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ABSTRACT. In this study, the concept of an inverse matrix including fuzzy number
elements is extended. Such a concept may be performed in the modeling of uncertain
and imprecise real-world problems. The problem of finding a fuzzy inverse matrix
is converted to a problem to solve a system of fuzzy polynomial equations. Here,
a fuzzy system is transformed to an equivalent system of crisp polynomial equa-
tions. The solution to the system of crisp polynomial equations is calculated using
‘Wus method and a criterion is introduced for invertibility of a fuzzy matrix (FM). In
addition, an algorithm is proposed to calculate the fuzzy inverse matrix. The most
important advantage of the presented method is that it achieves whole inverse entries
of an FM simultaneously. In the end, we provide some illustrative examples to show
the efficiency and proficiency of our proposed algorithm.
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1. Introduction

In the situation of happening fuzzy uncertainty in a real-world problem, we see
those fuzzy matrices are effectively implemented. We have been witness of the popu-
larity of fuzzy matrices in the recent decades [14,25-27,39]. In matrix theory, the gen-
eralized theory of fuzzy inverse matrix has an outstanding position [6,7]. Thomasan
worked on the convergence of powers of fuzzy matrices in 1977 [32]. Kim and
Roush [29] proposed a systematic expansion of the theory of FM. They also presented
algorithms to calculate the inverse of an FM and generalized inverse of an FM. The
principal concept of the present paper is the term fuzzy matrix having at least two
different meanings in the literature. If a;; € [0,1], (1 = 1,2,...,m;j = 1,2,...,n),
matrix A = (a;j)mxn in the first class is known as an FM. The details of them first
expressed in [29] and appeared by fuzzy relations. Afterwards, this theme has been of
much interest [9, 14,23,31]. For instance, Hashimoto [23] used the operator of Godel-
implication and shown some important features of the fuzzy matrices sub-inverses of
the first class. Also, their regularity properties was introduced by Cho [9] in 1999.
The authors in [5, 13,24] called a matrix including fuzzy number entries as an FM.
Since the arithmetic structure is complicated, the investigation of another class is ig-
nored. To find a fuzzy inverse matrix consisting of fuzzy numbers of the type LR,
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Basaran introduced a method in 2012 [1]. In a fuzzy case, computation of inverse
of a matrix needs to solve the n X n by n X n equation system(ES) in which all the
values of right-hand side, unknowns, and coefficients are fuzzy numbers. During solv-
ing such an ES, the author introduced concepts of the fuzzy one and the fuzzy zero
numbers. According to those, the author also defined the fuzzy identity matrix and
he used it to calculate the fuzzy inverse matrix approximation. In the computing of
the inverse approximation of an FM by his method, should be pay attention to one
thing. Generally, the solution of a built FLES depends on the parameter unless the
extension values of the fuzzy identity matrix are determined before. In addition, one
can directly find the inverse of an FM via fixing the extension values of the fuzzy iden-
tity matrix. On one hand, the decision-maker can choose “the best solution” among
them when the system is parametrically solved. On the other hand, in the case of not
being interested in multiple solutions, one can fix the extensions to be for example
0.5. Next, the researcher decides to find the inverse of an FM. Mosleh and Otadi [30]
showed that the inverse approximation of an FM proposed by Basaran in [1] is not
correct. In addition, we proposed an eigenvalue technique to obtain the fuzzy inverse
matrix [16]. In this paper, our main focus of attention will be on this class of fuzzy
matrices. In the recent research works, calculating inverse and invertibility investigat-
ing of square interval matrices have been more interesting topics. In the current work,
an approach on the base of Wu’s method introduced to obtain the fuzzy inverse matrix.
Wu’s method proposed by Wen-Tsun Wu who is a Chinese mathematician in the late
1970s to solve multivariate polynomial equations [35]. This technique is on the base
of mathematical concept of characteristic set (CS) which J.F. Ritt first introduced in
the late 1940s. Some smooth algorithms have been developed for zero decomposition
of arbitrary systems of polynomials by Wu Wen-Tsun whose Ritts theory has been
notably improved since 1980 [34,36]. Many problems in engineering, economics and
science have successfully used the Ritt-Wu’s method [38]. This method is completely
independent of the method of Grobner basis which was proposed in 1965 by Bruno
Buchberger, even if bases of the Grobner may be implemented to calculate the CSs. It
is also more widely used than the method of Grobner basis in practice since it is com-
monly more efficient [8,20,28]. Using the algorithm of Wu for solving the systems of
polynomial equations leads to solving sets of characteristic. When these kind of sets
have the structure of triangle, one can easily calculate the variety of them. Since the
first equation of a system with triangular structure has only one variable, its solving is
easy. Therefore, a common method may be used to obtain the root of this polynomial
of one variable. Firstly, we find the root of the first equation. Then, we substitute it
into the second polynomial equation of two variables which lead to compute its solu-
tion. This procedure will be continued till achieving all solutions of the system like
the forward substitution.

