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1. Introduction

As far as we are concerned, the theory of fractional partial differential equations

(FPDE), as a new and effective mathematical tool, is very popular and important in

many scientific and engineering problems because it is more adequate than integer

order models and provides an excellent tool for description of memory and heredity

effects of various materials and processes like gas diffusion and heat diffusion in

fractal porous media [2, 3], it can be refered to [1] for more information. Thanks

to the increasing use of fractional derivative and fractional calculus in ordinary and

partial differential equations and related problems, there is an interest for present-

ing efficient and reliable solutions for them.

Recently, researchers have understood that many dynamic processes have fractional-

order behaviour that depend on time or space, therefore it is important to extend

the concept of variable-order calculus. Currently, variable-order calculus has been

applied in many different field such as riscoelastic mechanics [4], geographic data

[5], signal and confirmation [6]. variable-order operator is a new development in

science.

[24, 23] generalized the Riemann-Liouville and Marchaud fractional integration and

differentiation of variable order and presented some properties. Different researchers

have introduced different definition of variable-order differential operators, which

each of them has specific meaning for specific golas.

Today, various numerical methods for variable order fractional differential equa-

tions are applied such as spectral method [16, 17, 18], finite difference method

[7, 8, 9, 10, 11, 12, 13, 14, 15], reproducing kernel method [21, 22], matrix methods

[19, 20] by many researchers.

The fractional models can be divided into three types: space fractional differential

equation, time fractional differential equation and space-time fractional differential

equation. [7] presented a numerical method for variable order time-space fractional-

diffusion equation. Phanikumar et al. [8] considered an implicit Euler numerical

method for the time variable fractional order mobile-immobile advection-dispersion

model in [8]. [10] presented an implicit and explicit Euler approximation for the
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variable order fractional advection-diffusion equation with a nonlinear source term.

In the existing literature, there is little work on higher-order numerical meth-

ods for the multi-term time-space variable-order fractional differential equations

because complicated numerical analysis is involved. The aim of this paper is to

consider a multi-term time-space variable-order fractional diffusion equations with

initial-boundary value problem. The multi-term FPDEs have been applied to sev-

eral models for describing the processes in practice; For instance, the oxygen de-

livery through a capillary to tissues [36], the underlying processes with loss [37],

the anomalous diffusion in highly heterogeneous aquifers and complex viscoelastic

materials [38], and so on.

In this paper, a meshless method is used to discretize the spatial derivative, then a

numerical method is applied for the time derivative of variable-order. This method

has been used for occasions where the order of derivative was frational and con-

stant. We would like to show that this method is also suitable for the variable-order

fractional derivative.

This paper contributes the following:

1) Definition of Gamma function, variable-order Caputo fractional derivative

and Riemann-Liouville in Section 2.

2) Introducing the space-time spectral collocation method discussed in Section

3.

3) Discretizing the problem by Chebyshev-spectral-collocation method in Sec-

tion 4.

4) Discretizing the problem in time by a proposed numerical method method

in Section 5.

5) Several lemmas and theories used to obtain the error bound in Section 6,

and then the error bound is computed.

6) Finally, multiple numerical examples to show the effectiveness of the method

are provided in Section 7.
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2. Preliminaries

In the literature of fractional calculus, several definition are found in [25] and

[26]. Fractional calculus has many applications and looks suitable for physics phe-

nomena. Now, we define some essential definitions.

The Gamma function is an extension of factorial function to real numbers.

Γ(z) =

∫ ∞
0

tz−1 exp (−t)dt, t > 0.

Some of properties are

Γ(1) = Γ(2) = 1, Γ(
1

2
) =
√
π,

Γ(z + 1) = zΓ(z),

Γ(n) = (n− 1)!, n ∈ N.

Suppose α ∈ (0, 1) is given, the left and right Caputo fractional derivatives of order

α of a function f : [a, b]→ R is defined as

c
aD

α
t f(t) =

1

Γ(1− α)

∫ t

a

f
′
(τ)

(t− τ)α
dτ,

and

b
tD

α
b f(t) = − 1

Γ(1− α)

∫ b

t

f
′
(τ)

(τ − t)α
dτ.

It is obvious that the Caputo fractional derivative of a constant is zero.

