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Abstract    A multiple marker analysis approach in the framework of the mixed-

effects model was developed, allowing all markers of the entire genome to be 

included simultaneously in the analysis. The approach was extended to multi-

trait situations. The proposed method is a one-stage process, which simulta-

neously models the residuals and genetic effects. In addition, it can easily ac-

commodate co-variates, extra sources of variation, fixed or random including 

polygenic effects and it can easily be generalized to experimental and crossing 

designs commonly used. The developed approach considered an unstructured 

co-variance model for the traits residuals and fitted a multiplicative model for 

the trait by marker effects. The particular multiplicative model considered 

herein was the factor analytic model. This provided a parsimonious model 

specification to limit the number of parameters to be estimated. It was shown 

through the simulation study that modelling multiple phenotypes in a single 

linkage analysis simultaneously could markedly increase the power, compared 

with modelling of each phenotype separately. Correlations among phenotypes 

can arise from several different causal processes, which may have different im-

plications for the power and performance of the multivariate linkage analysis. 

Obviously, further studies using the approach suggested herein for multitrait 

quantitative trait loci (QTL) mapping that specifically consider different situa-

tions, should be undertaken. Furthermore, the efficiency of the model to dis-

tinguish between a pleiotropic QTL and closely linked QTL affecting different 

traits is another area that needs more investigation. 
 The authors, 2020. Keywords: multiplicative mixed model, pleiotropy, quantitative trait loci 
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Introduction 

A gene may affect more than one trait and this is termed 

pleiotropic effect (Sohrabi et al., 2014). Pleiotropic effect 

of the loci is common in livestock species (Esmailizadeh 

and Mohammadabadi, 2010). For example, Esmailiza-

deh et al. (2008) found multiple effects of the myostatin 

F94l substitution on beef traits. It is common in gene 

mapping experiments to measure a large number of  

 traits since genotyping costs are essentially fixed and 

additional phenotyping is a way of value-adding that in-

vestment (Moradian et al., 2015). Univariate analysis of 

relationships between genetic variants (e.g. micro-sat-

ellite allele, single nucleotide polymorphism, haplotype) 

and phenotypes are commonly conducted using re-

gression of the phenotype on the marker (Moradian et 

al., 2014).  However, multiple trait analysis is seldom per- 
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formed. Multivariate quantitative trait loci (QTL) map-

ping allows the detection of any possible pleiotropic ef-

fects and linked QTL, while exploiting the information 

from genetic and phenotypic correlations between traits 

(Korol et al., 1995; Knott and Haley, 2000; Gilbert and Le 

Roy, 2003). This provides potentially more insight into 

the nature of genetic correlations between different 

traits. In addition, multivariate approaches can increase 

the power of the test and the precision of parameter es-

timates (Jiang and Zeng, 1995; Korol et al., 1995; Gilbert 

and Le Roy, 2004; Meuwissen and Goddard, 2004). 

Jiang and Zeng (1995) showed that if the true model is a 

pleiotropic QTL, then analyzing the multiple affected 

traits simultaneously by fitting a pleiotropic QTL in-

creases power and improves the resolution in mapping 

the QTL.  

The simplest way to deal with multivariate data is by 

mapping individual traits and assessing whether the 

confidence intervals for QTL overlap for some combina-

tions of traits. However, several approaches have been 

adopted to handle multivariate data collected in gene 

mapping experiments. In almost all the approaches, 

multivariate traits are often condensed to allow univari-

ate analysis. One approach is to select one of the traits 

as the primary one and considering the remaining traits 

as co-variates, modifying the mean behavior of the pri-

mary trait. Alternatively, the multivariate trait is replaced 

by one or more linear combinations of the underlying 

univariate traits through traditional principal component 

analysis or factor analysis (Weller et al., 1996; Gilbert and 

Le Roy, 2003; Gilbert and Le Roy, 2004; Stearns et al., 

2005). However, neither of these approaches is satisfac-

tory. In the first approach, the traits are treated asym-

metrically, with one trait arbitrarily designated as pri-

mary. For instance in mapping genes for carcass fat-

ness, treating carcass weight as a co-variate runs the 

risk of masking linkage evidence for genes that impact 

both traits (Knott and Haley, 2000; Knott, 2005). In es-

sence, information on the variance and co-variances 

displayed by traits is lost when they are viewed as co-

variates.  

Transforming the original traits into new linear com-

binations has been approached in several ways. For ex-

ample, Weller et al. (1996) considered principal compo-

nent analysis, while Gilbert and Le Roy (2003) consid-

ered discriminate analysis. Korol et al. (2001) used a 

transformation of the trait space followed by single-trait 

analysis and subsequent back transformation.  

A possible disadvantage of using principal compo-

nents in QTL analyses is that the magnitudes of the est- 

 imated effects are difficult to interpret directly in terms 

of the traits. A transformation that produces traits that 

are either phenotypically or genetically uncorrelated 

does not ensure that the QTL only influences a single 

canonical trait. This is because different QTL affecting a 

trait may have different patterns of pleiotropy, for exam-

ple some QTL affect only one trait whereas others affect 

two or more traits (Knott and Haley, 2000). In this case, 

it is not possible to find a canonical transform that en-

sures all QTL only influence one canonical trait. Conse-

quently, it cannot be assumed that QTL found to be af-

fecting two different canonical variables in the same lo-

cation are actually different QTL, as stated by Weller et 

al. (1996). One could only conclude that QTL affecting 

different canonical traits are indeed different if the ge-

netic correlations between traits are the same as the 

phenotypic correlations and all individual QTL follow the 

same pattern, a situation that is likely to be rare.   

A number of methods to analyze the traits simulta-

neously have been developed (Jiang and Zeng, 1995; 

Knott and Haley, 2000; Korol et al., 2001). However, cur-

rently, multiple trait approaches suffer in their imple-

mentation. These methods have not been widely 

adopted which is probably a reflection of their relative 

statistical complexity. In addition, it is not clear how to 

proceed with the analysis of data containing many traits 

(e.g., does one start with single trait analysis or with one 

multitrait analysis that assumes that there are QTL af-

fecting all traits (Haley, 1999). Additionally, in practice, 

results are observed that seem intuitively incorrect. For 

example, Knott (2005) stated that single-trait analyses 

give evidence for all traits in one region of a linkage 

group, but when the traits are analyzed together, the 

best location can move some distance away to where 

there was no evidence for QTL from the individual trait 

analyses. The aim of this study was to develop a method 

that can combine genetic information across both cor-

related traits and half-sib families in livestock species to 

increase the power of gene mapping experiments. 