In this way, a bridge between finding fuzzy inverse matrix and the CSs variety is
made. The main idea of our method for finding fuzzy inverse matrix is transforming
an FM into a crisp system of polynomial equations. The numerical approaches to
solve a polynomial equations system have some disadvantages as follows:
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e Knowing being positive or negative of the solutions is necessary in the meth-
ods. Unless, the methods cannot be used.

e It is not easy to determine an appropriate initial point for these methods.

e Only some approximate solutions can be found in these methods.

e There is not any necessary and sufficient conditions or criteria to distinguish
whether the solution of the fuzzy systems exists in these methods.

e We do not know the number of solutions for the fuzzy systems by these meth-
ods.

o If there is not any solutions for the fuzzy systems, then these methods lead to
misleading.

Nevertheless, the existing methods have the aforementioned disadvantages. To tackle
such disadvantages, we are interested in presenting a new technique on the base of
the Wu’s Method. By using the algorithm of Wu, the crisp system variety is obtained.
Therefore, all solutions of the crisp system can be found as elements of the inverse
of the FM. The significant merit of our method is that it achieves total entries of the
inverse of an FM, simultaneously. Moreover, we propose a criteria according to Wu’s
technique for FM invertibility.

The remaining of the paper is structured as follows. Section 2 has two subsections.
In the first subsection, we present some necessary definitions and results of fuzzy
numbers. In the next subsection, the Wu’s algorithm is introduced. Our proposed
method to calculate the inverse of an FM is given in Section 3. In addition, a criteria is
presented for when an FM has inverse. Moreover, an efficient algorithm is suggested
to calculate the inverse of an FM. Section 4 contains some illustrative examples to
demonstrate the proficiency and efficiency of the proposed algorithm. In the end,
Section 5 concludes the paper.

2. Preliminaries

We divide this section into two subsections. The first one contains an introduction of
preliminaries on fuzzy matrices, fuzzy numbers, and fuzzy arithmetic. The next sub-
section also introduces the main concepts regarding Wu’s algorithm and polynomials.
2.1. Fuzzy background.

We review some required notation and background of the theory of fuzzy sets in this
subsection.

The class of fuzzy numbers is denoted by F, i.e. upper semicontinuous, convex,
compactly supported, and normal fuzzy subsets of the real numbers. For the following
definitions, consider @ as a fuzzy number.

Definition 2.1. [30] @ is called an LR fuzzy number if

L(¥z) z <wu,a>0,

i(z) = "
R(“”%“) x>u,B>0,
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in which « denotes the left spread, 3 presents the right spread, u denotes the mean
value of 4, and the function L(.), which is said to be left shape function, satisfies
(1) L(x) is non increasing on [0, 00).
(2) L(0) =1and L(1) = 0.
(3) L(z) = L(—x).
The definitions of L(.) and right shape function R(.) are usually similar.

The @ = (u,«, 8)Lr is symbolically shown for the shape functions, left spread
and right spread, and the mean value of an LR fuzzy number «. In L R representation,
the L and R as reference functions are linear, and the fuzzy numbers of triangular are
fuzzy numbers. The fuzzy number « is said to be a symmetric fuzzy number when «
and (3 are the spreads [13].

Definition 2.2. The u is said to be negative (positive), represented by u < 0 (u > 0),
if u(xz) = 0,Vx > 0(Vz < 0) satisfied with its membership function u(x)

Definition 2.3. Consider ¢ = (v,v,0) and @ = (u, o, 3) as two fuzzy numbers of
LR type then

(1) —U = —(’LL, O‘?ﬂ)LR = (—’LL, ﬁa a)LR~

2 wev=(u,a,B)Lr © (v,7,0)Lr = (u —v,a + 0,8+ 7)LR-

(3) uhv= (uaa76)LR D (U?’Y76>LR = (U+’U,Oé+’)/7,8+6)LR.

Definition 2.4. For the fuzzy numbers v and @ as given in Definition 2.3, the multi-
plication of them is defined as follows:

u®0=(u,a,8)Lr ® (v,7,0)Lr = (wv,my + na,mdé +nb)Lr
for @, ¥ positive;

®0=(u,o,B)Lr ® (v,7,0)Lr = (uv, —vB — ud, —va — wy)LR

m
u, ¥ negative, and

for

uRU= (ua Q, 5)LR ® (’U, s 5)LR = ('U/U, v — U57 Uﬂ - U’Y)LR
for v positive, u negative.

Remark 2.5. The resulting fuzzy number is an approximated result.

Definition 2.6. The Scalar multiplication of two fuzzy numbers % and v given in Def-
inition 2.3 is defined as follows:

~ (/\m, A, )\B)LR A>0,
AQ = { (N, =B, —Aa)Lr A <0,

Definition 2.7. When [a1, az] be the support of a fuzzy number, then a fuzzy number
is said to be positive if 0 < a; < ao. Similarly, a fuzzy number is said to be negative
if a1 < az < 0. Finally, a fuzzy number is said to be zero if a; < 0 < as.