In this paper, we consider the fractional derivative of variable order, which α

depends on time and space. Some physical phenomena are better described when

the order of the operator is variable. Now, we consider the order of derivative

as α(x, t), taking values on the [0, 1] × [0, 1]. Therefore we introduce the caputo

derivative of variable-order.

Definition 2.1.

c
aD

α(t)
t f(t) =

1

Γ(1− α(t))

∫ t

a

f
′
(τ)

(t− τ)α(t)
dτ,

and

c
tD

α(t)
b f(t) = − 1

Γ(1− α(t))

∫ b

t

f
′
(τ)

(τ − t)α(t)
dτ.
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In this paper, the following variable-order equation is considered .

0D
q(x,t)
t y(x, t) =

∂2y(x, t)

∂x2
+ f(x, t),(1)

(x, t) ∈ Ω = [0, L]× [0, T ],

where the initial and boundary conditions are :

y(x, 0) = y0(x), 0 ≤ x ≤ L,

y(0, t) = y(L, t) = 0, 0 ≤ t ≤ T,

and also 0 < q < q(x, t) < q̄ < 1.

3. Chebyshev spectral collocation method

In this section, we present the Chebyshev spectral collocation method, briefly.

The chebyshev-Gauss-Lobbato points in Λ = [−1, 1] is:

x̄j = cos(
jπ

N
), j = 0, 1, ..., N.

Now, we interpolate function F by these points,

F̄N (x̄) =

N∑
i=0

fiL̄i(x̄),(2)

where L̄i(x̄) is the Lagrange interpolation polynomials assuring

L̄i(x̄j) =

0 if i 6= k,

1 if i = k.

Let F̄ = [f(x̄0), ..., f(x̄N )] and F̄ (m) = [f (m)(x̄0), ..., f (m)(x̄N )]T , By differentiating

of Equation 2 and evaluating at x = xj , we obtain

F̄
(m)
N =

N∑
i=0

fiL̄
(m)
i (x̄), m ∈ N,(3)

which can be rewritten as:

F̄
(m)
N = D̄(m)F̄ , m ∈ N.

D̄(m) is the (N + 1)× (N + 1) matrix and

D̄
(m)
ji = L̄

(m)
i (x̄j) j, i = 0, 1, 2, ... .
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D̄(1) = D̄ is given as:

d̄ij =



2N2+1
6 , i = j = 0,

− ci
2cj

(−1)j+i

sin((i+j) π
2N )sin((i−j) π

2N ) , i 6= j,

− 1
2 cos( iπN )(1 + cot2( iπN )), i = j, i 6= 0, N,

− 2N2+1
6 , i = j = N,

(4)

where

ci =

2, i = 0, N,

1, o.w.

Let xj = a+ b−a
2 (x̄j + 1) are Chebyshev-Gauss-Lobatto points in [a, b], such that

x̄j = −1 +
2

b− a
(xj − a),

F (m) = D(m)F, m ∈ N,

where

F = [f̄(−1 +
2

b− a
(x0 − a)), ..., f̄(−1 +

2

b− a
(xN − a))]T ,

and

D
(m)
ji = L̄

(m)
i (−1 +

2

b− a
(xj − a)), j, i = 0, 1, ..., N,

D
(m)
ji = (− 2

b− a
)mL̄

(m)
i (x̄j), j, i = 0, 1, ...N.(5)

Hence, D(m) = (− 2
b−a )mD̄(m).

Definition 3.1. [31, 32] Suppose C = (cij)m×n and D are two arbitary matrices.

The matrix

C ⊗D =


c11D c12D · · · c1nD

c21D c22D · · · c2nD
...

...
. . .

...

cm1D cm2D · · · cmnD


is named Kronocker product of C and D.
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Definition 3.2. Suppose C = (cij)m×n is a given matrix, then vec(C) is a column

vector made of the row of C stacked a top one another from left to right that its

size is m× n and

vec(C) = (c11, c12, ..., c1n, c21, c22, ..., cm1, ..., cmn)T .

4. Discretizing in space

To discretize Equation 1 in space, we define:

y(x, t) =

N∑
i=0

y(xi, t)Li(x),

so we have

y(xj , t) =

N∑
i=0

y(xi, t)Li(xj).