 

Materials and methods 

Whole genome marker analysis 

Rather than testing an individual marker independent of 

all other markers, it is preferable to model all potential 

QTL at once. A number of methods are available that al-

low the inclusion of all of the markers of the entire ge-

nome in QTL analysis (Xu, 2003; Gilmour, 2007; Verbyla 

et al., 2007). Gilmour’s (2007) method allows separate 

variance components for each chromosome. Markers  
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are fitted as independent random effects and in the ab-

sence of any QTL represent error contrasts with ex-

pected variance component of zero. A significant vari-

ance component indicates that there is additional varia-

tion, attributed to QTL, and the best linear unbiased pre-

dictions (BLUPs) for the marker effects are then inter-

preted assuming the correlation between markers is 
2e 

, where δ is the distance between markers in Mor-

gans. In this study, a modification in the proposed 

method by Gilmour (2007) was made to extend the 

method for multivariate situations. A single genome 

variance component was estimated rather than chro-

mosomal variances. Based on the magnitude and pre-

diction error of the markers BLUPs given the data, they 

were converted to a probability of being zero (Verbyla et 

al., 2003). These probabilities were converted to log 

scale (-2ln(P)) which is equivalent to a LOD score for 

each marker and is distributed as a 
2

2  (Fisher, 1954). 

Since the method thus far is a marker selection method, 

the most significant marker is added to the fixed effects 

to estimate size and significance. The model is then re-

fit to identify whether significant genome variance re-

mains and if so, the process of identifying most proba-

ble markers and re-fitting as fixed effects continues. 

Markers are selected conservatively compared to indi-

vidual marker regression. 

 

Mixed model for multivariate whole genome  

markers 

Suppose that p traits are measured in n individuals. The 

model for combined vector of data across traits is given 

by:  

yj = Xjτj + Zjuj+ ej                                                                  (1)  

where there are qj fixed effects associated with trait j so 

that Xj and τj have, respectively, dimensionality n×qj and 

qj × 1 for each character. uj
(bj × 1)

 is vector of random ef-

fects associated with trait j. 

It is assumed that the joint distribution of (uj, ej) is 

Gaussian with zero mean and variance matrix 















)(

)(






j

j

j R0

0G
                                                      (2)            

where,  j is a scale parameter which in the case of mul-

tiple trait or multi-trials is fixed to one. However, in 

mixed effects models with a single residual variance,  j  

is equal to the residual variance (σ2).  and  are vectors 

of variance parameters. The distribution of the data vec- 

 tor yj is thus,  

),(~ HXτy N                                                                  (3)                      

where H= ZGZ' + R.       

R is (np) × (np) co-variance matrix associated with the 

total vector ),...,( 1

T

p

TT
eee   of  residual errors. G is co-var-

iance matrix associated with the total vector 

),...,( 1

T

p

TT
uuu   of random effects.  

The co-variance matrix G, for the ith random term, 

has many possible forms. In the most general case, G 

could be completely unstructured, comprising 

2)1( ii bb  parameters. As stated by Smith  et al. (2001), 

interaction terms may be regarded as a vector represen-

tation of a ti dimensional array of effects, where ti is the 

number of factors in the interaction. The variance struc-

ture for the jth dimension is Gij. As with a single dimen-

sion random effect, Gij may take a range of forms. In the 

model herein, the interaction term is trait by marker. Let  

um be the mp × 1 vector of the effects of m markers for p 

traits. A general form for the variance structure of the 

interaction term is   

mpg GGu )var(                                                         (4)            

where, Gp and Gm are positive definite symmetric matri-

ces of dimension p×p and m×m, respectively. The matrix 

Gp = (σMjj) is the marker variance matrix. The diagonal 

elements are the marker variances for traits and the off-

diagonal elements are the marker co-variances be-

tween pairs of traits. mG = mI  and in the Kronecker 

product notation, variance of trait by marker interaction 

term, var( gu ), is 

mp IGu )var( g                                                            (5)                     

The model (5) implies that trait × marker effects are 

correlated between traits. Separating the marked ge-

netic effects from other random terms, including non-

marked polygenic effects, the mixed model (1) can then 

be written as 

jgjgjjjjjj euZuZτXy  00                                  (6) 

where ugj are the marker effects for trait j with associated 

design matrix Zgj (n × mp) and variance matrix as in (5). u0j 

comprise any additional random effects (including non-

marked polygenic effects) with associated design matrix 

Z0j and variance matrix G0.   

A simple structure for Gp is a diagonal model (DIAG), 

assuming the marker effects for different traits are reg-  
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arded as independent so that Gp=diag(σMjj), j=1…p.  The 

most general form for Gp is the unstructured variance 

model which contains p(p+1)/2 parameters (i.e. the 

number of parameters to be estimated increases quad-

ratically with the number of traits). This model will pro-

vide the best fit (in a likelihood sense) to the data.  How-

ever, in cases with a large number of traits and markers, 

it is difficult to ensure that REML estimates of the vari-

ance parameters for such a complex variance model re-

main within the parameter space. Also estimation of 

such a structure may be inefficient for a large number of 

traits and markers so a more parsimonious structure is 

desirable. This can be achieved using a factor analytic 

model for the marker effects across traits. Even for small 

number of traits, a factor analytic structure is preferred 

for Gp as given the purpose that is finding pleiotropic 

QTL and also trait-specific QTL. 

 

Factor analytic model 

Factor analytic variance structures have been proposed 

for genotype by environment effects in mixed model 

analyses of data from multi-environment trials (Cullis et 

al., 1998; Smith et al., 2001; Thompson et al., 2003; 

Smith et al., 2005). Smith  et al. (2001; 2005) use a factor 

analytic structure to model variety by environment inter-

actions, whilst simultaneously estimating a separate 

spatial correlation structure for the errors for each trial. 

Herein, the same formulation as Smith et al. (2001; 

2005) was used to explain the application of factor anal-

ysis in modelling trait by marker effects.  

When applied to the marker effects for each trait, the 

factor analytic model for marker effects, gu  will be 

δξIλξIλu  kmkmg )(...)( 11
                                   (7) 

where 
)1( m

rξ  are a few, random quantities called fac-

tors (r=1…k<p), the coefficients 
)1( p

rλ  are known as 

loadings, and 
)1( mp

δ  is the vector of residuals or lack of 

fit for the model.  

Equation (7) has the form of a random regression on 

k trait co-variates kλλ ,...,1 . However, the difference be-

tween this equation and standard random regression 

problems is that in this formulation both the co-variates 

and the regression coefficients are unknown and there-

fore, must be estimated from the data (Smith et al., 

2001) .  

Matrix notation allows the entire system of equations 

to be written quite compactly as  

 δξIΛu  )( mg                                                           (8) 

Considering the full model (6) the distribution of ( ξ ,

δ , e) is assumed to be multivariate normal, with mean 

the zero vector and variance matrix 
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where Ψ  is a diagonal matrix with elements 

),...,,( 21 p  and i   is known as the specific vari-

ance for the ith trait. The variance matrix for the marker 

effects for each trait, )var( gu , is then given by 

m

mmg

IΨΛΛ

δIΛξIΛu





)(

)var()()var()()var(
       (10) 

Researchers may be interested only in ξ (e.g., in 

modelling variety by environment interaction in plants). 