The authors in [12,13] introduced an FM as a rectangular array of fuzzy numbers. The
authors in [11] defined a formal definition of FM as below:
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Definition 2.8. If each element of A = (a; ;) is a fuzzy number, we say that matrix A
is an FM.

Also, let A = (a;;) and B = (b;;) be two fuzzy matrices of orders m x n and
n X p, respectively. The product order of two fuzzy matrices is m X p and is given as
below:
A® B=C= (&),

where ¢;; = Z?Zl 0k ® Bkj in which approximated multiplication denoted by .

In the same manner, an FM A consists of the right spread, the left spread, and center
parts only as a fuzzy number. We can write its parametric form as below:

A = (A7 L7 R)’

in which L denotes the left spread, R represents the right spread, and A denotes the
center which are crisp matrices. Also, their sizes are the same [11]. For more details
of basic properties of Fuzzy matrices one can refer to [39].

2.2. Wu’s Algorithm and Varieties. In this subsection, we introduce the algorithm

of Wu and its relation with varieties. Consider I' = K][z1, ..., z,] as the polynomial
ring over a field K of characteristic zero in n variables. We assume the variables
Z1,...,%, ordered so that x; < x; for i < j. If we select the variable x,,, then one

can write a polynomial f € I as a univariate polynomial in variable z,, as follows:
f=nLat, + Lzl 4+ I,
where ¢ is the degree of f regarding ., and is represented by deg, (f), we have
I e KlZ1, ooy Tine1, Tty -« - 5 Tnr),

for 0 < i < t. The leading coefficient I, is represented by lc(f, x,,). The class(f) is
the class of f and is known as the greatest subscript ¢ of x appearing in f. The class
of a constant function is zero. The z.. is leading variable and lc(f, z.) is called the
initial of f, which are represented by lv(f) and ini(f), respectively.

Definition 2.9. Let g € T" be a polynomial. g is said to be reduced regarding f if
deg, (g) < deg,_(f) where class(f) = c # 0.

Definition 2.10. If a polynomial g is reduced regarding any f € F, then g is reduced
regarding F* C T.

A partial order of polynomials can be defined as below:

Definition 2.11. For given f, g € I', when one of the below statements holds:

(1) deg, (f) < deg, (9),
(2) class(f) < class(g) and
(3) c=class(f) = class(g),

the polynomial ¢ has a higher rank than f and represented by g > f
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Definition 2.12. If deg, (f) = deg, (g9) and class(f) = class(g) = c or both
polynomials are constant, then we have the equivalence of two polynomials f and g
and we denote it by f ~ g.

Definition 2.13. A triangular set is an ordered polynomial set F' = {f1, fo,..., fr}
such that either class(f1) < class(f2) < -+ < class(f,) orr = 1.

Definition 2.14. F as a triangular set is said to be a set of ascending if f; is reduced
regarding f; for i < j.

Here, we extend the partial order of polynomials to create a partial order for the
sets of ascending.

Definition 2.15. Let two ascending sets F' = {f1,..., f-}and G = {g1,..., gk}, we
say F' < G if one of the below statements:

(1) Thereis j < min{r, k} such that f; ~ g; fori < j, but f; < g;,

2) r>kand f; ~ g; foralli <k,
holds.

For sets of ascending and incomparable F' and G, we can write F' ~ G.

Lemma 2.16. [37] An ascending sequence of sets with a steady lowering order is
finite.

By Lemma 2.16, there exists the set of ascending with the lowest rank which con-
sists of polynomials selected from the F' and is said to be a basic set of F'. In the
polynomial set there are two basic sets with the same cardinality. Using Theorem 4.11
of [15], we can build the following algorithm to compute a basic set of the polynomial
set.

Algorithm 1 ALGORITHM OF BASIC SET

Require: [ as a non-empty subset of I
Ensure: B as a basic set of ' which
i. B is an empty set
ii. While F' is not an empty set, Do
ii.1. B be the union of B and {b} in which b is a polynomial with the
minimal rank in F,
i9.2. F'is the set of f € F'in which f is reduced regarding b,
iii. Return B

Lemma 2.17. [37] Consider a polynomial set F' and B as a basic set of it. If g € T is

reduced regarding F, so there exists a basic set of the union of F' and g having lower
rank than F.

Now, we introduce a division algorithm which is called the pseudo-division for
multivariable polynomials. The Wu’s algorithm will use this algorithm.
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Proposition 2.18. [10] Consider f and g in T and class(f) = c. So, the following
equation exists
I'g=qf +r,

wherem > 0, q,r € T, I. = ini(f) as well as either r = 0 or r is reduced regarding

f.