By second derivative of y(x, t) with respect to x, we obtain:

∂2y(x, t)

∂x2
=

N∑
i=0

y(xi, t)
∂2Li(x)

∂x2
,

∂2y(xj , t)

∂x2
=

N∑
i=0

y(xi, t)d
(2)
ji .

y(x0, t) = y(xN , t) = 0, hence we have

0D
q(xj ,t)
t y(xj , t) =

N−1∑
i=1

y(xi, t)d
(2)
ji + f(xj , t),(6)

and 
0D

q(x2,t)
t y(x2, t)

...

0D
q(xN−1,t)
t y(xN−1, t)

 = D
(2)
1


y(x2, t)

...

y(xN−1, t)

+


f(x2, t)

...

f(xN−1, t)

 .
D

(2)
1 is the matrix of second derivative which the first and last rows and columns

are eliminated.
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5. Discretizing in time

For positive integer number Nt, let 4t = T
Nt

denotes the step size time vari-

able, tk = k4t, k = 0, 1, ..., Nt. In this section, we present the following lemma for

discretization of time fractional derivative.

Lemma 5.1. Suppose 0 ≤ α ≤ 1 and g(t) ∈ C2[0, tn], it holds that∣∣∣∣∣ 1

Γ(1− α)

∫ tn

0

g
′
(t)

(tn − t)α
dt− c

[
b0g(tn)−

n−1∑
m=1

(bn−m−1 − bn−m)g(tm)− bn−1g(t0)

]∣∣∣∣∣ ≤
1

Γ(2− α)

[
1− α

12
+

22−α

2− α
− (1 + 2−α)

]
max

0≤t≤tk
|g
′′
(tn)|τ2−α,

where

bm = (m+ 1)1−α −m1−α, c =
∆t−α

Γ(2− α)
.

Therefore, for n = 1,

∂αt g(t1) ' c [g(t1)− g(t0)]

and for 2 ≤ n ≤ Nt,

∂αt g(tn) ' c

[
b0g(tn)−

n−1∑
m=1

(bn−m−1 − bn−m)g(tm)− bn−1g(t0)

]
.

Equation 1 is in the following form at point (xj , tn)

D
q(xj ,tn)
t y(xj , tn) =

N−1∑
i=1

y(xi, tn)d
(2)
ji + f(xj , tn), 1 ≤ n ≤ Nt.

By Lemma 5.1, we achieve

1

Γ(1− q(xj , tn))

∫ tn

0

y
′
(xj , t)

(tn − t)q(xj ,tn)
dt '

∆t−q(xj ,tn)

Γ(2− q(xj , tn))

[
bjn0 y(xj , tn)−

n−1∑
m=1

(bjnn−m−1 − b
jn
n−m)y(xj , tm)− bjnn−1y(xj , t0)

]
,

(7)

where

bjnm = (m+ 1)1−q(xj ,tn) −m1−q(xj ,tn), j = 1, ..., N − 1, n = 1, ..., Nt.
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For more details you can see [7]. We define a Nt ×Nt matrix Bj and a vector Aj

as:

Bj =



cj1bj10 0 0 · · · 0

cj2(bj21 − b
j2
0 ) cjbj20 0 · · · 0

cj3(bj32 − b
j3
1 ) cj3(bj31 − b

j3
0 ) cj3bj30 · · · 0

...
...
. . .

...
...

...

cjNt(bjNtK−1 − b
jNt
K−2) cjNt(bjNtK−2 − b

jNt
K−3) · · · cjNt(bjNt1 − bjNt0 ) cjNtbjNt0



,

Aj =



cj1bj10 y0(xj)

cj2bj21 y0(xj)

cj3bj32 y0(xj)

...

cjNtbjNtNt−1y0(xj)



, cji =
∆t−q(xj ,ti)

Γ(2− q(xj , ti))

and

B =
[
B1, · · · , BN−1

]
, A =

[
A1, · · ·AN−1

]
.

Equation 7 can be rewritten as:

[
B ⊗ I(N−1),(N−1) −D ⊗ INt,Nt

]
vec(y) = vec(f)− vec(A),

where

vec(y) = [y(x1, t1), · · · , y(x1, tNt), y(x1, t1), · · · , y(x1, tNt), · · · , y(xN−1, t1), · · · , y(xN−1, tNt)] ,

vec(f) = [f(x1, t1), · · · , f(x1, tNt), f(x1, t1), · · · , f(x1, tNt), · · · , f(xN−1, t1), · · · , f(xN−1, tNt)]
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6. Error Estimate

Many lemmas and thorems have been developed to obtain the error bound. In

order to use these theorems, we need to define discrete inner product and discrete

norm.