However, herein both ξ and δ are of interest.  

 

Estimation of the parameters 

Estimates of the fixed and random effects in equation 

(6) are obtained as solutions to the mixed-model equa-

tions (Smith et al., 2001), which are given by 
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This leads to best linear unbiased estimates (BLUEs) 

of the fixed effects, 

yHXXHXτ
111 )(ˆ                                                    (12) 

and best linear unbiased predictors (BLUPs) of the ran-

dom effects , 

PyZIGu mg gp
 )(~                                                    (13) 

where   RZIGZH  pmppy )()var(                    (14) 

and      
11111 )(   HXXHXXHHP                 (15)   

In practice, BLUEs and BLUPs and the variance com-

ponents are obtained through an iterative scheme. 

However, extra calculations in a factor analytic model 

are parameters in Λ  andΨ . The parameters in Λ  and 

Ψ  are usually unknown and require to be estimated 

from the experimental data. The number of parameters 

in the factor analytic model with k terms is given by 
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pk+p-k (k-1)/2. Estimation in factor analysis is a two-

stage procedure. First, the parameters in the model are 

estimated, and then these are used to provide esti-

mates of individual factor scores. 

The use of model (10) for marker effects can lead to 

models with variance structures of less than full rank, 

which may occur when estimates of one or more spe-

cific variances tend to zero. In the literature on factor 

analysis, this is known as the Heywood case (Lawley and 

Maxwell, 1971; Johnson and Wichern, 1998). In this situ-

ation, REML estimation using the average information 

algorithm (Gilmour et al., 1995) or other standard algo-

rithms is no longer possible.  

Thompson et al. (2003) presented a sparse imple-

mentation of the average information algorithm for 

REML estimation of  the factor analytic variance param-

eters. The algorithm is computationally efficient as ex-

ploits the regression underpinning the factor analytic 

model thereby facilitating substantial time savings. Ad-

ditionally, the (commonly occurring) case of factor ana-

lytic variance structures with less than full rank (reduced 

rank variance models) has been accommodated in the 

algorithm, which is useful in the multivariate analysis. 

The algorithm has been implemented in ASReml 

(Glimour et al., 2006) and can be accessed via the "XFA" 

variance model. 

 

Testing for pleiotropic QTL 

The first step is to fit model (6) where markers of the en-

tire genome are fitted simultaneously as random re-

gression genetic effects, considering two co-variance 

models for Gp (The diagonal co-variance model (DIAG) 

and the factor analytic model with one factor (FA1)). The 

DIAG model implies no marker co-variance between 

traits (that is, the traits are independent with heteroge-

neous variances). Since DIAG and FA1 are nested mod-

els, the REMLRT statistic, 2 (twice the log likelihood 

difference), can be approximated by the
2 distribution 

with the degree of freedom equal to the difference in 

the number of free parameters in the two nested mod-

els (Stuart et al., 1999). 

Rejection of the null hypothesis would provide sup-

porting evidence for the existence of either QTL that 

cause pleiotropic effects or multiple linked QTL. Under 

the null hypothesis of no pleiotropic QTL, since the 

markers are neutral, there should be no co-variance as-

sociated with markers. The alternative is that one or 

more QTL affecting two or more than two traits occur on 

the genome. Then, all of the marker co-variables in gen- 

 eral, and in particular, those closest to the QTL, will take 

up some of the co-variation caused by the QTL, thereby 

inflating the co-variance component of the random re-

gression term. Therefore, if a likelihood ratio test is sig-

nificant for a FA1 model for the trait by random regres-

sion marker effects, there is evidence for at least one 

pleiotropic QTL in the genome, this will be fitted as a 

fixed co-variate and the process continues. If there is no 

significant FA1 model for this term, then there is no evi-

dence of pleiotropic QTL, and the process is terminated. 

 

Locating the pleiotropic QTL 

Once the significance of co-variance for the marker ran-

dom regression is established by the factor analytic 

model, the next stage is to detect the most likely marker 

linked to the pleiotropic QTL. In order to locate plei-

otropic QTL, individual marker effects for individual traits 

and the factor are converted to LOD scores. The marker 

with highest LOD value for the factor is considered and 

based on the map information, a QTL co-variate is cal-

culated and added to the fixed effect part of the model 

(6) nested within traits. If there is only one pleiotropic 

QTL and its location is identified, the FA1 model for the 

marker co-variance will become non-significant in the 

presence of the QTL co-variate, confirming the location. 

However, the QTL co-variate may not remove all the 

marker co-variance leading to the need for further in-

vestigation. If there is another pleiotropic QTL, then the 

QTL co-variate may have explained a substantial 

amount of the marker co-variance, but the remaining 

marker co-variance will indicate the location of the sec-

ond pleiotropic QTL. A co-variate is added for the sec-

ond pleiotropic QTL and the process is repeated until 

the random marker co-variance becomes effectively 

zero (that is, non-significant FA1 model compared to the 

DIAG model). In this stage, only the QTL affecting indi-

vidual traits (that is, trait specific QTL) remain. In order to 

locate the trait specific QTL, the analysis is continued us-

ing the univariate whole genome marker analysis 

framework explained above, fitting the detected plei-

otropic QTL as fixed co-variates and testing the marker 

variance for that specific trait.       

To investigate the behavior of the approach, exten-

sive simulation studies were conducted. Four normally 

distributed quantitative traits were considered, each 

with a residual standard deviation of unity, with individ-

uals being assigned a random value from this distribu-

tion. The simulation design was based on: sample sizes 

of 125, 250, 500 and 750, a total chromosome number  
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of 8 with 6 markers for each chromosome, and an aver-

age marker distance of 20 cM and 1000 replications. In-

heritance of all loci was determined assuming random 

assortment and that recombination events occurred in-

dependently, allowing use of Haldane’s mapping func-

tion ( Haldane,1919). A total of 10 QTL were set (Table 1) 

for the whole genome. Among these QTL, there are two 

QTL with pleiotropic effects. Three sets of simulations for 

each population were generated, QTL with small effects, 

QTL with medium effects and QTL with large effects, in 

which each QTL (on average) explains 7, 10 and 13 %, re-

spectively, of the phenotypic variance in the backcross. 

Two QTL were set in repulsion phase on chromosome 6 

affected trait 2. Two QTL on chromosome 5 in coupling 

phase affected trait 1. Two QTL on chromosome 8 in 

coupling phase affected trait 4. One QTL in the centro-

meric position (first marker) of chromosome 2 and an-

other QTL in the telomeric end of chromosome 7 (last 

marker) both affected trait 2. 

