z,y € R.

(5) (az + (1= a)y)* +a(l —a)(z —y)* = az® + (1 - a)y’.

Hence, we conclude that the function f(t) = t2 for t € R is uniformly p-convex with
modulus ¥(t) = t? for all ¢t > 0. Hence, in view of (4) for a,b € R with a > 0,b > 0

one has

1
s S -ay <

( 5a2 4 2ab + 5b>
2 12 '

(a® +ab+1b?) < 3

[SSIR )

Here we shall offer some applications of Lemma 2.3 connected with Hermite-

Hadamard’s integral inequality for convex functions which are very interesting.

Theorem 2.7. Let f : I° — R be a differentiable function on I°, a,b € I° with
a < b. If|f'| is uniformly p-convexr function with modulus 1 on I° and f' € L'[a,b].

then the following inequality holds:

b
Iﬂwgﬂw—bim/f@ms

Proof. In view of Lemma 2.3 and uniformly p-convexity of |f’|, one has

b 4
PO o [ rwa < 25° [ 0= 20017 ta+ (- oplar

b b—

a
—Z(la—1).

T @]+ 17 G -

< b_Ta /0 1= 2t[(1f" ()] + 1/ (0)] + £(t — 1)¢(la — b]))dt

b—a
<
- 2

</0 |1—2t||f(a)|dt+/0 [1—2¢||f (b)|d1f—&—/0 1—2t|t(t—1)1/)(|a—b|))dt>

b—a, , , b—a
207 @) + (o)) -

<

¥(la —bl).

Hence, The proof is complete. Also, note that

1
1
/\17mup:ﬂ
O 2

! 1
| =2t = 10 = )it = ~50(1a ).
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Theorem 2.8. Let f : I° — R be a differentiable function on 1°, a,b € I° with
a<b. Letr,s > 1 be such that % + % = 1. If |f'|® is uniformly p-convex function
with modulus 1 on I° and f' € L'[a,b]. then the following inequality holds:

(6)

fla) + e L :
FO IO L [ oan < =0 (17 + 1000 - fota )
Proof. By Lemma 2.3 and Hoélder’s mequahty, we conclude

|f(a); /(ta + (1 — t)b)|dt

b—a 0
(/ 11— 2t7"dt> ' (/01 |f'(ta+ (1 — t)b)|sdt>i

gbzah_yui(u<>|Aﬂﬁ+u%wwﬂla+¢ﬂamyéﬂa1MQS

_boa
T 2(r+ )7

Hence, the proof is complete. O

(1@ + 1@ - gota-)

Example 2.9. Let f(t) =

O = (3

of example 2.6, |f/(¢)|* is uniformly p-convex with modulus ¢(t) = (2£2) 2. Let

) [t In view

r,s > 1 be such that % + % = 1. Hence, from theorem 2.8 and inequality (6), one
has

a5 +bs S 2425 2425
— T b—a)(2+2s) (b Cooer )‘
_ 1 H
< (b a)(2—j—s) (a2+b2—(a—b)2>

2(r+1)rs 6

3. HERMITE-HADAMARD INEQUALITY FOR UNIFORMLY Q-CONVEX FUNCTIONS

The next theorem gives a new result of the Hermite-Hadamard inequalities for

uniformly g-convex functions:

Theorem 3.1. Let f : R — R be a uniformly g-convex function with modulus 1.
Then,

a+b 1

7) 1)+

b—a
o | vmars [
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Proof. In (2), set t = 1, then we have

Tty

®) e

)+ 10l — ) < 2/(@) + 2/ (0).

Now, set  =ta+ (1 —t)b and y = (1 — t)a + ¢b in (8) and integrate on [0, 1] with
respect to t. We get

f(““’ /1/1 (2t — 1)(a — b) dt<2/ Flta+(1—t)b dt—|—2/ FI(L = t)a + th)dt.
Hence
1/1w<|<2t1>< o=t [ gl 2
4 Jo ¢ 4 )i ! 2(a—b)
1 b—a
:m o Zb(w)dt
Also, we have [} f((1 = t)a + tb)dt = [} f((1 — t)b + ta)dt = w2 [* f(t)dt.
Therefore
a+b 1 b—a
< -
S+ s [, e < e
that completes the proof. O

Example 3.2. In view of example 2.6, we know that the function f(t) = t? for
t € R is uniformly g-convex with modulus (¢) = ¢ for all t > 0. Hence, in view of

(7) for a,b € R with a > 0,b > 0, one has

a+b, 1 4 9
( 5 ) +ﬁ(b a)? < g(a + ab+ b%).
REFERENCES

[1] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert
spaces, Springer-Verlag, 2011. (4) (1999), 687—696.

[2] H. Barsam and A. R. Sattarzadeh, Hermite-Hadamard inequalities for uniformly convex func-
tions and Its Applications in Means (In press).

[3] S.S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications
to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11(5) (1998),
91-95.

[4] S. S. Dragomir, J. Pecaric and L. E. Persson, Some inequalities of Hadamard type, Soochow

J. Math, 21 (1995), 335-341.



86 HASAN BARSAM AND ALIREZA SATTARZADEH

[5] E. K. Godunova and V. I. Levin, Inequalities for functions of a broad class that contains convex,
monotone and some other forms of functions, Numer. Math. Math. Phys. 166 (1985), 138-142.

[6] U. S. Kirmaci and M. E. Ozdemir, On some inequalities for differentiable mappings and appli-
cations to special means of real numbers and to midpoint formula, Appl. Math. Comput. 153
(2004), 361-368.

[7] M. Kunt, D. Karapnar, S. Turhan, and I. Iscan, The left Riemann-Liouville fractional Hermite-
Hadamard type inequalities for convex functions, Math. Slovaca 69(4) (2019), 773-784.

[8] P. O. Olanipekun, A. A. Mogbademu and S. S. Dragomir, Hermite-Hadamard type inequalities
for a new class of harmonically convex functions, Note Mat. 38 (1)(2018), 23-33.

[9] M. Z. Sarikaya and H. Yildirimon, Hermite-Hadamard type inequalities for Riemann-Liouville
fractional integrals, Miskolc Math. Notes.17(2) (2017), 1049-1059.