The polynomials ¢ and r in the above proposition are respectively the pseudo-
quotient of g on its pseudo-division by f (when m is not minimal, it is not unique) and
the pseudo-remainder prem(g, f). By the below algorithm we can compute the the
pseudo-quotient and pseudo-remainder prem(g, f):

Algorithm 2 ALGORITHM OF PSEUDO-DIVISION

Require: gand fin T
Ensure: ¢ pseudo-quotient and r pseudo-remainder of g on its pseudo-division by f
i. Consider ¢ :=0andr :=g
ii. While r is not equal to 0 and deg,, () > deg,, (f) where z. = lv(f) Do
)fxfeg””c (r)—dega.(f)

1.2, q:=initial(f)q — le(r, xc)xgeg“(r)_deg“(f)

iii. Return 7, ¢

it.1. r=dnitial(f)r — le(r, x.

Suppose that g € I'and F' = f4, ..., f, be an ascending set. The successive pseudo-
divisions as below

R = prem(...prem(prem(g, fT)7 fT—l)) sy fl)a
can be used to obtain the below remainder formula:
M I Irg = aifi+ R,

where I; = ini(f;), s; = 0, ¢; € T and R is reduced regarding F'. If each s; chosen to
be small enough, then R is unique and represented by prem(g, F'). For a finite subset
G from I, we consider prem(G, F') to be

{prem(g, F) | g € G}
Let (F) as an ideal generated in I" by F'.
Definition 2.19. Consider F' C I'. Then, the variety defined by F' is the set
V(F)={(a1,...,an) € K" | f(a1,...,a,) =0, forall fe F}.

Definition 2.20. Suppose that G C IT" be a polynomial set, then the quasi-algebraic
variety defined as V(F/G) = V(F)\V(G).

Definition 2.21. ACS of ) # F C TI'is an ascending set B in I" such that prem(F, B) =
{0} and B C (F).
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Similar to the procedure stated in [34], the below algorithm can help us to compute
aCS.

Algorithm 3 ALGORITHM OF CHARACTERISTIC SET

Require: F' as a non-empty subset of I
Ensure: B as a characteristic subset of I’
i S:=F
ii. Select B as a basic set of S
iii. In the case prem(F, B) is not equal to {0}
iti.1. S := prem(F, B) U S\{0}
113.2. Go to step ii
iv. Return B

In the following theorem, the most important properties of the CSs are summed up.

Theorem 2.22. [34] (Well-ordering Principle of Wu) Consider B as a CS of F' C T..
Then
V(F) =V(B/Ip)| JUsesV (F U B U{ini(b)})
where Ip = [[,c g ini(b).
The main key in the Algorithm of Wu for the computation of varieties is the fol-
lowing corollary.

Corollary 2.23. Using again of the Well-ordering Principle Theorem of Wu, b € B,
B U F U {initial(b)}, after a finite number of steps the procedure will end. Hence,
one can obtain V(F') as a union of several finite numbers of V(B/Ig) as varieties.

Proof. This can be proved regarding Lemmas 2.16 and 2.17.

The algorithm of Wu is used on the base of Well-ordering Principle Theorem of
Wu to provide all needed CSs for calculating V (F).

Algorithm 4 ALGORITHM OF WU

Require: F' as a nonempty subset of I,
Ensure: Z, as a set of CSs in which I = [],cpini(b) and V(F) =
UBeZ V<B/IB)’
i. Let D:={F}and Z := 0,
ii. While D is not an empty set Do
ii.a. Choose F' as an element of D
ii.b. Let D as D\{F'}
ii.c. Select B asaCS of F'
i1.d. In the case B is not equal to {1} then
ii.d.1. Let Z as Z U {B}

. Returl-4-2- LetDasD UUses{F UBU {ini(b) | ini(b) # 1}}
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The V(F’) can be written as a union of quasi-algebraic variety of CSs using Wu’s
algorithm. Therefore, V (F') can be found easily since the solving of these sets are
easy. Now, by the following example we will illustrate Wu’s algorithm to solve a
polynomial system.

Example 2.24. Consider F' = {z +y + xy,z + y + xy?}, for y < = we apply Wu’s
algorithm to F. Let F” := F, therefore D = (). B = {y®> — y?, 2 +y + a2y} is a CS.
Also, Z := {B}. In addition, ini(z +y + xy) = y + 1 and ini(y* — y*) = 1, hence,
D :={{y+1}UF'}. Next, let " := {z+y+a2y,v+y+ay? y+1}. Now, D = ()
and {1} is a CS of F”. So, the outputis Z = {{y® —y*,x +y + 2y}} and

1

V) =V{y’ —v* 2 +y+ay)\Vy+1) ={(z =0,y =0), (e = =5,y =)},

3. Calculating the fuzzy inverse matrix

In this section, we first present several necessary definitions to assist the computation
of the inverse of an FM. Therefore, a novel method is proposed for calculation of the
inverse of an FM on the base of Grobner basis benefits.