 

Results 

Factor loadings and specific variances 

In terms of the trait by markers effects, a DIAG model 

and a factor analytic model with k=1 factor (denoted FA1) 

was fitted sequentially.  In the simulation study, the 

DIAG model had 4 parameters and the FA1 model had 8 

variance parameters (4 loadings and 4 specific variances 

for four traits). As the QTL size of effect increased the 

marker variance estimated from DIAG model for all four 

traits increased (Table 2).  In all cases, the marker vari-

ances for traits 1 and 2 were higher than those of traits 3 

and 4, a result which one would expect as the heritabil-

ity for these later traits was lower than that of the for-

mer. Since two pleiotropic QTL were simulated (QTL1 

and QTL3) for traits 1 and 3 and only one of them was 

considered to affect one of the traits 2 or 4 (QTL1 for trait 

4 and QTL3 for trait 2), the factor loadings on trait 1 and 

3 were higher than those for traits 2 and 4.  

Three specific QTL (QTL2, 6 and 7) were simulated for 

trait 2 and only one specific QTL was simulated for trait 

 3 (QTL8). This fact was reflected in their specific vari-

ances so that, in general, traits 2 and 3 had highest and 

lowest, respectively, specific variances among four traits 

(Table 2). It should be noted that in a few of the repli-

cates, the estimated marker variance using DIAG model 

for small populations and small QTL size was on the 

boundary for one trait; that is, it was estimated as zero. 

Also in some replicates, using the FA1 model led to zero 

estimation of specific variances for one or two traits 

when the sample size and QTL effect were small. 

 

Power of pleiotropy test  

Since the DIAG model is nested within the FA1 model, a 

direct comparison can be made using a REML likelihood 

ratio test. Herein, the power of the pleiotropic test is the 

chance of detecting a common factor (pleiotropic QTL) 

if that factor really exists. Thus, the power of the plei-

otropic test was defined as the number of analyses (out 

of 1000 replicates) resulting in a significant FA1 model 

compared with the DIAG model. The power of the test 

depended on sample size and QTL size of effect (Figure 

1). For a given QTL effect, as the population size in-

creased, the power of the test increased and there was 

low power when both QTL effect and sample size were 

small. A population size of 500 seems to be a critical 

limit, in which for the small QTL considered in the simu-

lation study, the test can reach up to 80% power.  

 

Power of QTL detection and false positives 

The power of the experiment was calculated as the av-

erage number of QTL detected divided by the number 

of QTL present. The results showed that the ability to 

detect QTL using both univariate and multivariate anal-

yses was strongly influenced by the QTL size of effect, 

and sample size so that the power to detect QTL im-

proved significantly with increasing sample size and QTL 

effect (Figure 2 and Tables 3-5). 

The overall power of detecting a QTL using the FA1 

model was generally higher than that obtained in the 

Table 1. Simulated pleiotropic and trait specific QTL 

  QTL1 QTL2 QTL3 QTL4 QTL5 QTL6 QTL7 QTL8 QTL9 QTL10 

  Chr1 Chr2 Chr4 Chr5 Chr5 Chr6 Chr6 Chr7 Chr8 Chr8 

Position (cM) 20 0 60 20 80 20 60 100 40 80 

Trait 1 PLTC  PLTC COUP# COUP#      

Trait 2  # PLTC   REPL# REPL#    

Trait 3 PLTC  PLTC     #   

Trait 4 PLTC        COUP# COUP# 

PLTC: Pleiotropic QTL. #: Trait specific QTL. COUP: Two linked QTL in coupling phase, REPL: Two linked QTL in repulsion phase 
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Table 2. Mean loadings (×10), and marker variances (×100) estimated for four traits 

and averaged over 1000 replicates 

QTL Effect Sample Size Trait 
FA1 model  DIAG model 

Loadings Specific variance  Marker variance 

Smalla 125 Trait1 0.61 0.35  0.78 

  Trait2 0.37 0.67  0.92 

  Trait3 0.59 0.18  0.59 

  Trait4 0.23 0.45  0.55 

 250 Trait1 0.59 0.35  0.73 

  Trait2 0.35 0.80  0.97 

  Trait3 0.61 0.18  0.58 

  Trait4 0.25 0.43  0.51 

 500 Trait1 0.59 0.34  0.71 

  Trait2 0.34 0.89  1.03 

  Trait3 0.61 0.18  0.57 

  Trait4 0.24 0.40  0.47 

 750 Trait1 0.60 0.34  0.71 

  Trait2 0.34 0.91  1.04 

  Trait3 0.61 0.18  0.56 

  Trait4 0.24 0.39  0.45 

Mediumb 125 Trait1 0.79 0.57  1.24 

  Trait2 0.46 1.27  1.60 

  Trait3 0.75 0.29  0.92 

  Trait4 0.29 0.70  0.82 

 250 Trait1 0.76 0.59  1.18 

  Trait2 0.45 1.43  1.68 

  Trait3 0.78 0.27  0.91 

  Trait4 0.30 0.65  0.76 

 500 Trait1 0.76 0.57  1.17 

  Trait2 0.44 1.53  1.74 

  Trait3 0.77 0.28  0.89 

  Trait4 0.31 0.61  0.71 

 750 Trait1 0.77 0.56  1.18 

  Trait2 0.44 1.56  1.76 

  Trait3 0.78 0.28  0.89 

  Trait4 0.31 0.59  0.69 

Largec 125 Trait1 0.99 0.91  1.95 

  Trait2 0.58 2.24  2.70 

  Trait3 0.92 0.44  1.36 

  Trait4 0.35 1.02  1.17 

 250 Trait1 0.98 0.92  1.89 

  Trait2 0.57 2.43  2.80 

  Trait3 0.95 0.42  1.35 

  Trait4 0.37 0.94  1.09 

 500 Trait1 0.97 0.93  1.91 

  Trait2 0.56 2.53  2.86 

  Trait3 0.95 0.41  1.33 

  Trait4 0.38 0.89  1.03 

 750 Trait1 0.98 0.95  1.93 

  Trait2 0.55 2.56  2.88 

  Trait3 0.96 0.41  1.32 

  Trait4 0.38 0.86  1.01 
a  Each QTL accounted for 7%  of phenotypic variation, b Each QTL accounted for 10% of pheno-

typic variation,c Each QTL accounted for 13% of phenotypic variation 
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Figure 1. Observed statistical power (proportion of replicates 

with significant (P<0.05) FA1 model compared with DIAG 

model) for the pleiotropy model test. 

  

  
Figure 2. Comparison of the power of univariate and multivariate (FA1) for QTL   by the number of QTL present. 