Definition 6.1. The discrete inner product and discrete norm are introduced as

(f, g)N =

N∑
j=0

f(x̄j)g(x̄j)wj ,

where x̄j are the Chebyshev-Gauss-Lobatto points, weights wj are positive and given

as following

wj =
π

djN
, where wj =

2, j = 0, N,

1, o.w

By the Gauss type integration in (Canuto & Hussaini & Quarteroni & Zang, 1987;

Ben-yu, 1998) we have

(f, g)N = (f, g), ∀f, g ∈ P2N−1,

where PN = span{L0(x̄), L1(x̄), · · · , LN (x̄)} and (f, g) =
∫

Ω
f(x̄j)g(x̄j)dx̄. Denote

‖f‖ = ‖f‖L2 =
√

(f, f), ‖f‖r = ‖f‖Hr =

√∑
|α|6r

‖Dαf‖2.

In the below, the bochner space Lp(J ;B) endowed with the norm is presented

‖f‖Lp;B =


(∫

J
‖f‖pBdt

) 1
p

, 1 ≤ p <∞,

ess supt∈J ‖f‖B , p =∞.

Lemma 6.2. (21, 22, 23, 24).For any p ∈ PN , we have

‖f‖ 6 ‖f‖N 6
√

3‖f‖,

and also the following inequality is obtained,

|(f, g)− (f, g)N | 6 CN−s‖f‖s‖g‖.

If f ∈ Hs(Ω) for some s > 1
2 and v ∈ PN .

Proof. See [30, 29, 27, 28]. �
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Lemma 6.3. For all g ∈ H1
0 (Ω)

‖g‖ 6 C‖gx̄‖.

Proof. See [28]. �

Assume the interpolation operator ĪN from H1(Ω) onto PN assuring

ĪNf(x̄) =

N∑
j=0

f(x̄j)L̄j(x̄).

Then we have the following lemma.

Lemma 6.4. Any f ∈ Hs(Ω), s > 1
2 , we have

‖f − INf‖ 6 CN−s‖f‖s.

Proof. See [30, 29, 27, 28]. �

In the next step, a bilinear operator on the space H1
0 (Ω)×H1

0 (Ω) is introduced,

which is coercive continuous,

a(f, g) = (fx̄, gx̄) =

∫ 1

−1

fx̄gx̄dx̄.

Now, the projection operator P 0
N from H1

0 (Ω) onto VN is used which is described

by

(f − P 0
Nf, g) = 0, ∀g ∈ VN ,

This shows P 0
N is the orthogonal projection of y upon the space VN , where VN =

span{L0(x̄), · · · , LN (x̄)} [30, 29, 27, 28].

Lemma 6.5. For all f ∈ H1
0 (Ω)

⋂
Hs(Ω) and s > 1, the following inequality holds

‖f − P 0
Nf‖1 +N‖f − P 0

Nf‖ 6 CN1−s‖f‖s.

Proof. See [30, 29, 27, 28]. �

Now, we write (6), (1) as

(8)


0D

q(xj ,t)
t yN (xj , t) = ∂2yN

∂x2 (xj , t) + f(xj , t),

yN (x0, t) = yN (xN , t) = 0, t ∈ (t0, T )

yN (xj , t0) = y0(x).
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(9)


0D

q(x,t)
t y(x, t) = ∂2y

∂x2 (x, t) + f(x, t),

y(x0, t) = y(xN , t) = 0, t ∈ (t0, T )

y(x, t0) = y0(x).

where yN (x) = ȳN (x̄) = IN ȳ(x̄) and x = a+ b−a
2 (x̄+ 1). Put ȳ(x̄) = y(a+ b−a

2 (x̄+

1)), q̄(x̄) = q(a+ b−a
2 (x̄+ 1)) and f̄(x̄) = f(a+ b−a

2 (x̄+ 1)).

Now, the equations (8)and (9) can be written as

(10)


0D

q̄(x̄j ,t)
t ȳN (x̄j , t) = ( 2

b−a )2 ∂
2ȳN
∂x2 (x̄j , t) + f̄(x̄j , t),

ȳN (x̄0, t) = ȳN (x̄N , t) = 0, t ∈ (t0, T )

ȳN (x̄j , t0) = ȳ0(x̄j).