Definition 3.1. We say that a fuzzy number is fuzzy one number if its left and right
spread value is € where 0 < e < 1 and ¢ is sufficiently small and its center value is 1.
It is denoted by 1 = (1, ¢).

We can clearly see that the spread value € is the values between 0 and 1. Then, for a
fuzzy one number the end points of the right and left change between 1 + ¢ < 2 and
0 < 1 — e. Moreover, the below definition is similar for fuzzy zero numbers.

Definition 3.2. We say that a fuzzy number is a fuzzy zero number if its left and right
spread value is & where 0 < ¢ < 1 and 4 is small enough and the value of its center is
0. It is denoted by 0 = (0, 9).

Then, for a fuzzy zero number the end points of the right and left change between
0+ 9 < land —1 < 0 — 4. By the above definitions, we can define fuzzy identity
matrix as below:

Definition 3.3. We say that an FM is a fuzzy identity matrix if the off-diagonal and
the diagonal elements of an FM are respectively fuzzy zero and one numbers. It is
denoted by [ as follows:

1 ... 0
0 ... 1

Now, we are ready to present a new method on the base of using the Grobner basis to
calculate the fuzzy inverse matrix.
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Definition 3.4. Suppose that A and X are fuzzy matrices of LR type with the size of
n which are given as below:
dll &171 i‘ll jjln
A=| 0 X =
Gp1 - Gpp Tpl -ov Tpn
where both a;; and z;;, 4,7 = 1,2, ..., n are triangular fuzzy numbers. Therefore, the
inverse of A exists which is X, if

2) Ao X =1.
We can rewrite the expression given in equation (2) as follows:
i ... ain F11 ... T 1 ... 0
: N T T
Ani -+ Gnn Tpl oo T 0 ... 1
where a;; = (aij,bij, cij)s Tij = (Tij, wij, 2i5)s 4, = 1,2,...,nand 1 = (1,¢),

0= (0,96).

Then, the matrix multiplication is rewritten in the form of FLES as follows:
(@1 @ Z15) @ (Bio @ T2i) D oo ® (Ain @ i) =1 i=1,2,...,7,
3) ]
(ail (24 5?1]') D (aiQ X .i’gj) D...D (EL”L (24 :f?n]) =0 =1 75] =1,2,...,n.
The ES in (3) can be written as follows:
)
((@s1, b1, ¢i1) @ (w14, w14, 214)) B - D ((@ins bin, Cin) @ (Tni, Wni, 2ni)) = (1,6,€) 1=1,2,...,n,
((@s1,bi1, ¢i1) ® (w15, w15, 215)) B .. ® ((@in, bin, Cin) ® (Tngj, Wnj, 2nj)) = (0,8,0) 1#j=1,2,...,n,

where we have the sufficiently small values of € and 6.

The system of equations (4) will be split into two separate ESs namely center and
spread parts ESs, respectively. We can write the center part as below:

(&)

ai1T1; + aioTo; + ... + QinTpi = 1 1=1,2,....n,

115 + ApT25 + ... + AinTp; =0 1£7=1,2,....n.

Consider F' = { f1, fa, ..., fan} as a polynomials set in the system (5) and z; ( for
1,7 = 1,2,..,n ) is a variables set appearing in f;’s which ordered as x11; < x12 <
e < Ty < T91 < Tog < n < Xop < e < Tt < Tpo < ... < Tpy. Therefore,
every CS of F'in the ring R = R[z;;] (for4,j = 1,2, ..,n ) has a triangular structure.
Then, we can obtain all the solutions of system (5) by using Wu’s method. If we solve
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the center part, then we can obtain the spread part of the ES given in (3) with regard
to Definition 2.4, and sing of variables x;; (for4,j =1,2,..,n).

Theorem 3.5. Matrix A is invertible if and only if the set of CSs for system (5) is
nonempty set.

Proof. Let F' be the polynomials set in System (5). Next, if Z is not an empty set, then
V' (F) will not be an empty set, therefore every member of V' (F') known as a solution
of equations system (3). Another side is trivial and the proof of theorem is completed.
Now, according to the above discussions the calculation process of the inverse of an
FM has been given in the below algorithm:

Algorithm 5 THE CALCULATION PROCESS OF A FUZZY INVERSE MATRIX

Require: FM A of type LR with the size of n
Ensure: Inverse of FM A
[i] Calculate the FLES (3) allowing the calculation of inverse of the matrix A
[ii] Calculate the center part ES (3) i.e. F
[iii] Calculate a set of CSs Z for F'
[iv] If Z = () then go to 8
[v] Calculate the variety V' of Fie. V(F) = Ugc, V(B/IB), where Ip =
[, ini(b) as the values of the variables of the center part ES (3)
[vi] Calculate the spread part ES i.e. F
[vii] Calculate the variety V of F' i.e. V(F') = Upc, V(B/Ip), where I =
[I,c  ini(b) as the values of the variables of the spread part ES
[viii] FM A of type LR is not invertible
[ix] End

4. Numerical examples

The efficiency of our proposed method is shown by two numerical examples in this
section. All used fuzzy numbers throughout this section are fuzzy numbers of sym-
metric triangular form for the sake of simplicity.