Legend: Small QTL +, Medium QTL ▲, Large QTL ●; Univariate analysis solid lines and multivariate dashed lines.  
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Table 3. The power of QTL detection (proportion of significant replicates over all 1000 replicates) and the probability of false 

QTL detected under univariate and multivariate analysis (Trait 1) 

QTL Effect 
Sample 

Size 
Model 

QTL        

      Pleiotropic a Linked b False QTL c 

1 3 4 5 One All One Two One Two Lk Uk Total 

Small 125 UNI d 5.6 6.4 9.7 9.2 24.6 0.1 11.1 0.9 16.9 2.0 2.1 0.8 2.9 

  FA1 e 28.4 32.6 11.6 11.4 58.2 0.7 48.0 13.0 20.7 2.3 4.2 3.0 7.2 

 250 UNI 53.4 50.5 60.2 57.7 95.2 11.0 76.4 27.5 83.6 34.3 8.8 2.2 11.0 

  FA1 83.2 85.3 58.2 55.8 99.3 25.3 96.6 71.9 81.0 33.0 10.7 6.0 16.7 

 500 UNI 78.7 79.5 82.0 81.2 99.8 42.2 95.2 63.0 97.2 66.0 2.2 0.1 2.3 

  FA1 95.4 96.3 78.9 80.3 57.8 100 99.8 91.9 95.5 63.7 1.7 1.0 2.7 

 750 UNI 95.5 95.8 96.5 96.0 100 84.8 100 91.3 99.8 92.7 0.6 0.1 0.7 

  FA1 99.5 99.7 94.8 96.2 100 90.3 100 99.2 99.9 91.1 0.8 0.2 1.0 

Medium 125 UNI 24.6 24.0 29.0 29.3 60.3 2.7 38.2 10.4 47.3 11.0 4.8 1.5 6.3 

  FA1 59.3 65.4 35.1 37.0 92.4 7.4 82.8 41.9 57.2 14.9 6.5 5.2 11.7 

 250 UNI 75.3 73.3 79.1 77.1 99.5 35.7 92.8 55.8 95.7 60.5 4.1 0.8 4.9 

  FA1 94.3 93.9 77.0 75.4 100 52.2 99.7 88.5 57.9 94.5 4.4 2.0 6.4 

 500 UNI 96.8 97.4 98.2 97.6 100 90.2 100 94.2 100 95.8 1.2 0.1 1.3 

  FA1 99.6 99.7 96.6 97.3 100 93.3 100 99.3 99.9 94.0 1.0 0.4 1.4 

 750 UNI 99.7 99.8 99.8 99.6 100 98.9 100 99.5 100 99.4 0.0 0.0 0.0 

  FA1 100 100 99.9 99.4 100 99.3 100 99.3 100 99.3 0.1 0.0 0.1 

Large 125 UNI 66.1 65.4 72.3 72.7 98.3 26.4 85.0 45.9 92.8 52.2 7.3 2.0 9.5 

  FA1 88.6 89.8 69.4 70.2 100 41.1 97.7 80.7 90.3 49.3 8.4 5.7 14.1 

 250 UNI 92.6 91.7 93.6 93.1 100 74.2 99.5 84.8 99.5 87.2 1.7 0.4 2.1 

  FA1 99.1 98.8 92.1 91.9 100 82.4 99.9 98.0 99.6 84.4 1.6 1.0 2.6 

 500 Diag 99.8 99.7 99.9 99.9 100 99.3 100 99.5 100 99.8 0.2 0.0 0.2 

  FA1 100 100 99.9 99.5 100 99.6 100 100 100 99.7 0.4 0.2 0.6 

 750 UNI 100 100 100 100 100 100 100 100 100 100 0.1 0.0 0.1 

  FA1 100 100 100 100 100 100 100 100 100 100 0.3 0.1 0.4 
a One: percentage of runs in which at least one of the four simulated QTL was identified, All: percentage of runs in which all four simulated 

QTL were identified, One pleiotropic: percentage of replicates in which at least one of the two simulated pleiotropic QTL was identified, Two 

pleiotropic: percentage of replicates in which both of the two simulated pleiotropic QTL were identified. b One linked: percentage of replicates 

in which at least one of the two simulated linked QTL was identified, Two linked: percentage of replicates in which both of the two simulated 

linked QTL were identified. c Lk: proportion of falsely chosen markers linked to QTL,  Uk: proportion of falsely chosen markers unlinked to 

QTL, Total false QTL: Lk plus Uk. d: univariate. e: Factor analytic model. 

univariate analysis. The power of QTL detection using 

the FA1 was 100% or was almost 100% when the relative 

QTL effect was large or a relatively large sample size was 

considered. The increasing power using the FA1 model 

was more evident when two pleiotropic QTL were af-

fecting the trait (Traits 1 and 3, Figure 2).  For the large 

sample size and large QTL effect, the two methods had 

relatively similar power to identify QTL.  

The main feature to be noticed (Tables 3-6) is the 

higher ability of the FA1 model compared to univariate 

analysis to detect QTL1 and QTL3, which were simulated 

to have common effect on the traits. Multivariate and 

univariate analyses were equally efficient in detecting 

trait specific QTL with large effects. However, trait spe-

cific QTL with small effect could only be detected with 

very low efficiency using both multivariate and univari-

ate analyses (Tables 3-6). In the case of the probability 

for false QTL detection, in general, both methods gave 

small likelihoods of finding false QTL. The highest likeli- 

 hood of detecting false QTL is for small sample size (Ta-

bles 3-6). 

In the situation where the two linked QTL were in 

coupling phase, for a few of the replicates, both meth-

ods tended to choose the marker between two correct 

markers, particularly when the sample size and QTL ef-

fect was small (Table 6). However, in the case of the two 

linked QTL in repulsion phase, declaring the middle 

marker as the correct marker rarely happened (Table 4).  

Both univariate and multivariate techniques chose a 

rather low portion of unlinked loci to a QTL. This effect 

was not evident with large sample sizes. Both ap-

proaches seem quite conservative, delivering only 

about 0-4.7% (univariate) and 0-7.1 % (FA model) of false 

positive unlinked loci.  

 

Discussion  

The most serious problem in multiple-QTL analysis  
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Table 4. The power of QTL detection (proportion of significant replicates over all 1000 replicates) and the probability of false QTL 

detected under univariate and multivariate analysis (Trait 2) 