(11)


0D

q̄(x̄,t)
t ȳ(x̄, t) = ( 2

b−a )2 ∂
2ȳ
∂x2 (x̄, t) + f̄(x̄, t),

ȳ(x̄0, t) = ȳ(x̄N , t) = 0, t ∈ (t0, T )

ȳ(x̄, t0) = ȳ0(x̄).

The solutions ȳN of (10) verifies

(0D
q̄N
t ȳN , v)N + (

2

b− a
)2((yN )x̄, vx̄)N = (f̄N , v)N ,

and by Gauss type integration, we get

(0D
q̄N
t ȳN , v) + (

2

b− a
)2((yN )x̄, vx̄) = (f̄N , v),

and also, we have

(0D
q̄
t ȳ, v) + (

2

b− a
)2((y)x̄, vx̄) = (f̄ , v),

The error can be written as a sum of two terms

ȳN − ȳ = (ȳN − P 0
N (ȳ)) + (P 0

N (ȳ)− ȳ) = θ + ρ

where

θ = ȳN − P 0
N (ȳ), ρ = P 0

N (ȳ)− ȳ
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Lemma 6.6. For ρ = P 0
N (ȳ)− ȳ, ȳ ∈ L∞(J,Hs(Ω)) we have

a(ρ, ν) = 0 ∀t ∈ J,

‖ρ‖ 6 CN−s‖ȳ‖s, ∀t ∈ J,

‖ρt‖ 6 CN−s‖ȳ‖s, ∀t ∈ J,

Proof. See (Liu & Boying & Jiebao, 2015). �

We should mention that

0 < q < q̄(x, t) < q̄ < 1⇒ 1

Γ(1− q̄)
<

1

Γ(1− q̄(x, t))
<

1

Γ(1− q)
,(12)

D
q̄(x̄,t)
t y(x, t) =

1

Γ(1− q̄(x, t))

∫ t

t0

yt(x, τ)dτ

(t− τ)q̄(x,t)
,(13)

0 < t− τ < 1⇒ 0 < (t− τ)q̄(x,t) < 1⇒ 1

(t− τ)q̄(x,t)
> 1,(14)

therefore,

0D
q̄(x̄,t)y(x, t) >

1

Γ(1− q̄)
y(t), Dq̄N (x̄,t)yN (x, t) >

1

Γ(1− q̄)
yN (t).(15)

Theorem 6.7. Suppose ȳ and ȳN be the solutions of (10), (11) and ȳ ∈ L∞(J,Hs(Ω)).

Then, it is obtained that

‖ȳN (t)− ȳ(t)‖ 6 CN−s‖ȳ(t)‖s, for t ∈ J,

Proof. By ȳN and ȳ which are true in Equations (10), (11) and by (15) and we

obtain:

1

Γ(1− q̄)
(yN , v) + (

2

b− a
)2a(yN , v) ≤ (fN , v),

1

Γ(1− q̄)
(y, v) + (

2

b− a
)2a(y, v) ≤ (f, v).

Therefore

1

Γ(1− q̄)
(θ + ρ, v) + (

2

b− a
)2a(θ, v) ≤ (fN − f, v),

Since P 0
N is an orthogonal projection then (ρ, v) = 0. Put v = θ, we have

1

Γ(1− q̄)
‖θ‖2 + (

2

b− a
)2‖θ‖2 ≤ ‖fN − f‖‖θ‖,
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‖θ(t)‖ ≤ 1

c
‖fN − f‖,

where

c = (
2

b− a
)2 +

1

Γ(1− q̄)
.

Therefore

‖θ(t)‖ ≤ CN−s‖f‖s.

The proof is completed by Lemma 5.1 and equation 7. �

Theorem 6.8. Suppose y, yN are the solution of (8), (9) and y, p ∈ L∞(J,Hs(Ω)).

Then the following inequalities are obtained

||yN (t)− y(t)|| 6 CN−s,

7. Numerical example

In this section, the following variable-order fractional diffusion equation is con-

sidered:

Example 7.1. [7]

0D
q(x,t)
t y(x, t) =

∂2y(x, t)

∂x2
+ f(x, t), (x, t) ∈ Ω = [0, 1]× [0, 1],

y(x, 0) = 10x2(1− x), 0 ≤ x ≤ 1,

y(0, t) = y(1, t) = 0, 0 ≤ t ≤ 1,

where q(x, t) = 2+sin(tx)
4 (satisfies 0 < q(x, t) < 1)

f(x, t) = 20x2(1− x)[
t2−q(x,t)

Γ(3− q(x, t))
+

t1−q(x,t)

Γ(2− q(x, t))
]− 20(t+ 1)2(1− 3x).