Example 4.1. [1] Consider the below 2 x 2 FM consisting of fuzzy numbers of sym-
metric triangular form:
Ao | (10.4) (8,3)
(6,2) (4,3) |

To calculate the fuzzy inverse matrix A, the real case is considered then it is expanded
to the fuzzy case as below:

(o &8 To[m o)1

= O
—_
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where all unknowns Z;; are represented by (x;;, w;;) for ¢, j = 1, 2. Then, the matrix
multiplication is rewritten in form of an FLES as follows:

((10,4) ® &11) @ ((8,3) ® T21) = (1,9),
(10,4) ® T12) @ ((8,3) ® F22) = (0, ),
(6 2) ®:L'11 &b ((473) ® -%21) - (0,0[),
(6 2) ®.’E12 D ((4,3) ® i’22) = (1,5)

We write the above ES for the given example as below:

((1 4)® (5811,1011)) (( ,3)®(le,w21)) ( ) )
(10,4) ® (xlz,wm)) ((8,3) ® (w22, w22)) =
(6,2) ® (z11, w11)) @ E (4,3) ® (x21,w21)) = (0, )7
(6,2) ® (212, w12)) ® ((4,3) ® (22, w22)) = (1,6).

By using the approximate fuzzy multiplication, the center part is written as follows:

10z11 + 8x21 =1,
101‘12 + 8%22 = 0,
6211 + 4x91 = 0,
6x12 +4x22 = 1,

The set of CSs for the above system using Wu'’s algorithm is

Z = {2’1 = {2],‘11 +1,4291 — 3,212 — 1,4w99 + 5}}

According to Theorem of Well-ordering Principle of Wu, we have

V(F) = (V(21)\V(a)) = (V(21)\V(32)).
Then, the values of the variables are: x1; = —0.5, 91 = 0.75, 215 = 1, 295 = —1.25.
Hence, we have the spread part of the ES as below:

10wy — 4211 + 8way + 321 =0,

jo 10w19 4 4x12 + Swaz — 3722 =
") 6wir — 2x11 + 4war + 3221 = o
6’11]12 + 21’12 + 4’(1)22 - 3%22 =9.

The set of CSs for F’ using Wu’s algorithm is
7= {21 = {8wi1+9+46—8, —8wio—15—4a+8, T—8wa1 —10a-+66, —11+8w22+105—6a}}.

According to Theorem of Well-ordering Principle of Wu, we have

V(F') = (V(2)\V(a)) = (V(21)\V(4096)).

Therefore, the solution of system F’ "is
w1 = 79/84’0[ — 1/25,

Wo1 = 7/8 — 5/4a + 3/4(5,

W12 = —15/8 + o — 1/20[,
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It should be noted that the values of w;; are obtained on the base of ¢ and « parameters
unless they are specified beforehand. Also, because of the fuzzy number definition of
LR type, the LR type fuzzy numbers’ spread values cannot be negative. In the case
of being negativity of the spread values, we should take the absolute values of them.

€,0 w11 W21 w12 W22

0.01 -1.365 1.2375 -1.3800 0.7570
0.1 -1.275 1.1250 -1.4250 0.8250
0.2 -1.175 1.0000 -1.4750 0.9000
0.3 -1.075 0.8750 -1.5250 0.9750
04 -0975 0.7500 -1.5750 1.0500
0.5 -0.875 0.6250 -1.6250 1.1250
0.6 -0.775 0.5000 -1.6750 1.2000
0.7 -0.675 0.3750 -1.7250 1.2750
0.8 -0.575 0.2500 -1.7750 1.3500
0.9 -0475 0.1250 -1.8250 1.4250

The computations associated to Example 4.1.

For example, if & = § = 0.5 then we write the inverse of A as below:

[ (-05,0.8750)  (1,1.6250)

_[ (0.75,0.6250) (—1.25,1.1250) |

j-1_ | (=05, | —0.8750]) (1,|— 1.6250]|)
N (0.75,0.6250) (—1.25,1.1250)

Unfortunately, all elements of the X were considered as positive in [1] and the in-
verse of A was obtained, obviously all calculations as well as this inverse are incorrect.
Since, being negativity of elements of the X have not been considered. But Basaran
in [1], assert that the inverse of A at « = § = 0.5, is given by

i-1_ (—0.5,0.88) 1,2.13)
(0.75,1.63) (—1.25,2.57) |-
Example 4.2. Consider the following 2 x 2 FM consisting of fuzzy numbers of sym-
metric triangular form:
[y G
(1,6) (3,7) |