QTL Effect 
Sample 

Size 
Model 

QTL       

      Repulsiona False QTL b 

2 3 6 7 One All One Two Mdl Lk Uk Total 

Small 125 UNI c 27.8 16.9 11.3 10.8 41.3 0.8 18.3 3.8 0.0 1.8 0.8 2.6 

  FA1 d 34.6 41.2 14.3 14.8 64.7 1.4 24.3 4.8 0.0 3.0 3.7 6.7 

 250 UNI 93.8 80.6 70.8 73.2 99.5 43.6 89.0 55.0 0.5 8.1 4.7 12.8 

  FA1 93.2 90.3 69.9 71.7 99.9 46.6 87.5 54.1 0.6 8.2 7.1 15.3 

 500 UNI 99.7 96.5 96.2 96.6 100 89.4 93.1 99.7 0.0 0.8 0.7 1.5 

  FA1 99.5 98.6 95.8 95.9 100 90.3 99.7 92.1 0.0 0.9 1.1 2.0 

 750 UNI 100 99.6 99.8 99.8 100 99.2 100 99.6 0.1 0.3 0.1 0.4 

  FA1 100 99.9 99.8 99.7 100 99.4 100 99.5 0.0 0.4 0.3 0.7 

Medium 125 UNI 60.6 45.0 35.9 34.9 71.9 12.9 50.3 20.5 0.0 3.4 1.0 4.4 

  FA1 73.8 74.6 45.4 44.1 95.3 17.7 62.4 27.1 0.0 3.5 2.6 6.1 

 250 UNI 99.1 94.5 91.6 91.7 100 78.7 98.8 84.5 0.3 3.1 2.3 5.4 

  FA1 99.0 97.3 91.2 91.6 100 80.8 98.7 84.1 0.2 2.8 3.8 6.6 

 500 UNI 100 99.9 99.9 100 100 99.8 100 99.9 0.0 0.4 0.3 0.7 

  FA1 100 100 99.9 99.9 100 99.8 100 99.8 0.0 0.3 0.5 0.8 

 750 UNI 100 100 100 100 100 100 100 100 0.0 0.1 0.0 0.1 

  FA1 100 100 100 100 100 100 100 100 0.0 0.1 0.0 0.1 

Large 125 UNI 96.5 88.5 83.4 81.6 99.9 62.0 94.3 70.7 0.3 6.3 3.0 9.3 

  FA1 95.6 94.0 82.7 81.3 99.9 63.0 94.6 69.4 0.2 6.8 3.9 10.7 

 250 UNI 100 99.5 98.8 98.9 100 97.2 100 97.7 0.2 1.2 1.4 2.6 

  FA1 100 99.7 98.7 98.8 100 97.3 100 97.5 0.3 1.1 2.0 3.1 

 500 UNI 100 100 100 100 100 100 100 100 0.0 0.1 0.0 0.1 

  FA1 100 100 100 100 100 100 100 100 0.0 0.1 0.1 0.2 

 750 UNI 100 100 100 100 100 100 100 100 0.0 0.1 0.0 0.1 

  FA1 100 100 100 100 100 100 100 100 0.0 0.1 0.0 0.1 
a One: percentage or runs in which at least one of the four simulated QTL was identified, All: percentage of runs in which all four simulated QTL 

were identified, One repulsion: percentage of replicates in which at least one of the two simulated linked QTL in repulsion phase was identified, 

Two repulsion: percentage of replicates in which both of the two simulated linked QTL in repulsion phase were identified, Mdl: percentage of 

replicates in which the marker between two linked QTL was chosen. b Lk: proportion of falsely chosen markers linked to QTL,  Uk: proportion of 

falsely chosen markers unlinked to QTL, Total false QTL: Lk plus Uk. c : Univariate. d Factor analytic model. 

 

comes from the model selection, which has been the 

focus of many QTL-mapping studies (Kao et al., 1999; 

Ball, 2001; Piepho and Gauch, 2001; Sen and Churchill, 

2001; Broman and Speed, 2002; Xu, 2003; Glimour, 

2007; Verbyla et al., 2007). The whole genome marker 

analysis approach, developed and used herein, is clearly 

a model selection strategy fitting relatively few models 

when compared with other methods. The method fo-

cuses first on the null hypothesis of no QTL in the ge-

nome (the variance component for the distribution of 

size of QTL is zero) and only after rejecting the null hy-

pothesis, it is concluded that there is an evidence for 

QTL and then the QTL are located. The REML likelihood 

ratio test statistic (REMLRT) allows a genome-wide as-

sessment of significance of the QTL.  

Genome-wide searches for loci influencing quantita-

tive traits are often plagued by low power and interpre-

tive difficulties. Attempts to remedy these difficulties  

 have typically relied on, and have promoted the use of, 

larger sample sizes, a greater density of molecular 

markers, and more-sophisticated statistical modelling. 

Many of these remedies can be costly to implement. In 

addition, as pointed out by Broman and Speed (2002), 

more sophisticated methods may not necessary lead to 

improved estimates. There have been numerous publi-

cations that address the power issue in QTL mapping. 

For example, it has been reported that multivariate ap-

proaches can increase the power of the test and the pre-

cision of parameter estimates (Jiang and Zeng, 1995; 

Korol et al., 1995; Gilbert and Le Roy, 2004; Meuwissen 

and Goddard, 2004). Meta-analysis of results from dif-

ferent studies (Allison and Heo, 1998; Wood et al., 2006) 

or joint analysis of the original data (Walling et al., 2000) 

are other strategies that have been proposed to im-

prove QTL mapping resolution. By exploiting a multipli-

cative mixed model approach, the present study has ad- 
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Table 5. The power of QTL detection (proportion of significant replicates over all 1000 replicates) and the probability of false QTL 

detected under univariate and multivariate analysis (Trait 3) 

QTL Effect 
Sample 

Size 

 