The exact solution is

y(x, t) = 10x2(1− x)(t+ 1)2.

Table 1 shows the numerical solution and exact solution of the equation 1 for N = 11

and Nt = 30.

Figure 1 shows the exact and numerical solution for Nt = 30 and N = 20 and

Figure 2 shows the error of the solution.
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Table 1. Comparison between the numerical solution and exact

solution of Example 7.1, N = 11 and Nt = 30

xi Numerical solution Exact solution Error

0.0203 0.0161 0.0161 0.0318×10−3

0.0794 0.2321 0.2320 0.1246×10−3

0.1726 0.9859 0.9856 0.2700×10−3

0.2923 2.4190 2.4185 0.4473×10−3

0.4288 4.2022 4.2016 0.6110×10−3

0.5712 5.5966 5.5959 0.6914×10−3

0.7077 5.8564 5.8558 0.6328×10−3

0.8274 4.7264 4.7259 0.4483×10−3

0.9206 2.6911 2.6909 0.2248×10−3

0.9797 0.7777 0.7777 0.0588×10−3

Figure 1. Comparisons between the numerical solution and exact

solution of y(x, t) at t = 0.1s, t = 0.3s, t = 0.5s, t = 1 in Example

7.1.
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Figure 2. Plots of the maximum error of the exact solution and numerical

solution ‖yh − ye‖ in Example 7.1.

Example 7.2. [35]

0D
q(x,t)
t y(x, t) = K

∂2y(x, t)

∂x2
+ f(x, t), (x, t) ∈ Ω = [0, L]× [0, T ],

y(x, 0) = 0, 0 ≤ x ≤ L,

y(0, t) = y(1, t) = 0, 0 ≤ t ≤ T,

where q(x, t) = 0.8 + 0.2xt
LT (satisfies 0 < q(x, t) < 1), T = 0.5, L = 10,K = 0.01

f(x, t) =
2

Γ(3− q(x, t))
t2−q(x,t) sin(

xπ

L
) +K

π2t2

L2
sin(

xπ

L
).

The exact solution is

y(x, t) = t2 sin(
xπ

L
).

Table 2 shows the numerical solution and exact solution of the equation 1 for N = 11

and Nt = 30 at t = 0.1.

Figure 3 shows the exact and numerical solution for Nt = 30 and N = 40 and

Figure 4 shows the error of the solution.

8. Conclusion

In this paper we consider the one-dimensional variable-order time fractional dif-

fusion equation. We use spectral collocation method and finite difference method
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Table 2. Comparison between the numerical solution and exact

solution of Example 7.1, N = 11 and Nt = 30

xi Numerical solution Exact solution Error

0.2025 0.0007 0.0006 0.0571×10−3

0.7937 0.0027 0.0025 0.2228×10−3

1.7257 0.0056 0.0052 0.4697×10−3

2.9229 0.0087 0.0079 0.7308×10−3

4.2884 0.0107 0.0098 0.9075×10−3

5.7116 0.0107 0.0098 0.9187×10−3

7.0771 0.0087 0.0079 0.7574×10−3

8.2743 0.0057 0.0052 0.4969×10−3

9.2063 0.0027 0.0025 0.2395×10−3

9.7975 0.0007 0.0006 0.0620×10−3

Figure 3. Comparisons between the numerical solution and exact

solution of y(x, t) (1) and at t = 0.1s, t = 0.25s, t = 0.4s, t = 0.5

in Example7.2.

to discretize the spatial variable and time variable, respectively. The used tech-

nique is applied to solve a test problem and the resulting solutions are in good
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Figure 4. Plots of the maximum error of the exact solution and numerical

solution ‖yh − ye‖ in Example 7.2.

agreement with the known exact solutions. For the sake of simplicity, we only con-

sidered the one-dimensional case with standard initial and boundary conditions,

but the method can be extended to multi-dimensional cases with even non-classic

boundary conditions which is the subject of the authors.
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