The system of equations which allows computing the inverse of an FM Ais given as

below:
e en el -]

Ot

= O
1
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Then, the matrix multiplication is rewritten in the form of FLESs as follows:

(1,2) @ 211) @ ((3,4) ®5C21) = (1,9),
(1,2) @ #12) @ ((3,4) ® F22) = (0, ),
(1,6) X x11) D (3,7) ®i’21) = (O,Ck),
((1,6) ®$12) S5 ((3, 7) ® 1’22) = (1,5)

The above ES can be written for the given example as follows:

(1,2) @ (z11,w11)) @ ((3,4) ® (w21, w21)) = (1,6),
(1,2) ® (212, w12)) @ ((3,4) ® (222, w22)) = (0, ),
(1,6) ® (gcu,wu)) (3,7) ® (w21, w21)) = (0, ),
((1, 6) (xu,wlg)) ((3, 7) X ("E227U/22)) = (1,5)

By using the approximate fuzzy multiplication, the above ES is equivalent to the fol-
lowing system:

Z11 + 3x21 = 1,
T12 + 322 = 0,
211 + 3221 = 0,
Z12 + 3x22 = 1,

Then, Z = () is the Wu’s algorithm output. Thus, there is not any solution for the
system. Therefore, the FM is not invertible due to the Theorem 3.5.

5. Conclusion

The present paper proposed a new approach based on Wu’s method to find the inverse
of an FM including the LR type fuzzy numbers. Instead of calculating the inverse
matrix problem, we solved a polynomial ES in fuzzy case for which all unknown
variables, right-hand side values and coefficients are fuzzy numbers. The elegance of
the given technique lies in its independence to a suitable starting point. We discussed
the sufficient and necessary condition for invertibility of the FM. Numerical examples
support the competencies of the proposed algorithm to calculate the inverse of an
FM. For the future work, we will find inverse of an FM with other efficient algebraic
methods as well as numerical methods such as artificial neural networks.

6. Acknowledgement

We would like to thank the reviewers for their thoughtful comments and efforts
towards improving our manuscript.

References

[1] Basaran, M.A., Calculating fuzzy inverse matrix using fuzzy linear equation system, Applied Soft
Computing, Vol. 12, (2012), 1810-1813.

[2] Basiri, B., Faugere, J.-C., Changing the ordering of Grbner bases with LLL: case of two variables, In:
Proceedings of ISSAC, ACM Press, New York, (2003), 23-29.



Finding Fuzzy Inverse Matrix Using Wu’s Method — JIMMRC Vol. 10, No. 1 (2021) 5 1

[3] Becker, T., Weispfenning, V., Grobner Bases, Springer-Varlag, New York, 1993.

[4] Buchberger, B., Grobner bases : an algorithmic method in polynomial ideal theory. R. P. Company,
Ed. Bose, 1985.

[5] Buckley, J.J., Qu, Y., Solving systems of linear fuzzy equations, Fuzzy sets and systems, Vol. 43,
(1991), 33-43.

[6] Cen, J., Fuzzy matrix partial orderings and generalized inverses, Fuzzy Systems and Mathematics,
Vol. 105, (1999), 453-458.

[7] Cen, J., On Moore-Penrose Inverses of Fuzzy Matrices, Fuzzy Systems and Mathematics, Vol. 19,
(2005), 66-70.

[8] Chou, S., Gao, X., McPhee, N., A Combination of Ritt-Wu’s Method and Collins’ Method, Technical
report, Austin, Texax, USA, 1989.

[9] Cho, H.H., Regular fuzzy matrices and fuzzy equations, Fuzzy sets and systems, Vol. 105, (1999),
445-451.

[10] Cox, D., J. Little, J., O’Shea, D., Ideal, Varieties, and Algorithms: An introduction to computational
algebra geometry and commutative algebra, third edition, Springer-Varlag, New York, 2007.

[11] Dehghan, M., Hashemi, B., Ghatee, M., Computational methods for solving fully fuzzy linear systems,
Applied Mathematics and Computation, Vol. 179, (2006), 328-343.

[12] Dubois, D., Prade, H., Systems of linear fuzzy constrains, International Journal of Systems Science,
Vol. 9, (1978), 613-626.

[13] Dubois, D., Prade, H., Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York,
1980.

[14] Ebadi, M. J., Suleiman, M., Ismail, F. B., Ahmadian, A., Shahryari, M. R., Salahshour, S., A new dis-
tance measure for trapezoidal fuzzy numbers, Mathematical Problems in Engineering, 2013:424186.

[15] Elias, J., Automated geometric theorem proving:Wu’s method, The Montana Mathematics Enthusiast,
Vol. 3, (2006), 3-50.

[16] Farahani, H., Ebadi, M. J., Jafari, Hossein Finding inverse of a fuzzy matrix using eigenvalue method,
International Journal of Innovative Technology & Exploring Engineering, Vol. 9, No. 2, (2019), 3030-
3037.