Model 

QTL      

     Pleiotropic a False QTL b 

1 3 8 One All One Two Lk Uk Total 

Small 125 UNI c 5.9 6.4 13.3 21.8 0.1 11.3 1.0 1.2 0.6 1.8 

  FA1 d 32.6 36.6 14.5 61.1 2.7 55.2 14.0 2.9 3.1 6.0 

 250 UNI 53.2 54.2 73.3 91.2 23.7 76.8 30.6 4.7 2.0 6.7 

  FA1 84.9 88.0 67.8 99.0 51.8 97.0 75.9 6.1 4.0 10.1 

 500 UNI 80.7 79.9 95.3 99.6 63.1 94.8 65.8 0.9 0.1 1.0 

  FA1 98.1 97.6 92.1 100 88.7 95.7 92.1 1.1 1.0 2.1 

 750 UNI 96.0 94.2 99.3 100 90.0 99.7 90.5 0.4 0.0 0.4 

  FA1 99.9 99.4 99.1 100 98.5 100 99.3 0.2 0.8 1.0 

Medium 125 UNI 22.8 18.9 36.4 51.6 4.4 7.3 34.4 2.7 1.1 3.8 

  FA1 61.7 65.6 40.3 90.6 16.9 85.4 41.9 3.0 2.2 5.2 

 250 UNI 71.1 72.3 90.1 98.1 49.0 90.4 53.0 2.7 1.2 3.9 

  FA1 94.1 96.3 84.5 100 76.5 99.7 90.7 2.3 2.6 4.9 

 500 UNI 97.1 96.4 99.7 100 93.5 99.7 93.8 0.5 0.1 0.6 

  FA1 100 99.9 99.3 100 99.2 100 99.9 0.3 0.5 0.8 

 750 UNI 99.8 98.7 100 100 98.5 100 98.5 0.0 0.0 0.0 

  FA1 100 100 100 100 100 100 100 0.0 0.4 0.4 

Large 125 UNI 56.5 55.1 77.7 91.2 29.4 77.0 34.6 5.3 2.4 7.7 

  FA1 86.7 88.6 69.6 99.0 54.6 97.7 77.6 6.0 2.0 8.0 

 250 UNI 84.9 87.7 98.4 99.9 73.9 98.0 74.6 1.4 0.3 1.7 

  FA1 98.9 98.9 96.2 100 94.2 100 97.8 1.1 0.9 2.0 

 500 Diag 99.5 99.6 99.9 100 99.0 100 99.1 0.2 0.0 0.2 

  FA1 100 100 99.9 100 99.9 100 100 0.1 0.1 0.2 

 750 UNI 100 100 100 100 100 100 100 0.0 0.0 0.0 

  FA1 100 100 100 100 100 100 100 0.0 0.1 0.1 
a One: percentage or runs in which at least one of the three simulated QTL was identified, All: percentage of runs in which all three simulated QTL 

were identified, One pleiotropic: percentage of replicates in which at least one of the two simulated pleiotropic QTL was identified, Two pleiotropic: 

percentage of replicates in which both of the two simulated pleiotropic QTL were identified. b Lk: proportion of false chosen markers linked to QTL,  

Uk: proportion of false chosen markers unlinked to QTL, Total false QTL: Lk plus Uk. c: Univariate. d: Factor analytic model. 

dressed these two views to improve the power of QTL 

identification.  

When modelling multiple trait or multiple trials, it is 

important to avoid over-parameterization, especially in 

small experimental populations used for QTL detection 

(Sillanpaa and Corander, 2002). As Piepho (2000) sug-

gested, to avoid over- parameterization, a certain vari-

ance-co-variance structure was imposed. The specific 

multiplicative model considered herein was the factor 

analytic model. This provided a parsimonious model 

specification to limit the number of parameters to be es-

timated. The proposed approach considered an un-

structured co-variance model for the residuals for traits 

and fitted a FA1 and a DIAG model sequentially for the 

interaction terms (trait by marker term, family by marker 

interaction or trait by family by marker interaction). Con-

sidering the correlations among QTL effects at a single 

gene are either +1 or −1 as suggested by Goddard (2001), 

a factor analytic model is more appropriate structure for 

a pleiotropic QTL. The aim of fitting FA1 structure for trait  

 by marker effects was to account for the genetic 

marker co-variances among p traits in terms of an un-

known factor. Because the model was fitted within a 

mixed-model framework, the importance of the co-var-

iance due to the markers could be formally tested using 

a comparison of a model assuming no marker correla-

tion (the DIAG model) and a model assuming marker 

correlation (the FA1 model). The DIAG model was nested 

within the FA1 model. Therefore, residual maximum like-

lihood ratio tests could be used to compare these mod-

els. This provided a formal test for common QTL (across 

families) or pleiotropic QTL effects. An extensive simula-

tion study was undertaken to investigate the power of 

the pleiotropy test. The results indicated that the test 

was robust when the QTL size or sample size were high. 

However, there was a relatively low power to detect a 

QTL with small pleiotropic effects or in small popula-

tions.  

Multiplicative models have been popularized (Cullis 

et al., 1998; Smith et al., 2001; Thompson et al., 2003;  
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Table 6. The power of QTL detection (proportion of significant replicates over all 1000 replicates) and the 

probability of false QTL detected using univariate and multivariate analysis (Trait 4) 

QTL Effect 
Sample 

Size 
Model 

QTL       

     Couplinga False QTLb 

1 9 10 Onec Allc One Two Mdl Lk Uk Total 

Small 125 UNI e 3.0 5.4 6.1 12.8 0.0 10.8 0.7 0.6 1.4 0.4 1.8 

  FA1f 14.8 8.0 8.3 26.7 0.2 15.1 1.2 1.3 2.2 2.9 5.1 

 250 UNI 32.0 50.0 47.5 79.5 8.7 73.1 24.4 4.7 7.6 1.1 8.7 

  FA1 61.1 48.9 47.9 88.8 13.7 73.7 23.1 5.4 8.7 2.1 10.8 

 500 UNI 57.5 69.4 68.9 95.8 29.6 91.4 46.9 0.5 0.7 0.3 1.0 

  FA1 78.2 69.3 68.2 97.9 38.1 90.4 47.1 0.7 0.8 1.0 1.8 

 750 UNI 81.2 86.7 86.5 99.8 60.4 99.2 74.0 0.4 0.7 0.0 0.7 

  FA1 93.2 87.3 87.4 100 70.7 99.4 75.3 0.5 0.8 0.5 1.3 

Medium 125 UNI 11.0 19.8 18.8 39.0 0.9 34.1 4.5 1.2 2.2 1.1 3.3 

  FA1 34.8 25.6 24.2 62.9 2.7 43.7 6.1 2.2 3.6 3.2 6.8 

 250 UNI 48.4 62.3 61.3 90.9 20.2 85.7 37.9 2.6 4.0 0.6 4.6 

  FA1 74.2 61.5 62.4 95.8 28.9 85.7 38.2 2.9 4.1 2.3 6.4 

 500 UNI 84.3 90.3 90.2 100 69.0 99.4 81.1 0.5 0.5 0.1 0.6 

  FA1 93.9 89.8 90.3 100 76.2 99.2 80.9 0.6 0.6 0.5 1.1 

 750 UNI 95.6 97.0 97.8 100 90.8 100 94.8 0.3 0.4 0.0 0.4 

  FA1 98.8 96.8 97.8 100 93.5 100 94.6 0.3 0.4 0.1 0.5 

Large 125 UNI 37.2 54.3 54.0 86.1 11.7 80.0 28.3 4.0 7.6 2.4 10.0 

  FA1 61.5 53.8 53.8 91.1 19.2 77.9 29.7 4.5 8.7 2.3 12.0 

 250 UNI 67.6 77.4 76.5 99.0 39.8 96.1 57.8 1.2 1.3 0.1 1.4 

  FA1 86.1 75.2 75.6 99.4 48.3 95.1 55.7 1.7 1.7 1.5 3.2 

 500 Diag 94.6 97.6 96.3 100 88.9 100 93.9 0.2 0.2 0.0 0.2 

  FA1 98.6 97.4 95.9 100 92.0 100 93.3 0.2 0.2 0.1 0.3 

 750 UNI 100 99.8 99.9 100 99.7 100 99.7 0.0 0.1 0.0 0.1 

  FA1 100 99.8 99.9 100 99.7 100 99.7 0.1 0.2 0.0 0.3 
a One: percentage or runs in which at least one of the three simulated QTL was identified. b All: percentage of runs in which 

all three simulated QTL were identified. c One coupling: percentage of replicates in which at least one of the two simulated 

linked QTL in coupling phase was identified, Two coupling: percentage of replicates in which both of the two simulated 

linked QTL in coupling phase were identified, Mdl: percentage of replicates in which the marker between two linked QTL 

was chosen. d Lk: proportion of false chosen markers linked to QTL,  Uk: proportion of false chosen markers unlinked to QTL, 

Total false QTL: Lk plus Uk. e: Univariate. f: Factor analytic model. 