[17] Farahani, H., Mishmast Nehi, H., Paripour, M., Solving fuzzy complex system of linear equations
using eigenvalue method, Journal of Intelligent & Fuzzy Systems, Vol. 31, (2016), 1689-1699.

[18] Faugere, J.-C., A new efficient algorithm for computing Grobner bases (F4), Journal of Pure and
Applied Algebra, Vol. 139, (1999), 61-88.

[19] Faugere, J.-C., A new efficient algorithm for computing Grobner bases without reduction to zero (
F5), Proceedings of ISSACS, T. Mora, Ed., ACM Press, 2002.

[20] Gao, X., Hou, X., Tang, J., Cheng, H., Complete solution classification for the perspective-three-point
problem, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 25, (2003), 930-943.

[21] Gao, S., Guan, Y., Volny IV, F,, A new incremental algorithm for computing Grobner bases, Pro-
ceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ISSAC’ 10,
ACM, (2010), 13-19.

[22] Gao, S., Volny IV, E, Wang, M., A new framework for computing Grobner bases), Mathematics of
Computation, Vol. 85, (2016), 449-465.

[23] Hashimoto, H., Subinverses of fuzzy matrices, Fuzzy sets and systems, Vol. 12, (1984), 155-168.

[24] Ismail, H.N., Morsi, N.N., Fuzzy rank of a fuzzy matrix, Fuzzy sets and systems, Vol. 41, (1991),
243-249.

[25] Jafari, H., Malinowski, M.T., Ebadi, M.J., Fuzzy stochastic differential equations driven by fractional
Brownian motion, Advances in Difference Equations, 2021, 16 (2021).

[26] Jafari, H., Ebadi, M.J., Malliavin calculus in statistical inference: Cramer-Rao lower bound for fuzzy
random variables, Journal of Decisions and Operations Research , Vol. 5, No. 2, (2020), 124-132,

[27] Jamali, N., Sadegheih, A., Lotfi, M.M., Wood, Lincoln C., Ebadi, M.J., Estimating the Depth of
Anesthesia During the Induction by a Novel Adaptive Neuro-Fuzzy Inference System: A Case Study,
Neural Processing Letters, Vol. 53, (2020), 131-175.



52 H. Farahani and M. J. Ebadi

[28] Jin, M., Li, X., Wang, D., A new algorithmic scheme for computing characteristic sets, Journal of
Symbolic Computation, Vol. 50, (2013), 431-449.

[29] Kim, K.H., Roush, EW., Generalized Fuzzy matrices, Fuzzy sets and systems, Vol. 4, (1980), 293-315.

[30] Mosleh, M, Otadi, M., A discussion on "Calculating fuzzy inverse matrix using fuzzy linear equation
system”, Applied Soft Computing, Vol. 28, (2015), 511-513.

[31] Pang, C.T., Simultaneously controllable fuzzy matrices, Computers and Mathematics with Applica-
tions, Vol. 50, (2005), 1647-1658.

[32] Thomasan, M.G., Convergence of powers of fuzzy matrix, Journal of Mathematical Analysis and
Applications, Vol. 57, (1977), 476-480.

[33] Zadeh, L.A., Fuzzy sets as a basis of possibility theory, Fuzzy Sets and Systems, Vol. 1, (1978), 3-28.

[34] Wen-Tsun, W., Basic principles of mechanical theorem proving in geometrics, Journal of Systems
Sciences and Mathematical Sciences, Vol. 4, (1984), 207-235.

[35] Wen-Tsun, W. On the decision problem and the mechanization of theorem-proving in elementary
geometry, Contemporary Mathematics, Vol. 29, (1984), 213-234.

[36] Wen-Tsun, W. Mathematics Mechanization: Mechanical Geometry Theorem-Proving, Mechanical
Geometry Problem-Solving and Polynomial Equations-Solving, Mathematics and Its Applications,
Beijing b Science Press, London, 2001.

[37] Wen-Tsun, W., Gao, X. Automated reasoning and equation solving with the characteristic set method.,
Journal of Computer Science and Technology, Vol. 21, No. 5, (2006), 756-764.

[38] Wen-Tsun, W., Gao, X. Mathematics mechanization and applications after thirty years, Frontiers of
Computer Science in China, Vol. 1, No. 1, (2007), 1-8.

[39] Zuzeng, P., Yunyu, S., Fuzzy Mathematics and Its Applications. . Wuhan University Press, Wuhan,
2002.

HAMED FARAHANI
DEPARTMENT OF MATHEMATICS
CHABAHAR MARITIME UNIVERSITY
CHABAHAR, IRAN

E-mail address: farahani@cmu.ac.ir

M. J. EBADI
DEPARTMENT OF MATHEMATICS
CHABAHAR MARITIME UNIVERSITY
CHABAHAR, IRAN

E-mail address: ebadi@cmu.ac.ir