Smith et al., 2005) in the analysis of plant variety trials to 

model genotype by environment interactions in the 

analysis of the data from multi-environment trials. The 

key aims of a multi-environment trial analysis are to pro-

vide accurate and precise estimates of overall variety 

performance and to aid with the interpretation and un-

derstanding of variety by environment interaction 

(Smith et al., 2001). However, in multiplicative modelling 

of the trait by marker interaction herein, both common 

and specific factors are of interest. From a breeding 

point of view, common factors (loci with pleiotropic ef-

fects) are important in order to implement an indirect 

selection program that is getting a response to selection 

for a trait by selecting on a correlated trait instead. This 

is particularly the case when the heritability for the sec-

ondary trait is smaller (Falconer and Mackay, 1996) or 

when the secondary trait is difficult or expensive to 

measure. In addition, knowledge about such loci can be  

 very important for animal breeders who, for example, 

would like to dissociate the positive correlation between 

birth weight and carcass weight. Also knowledge about 

trait-specific genes is important in the case where a 

breeding objective is to change one trait without affect-

ing other traits. 

Specific variances for individual traits sometimes 

need to be constrained to zero. If more than one trait 

must be constrained in this way, the factor analytic var-

iance structure then has less than full rank so that the 

use of standard information-based estimation tech-

niques (e.g. average information algorithm, Gilmour et 

al. (1995)) is precluded. In the current research, a sparse 

implementation of the average information algorithm 

developed by Thompson et al. (2003) was used. The ad-

vantage of the algorithm is that convergence for FA 

models is fast and estimation of parameters in the re-

duced ranked models is possible. It should be noted  
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that, in practice, for a few replicates the occurrence of 

zero specific variances was observed for one or two 

traits, which means that the marker effect for the trait 

was completely determined by the multiplicative part of 

the model or it was too small to be detected. Also Smith 

et al. (2001) reported this for multi-environment trial 

data in Australia.  

The simulation study to examine the multitrait multi-

ple QTL approach contained several situations including 

some cases, which could present difficulties for a QTL 

analysis. These cases included QTL near the ends of the 

chromosome (two QTL), QTL in coupling phase (QTL 

with loose linkage and QTL with relatively tight linkage), 

QTL in repulsion phase (two QTL), and pleiotropic QTL 

(two QTL). The simulation results showed the general 

behavior and performance of the method with respect 

to these situations. 

Multiple trait QTL analysis should increase the power 

of detection, and hence, increase the significance of a 

QTL if the QTL is not a false positive result (Jiang and 

Zeng, 1995; Korol et al., 1995; Mangin et al., 1998; 

Henshall and Goddard, 1999; Knott and, Haley 2000). In 

terms of the number of QTL correctly identified, the FA1 

model performed better than the univariate analysis, 

though it was only slightly better than univariate analy-

sis for large QTL sizes and large populations. Apart from 

the issue of power, it is important to understand the na-

ture of a genetic correlation between traits, which can 

provide relevant information for selection decisions. In 

this regard, the key advantage of FA1 over univariate 

analysis is that it provides a formal test for pleiotropic 

effects. The superior performance of multivariate analy-

sis was due largely to its ability to detect the QTL with 

common effect on different traits. If the pleiotropic 

model is the correct one, it would be expected that fit-

ting this model would give highest power and smallest 

standard deviations especially for location, as in this 

case, a number of traits are being used to estimate the 

same parameter (Jinag and Zeng, 1995; Knott and Haley 

2000). 

The situation was considered where pleiotropic QTL 

had the same effect on different traits. In general, mul-

titrait analysis will have a greater benefit when a QTL has 

small effects on one trait and the same QTL has greater 

effect on another trait (Sorensen et al., 2003) or when 

the pleiotropic effects of the QTL differ substantially 

from the most frequently observed effects of the envi-

ronment and background genes, which is reflected by 

the environmental and background genetic correlations 

(Meuwissen and Goddard, 2004). 

 The power of the FA1 model compared to the univari-

ate analysis was more evident when the pleiotropic ef-

fect was small. In general, a pleiotropic locus, too small 

to be detected by single-trait analyses, can be detected 

with the help of a multitrait analysis (Mangin et al., 

1998).  

With respect to false QTL detection, in general, both 

the univariate and multivariate methods chose a rather 

low portion of linked or unlinked loci to a QTL. In the 

simulation study herein, a relatively sparse marker den-

sity was considered. However, a high marker density 

may increase the likelihood of choosing linked false 

markers.      

The proposed method herein is a one-stage process, 

which models residuals and genetic effects simultane-

ously. In addition, it includes all the markers in one anal-

ysis. Moreover, the approach utilizes widely available 

statistical procedures, namely the linear mixed model 

and restricted maximum likelihood. It can easily accom-

modate co-variates, extra sources of variation, fixed or 

random including polygenic effects and it can easily be 

generalized to experimental and crossing designs com-

monly used. 

Only four traits were considered in the simulation 

data set. However, the model, as formulated in equation 

(6) is obviously expandable to an unlimited number of 

phenotypes. However, the behavior of the approach us-

ing very dense marker maps needs to be investigated. 

The fact that the same variance for the total markers of 

the entire genome is used is problematic, since the ma-

jority of the markers will not be linked to the QTL and 

they may dominate the estimate of the marker vari-

ance/co-variance. Consequently, the estimate of the 

genome variance/co-variance will be close to zero. It 

should be noted that the extra markers on a chromo-

some would not dilute the marker variance associated 

with the chromosome because they also have co-vari-

ances between them.  However, adding extra chromo-

somes may dilute the genome variance, as most of the 

linkage groups are not linked to the QTL.  Therefore, one 

solution is to allow the markers of the same linkage 

group have common variance. The extension of this ap-

proach to the multivariate analysis would be removing 

the linkage groups with non-significant variance for the 

traits of interest, then those traits that had non-zero var-

iances for a chromosome were combined and the factor 

model fitted across the chromosome instead of the ge-

nome. 

Correlations among phenotypes can arise from sev-

eral different causal processes, which may have differ- 
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ent implications for the power and performance of the 

multivariate linkage analysis. Obviously, further studies 

using the approach suggested herein for multitrait QTL 

mapping that specifically consider different situations 

should be undertaken. Furthermore, the efficiency of 

the model to distinguish between a pleiotropic QTL and 

closely linked QTL affecting different traits is another 

area that needs more investigation. 
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