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ABSTRACT. In this paper we classify proper Lk-biharmonic hypersurfaces M , in
the unit Euclidean sphere should have two principal curvatures and we show that
they are open pieces of standard products of spheres. Also we study proper Lk-
biharmonic compact hypersurfaces M with respect to tr(S2 ◦Pk) and Hk where S
is the shape operator, Pk is the Newton transformation and Hk is the k-th mean cur-
vature of M , and by definiteness assumption of Pk , we show that Hk+1 is constant.
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1. Introduction and Statement of Results

Harmonic and biharmonic maps are critical points of energy and bienergy function-
als, equivalently these maps are solutions of PDE systems when tension and bitension
fields are zero, respectively, [20, 22]. In [5, 8, 9], We have generalized these func-
tionals and the notions of tension and bitension fields to introduce Lk-harmonic and
Lk-biharmonic maps. We recall that the natural generalization of the Laplace opera-
tor is the Lk operator, [26, 27], which is the linearized operator of the (k + 1)th mean
curvature of a hypersurface for k = 0, . . . , n− 1, when k = 0, L0 = ∆.

Let ϕ : Mn → Rm be an isometric immersion from a Riemannian manifold Mn

into the Euclidean space Rm, by the Beltrami formula ∆ϕ = n ~H , so ϕ is harmonic if
and only if M is minimal, i.e., ~H = 0, where ∆ is the Laplace operator on M , and ~H
is the mean curvature vector field ofM . Inspired by this result, B.Y. Chen in [14] made
the conjecture: Any biharmonic submanifold of a Euclidean space is minimal. Several
authors have proved it in some cases (cf. [1, 16, 18, 19, 21]). Chen conjecture has
also been generalized as follows [13]: Any biharmonic submanifold of a Riemannian
manifold of nonpositive sectional curvature is minimal. This conjecture has been
proved in numerous cases as in [2, 10, 13, 23, 24]. Both conjectures are still open in
their full generality for ambient spaces with constant non-positive sectional curvature.
On the other hand, Y-L. Ou and L. Tang in [25] have shown that the Generalized
Chen conjecture is false, by constructing foliations of proper biharmonic hyperplanes
in a 5-dimensional conformally flat space of negative sectional curvature. By way of
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contrast, there are several families of examples of proper biharmonic submanifolds in
the n-dimensional unit Euclidean sphere Sn (cf. [11]).

Let ϕ : Mn → Rn+1 be an isometric immersion from a connected oriented Rie-
mannian manifold into the Euclidean space Rn+1 withN as the unit normal direction.
We have, [3],

(1) Lkϕ = (k + 1)

(
n

k + 1

)
Hk+1N,

where k = 0, · · · , n − 1 and Hk+1 is (k + 1)th mean curvature of M . When k = 0,
above equation reduces to ∆ϕ = nH1N = n ~H which is the Beltrami equation.
Inspired by Chen conjecture, we proposed the Lk-conjecture: Every Euclidean hyper-
surface ϕ : Mn → Rn+1 satisfying the conditionL2

kϕ = 0 for some k, 0 ≤ k ≤ n−1,
has zero (k + 1)th mean curvature, namely it is k-minimal. We have proved the
Lk-conjecture in case of Euclidean hypersurfaces with at most two principal curva-
tures, [7], and also in case of space forms with three principal curvatures we consider
it in [6]. Hereafter we have generalized the notions of tension and bitension fields to
introduce Lk-harmonic and Lk-biharmonic maps (see below Definition 2.1 and Def-
inition 2.2). By splitting of the Amin-bitension field with respect to its normal and
tangent components we get the following characterization:

Theorem 1.1 ( [8]). Let M be a connected, oriented isometrically immersed Rie-
mannian hypersurface in a simply connected space form Rn+1(c), c = 0,±1. Then
M is Lk-biharmonic hypersurface if and only if the following equations are satisfied:(

n

k + 1

)
Hk+1∇Hk+1 + 2(S ◦ Pk)(∇Hk+1) = 0 ,

LkHk+1 −
(

n

k + 1

)
Hk+1 (nH1Hk+1 − (n− k − 1)Hk+2 − c(k + 1)Hk) = 0.

(2)

Hereby we generalized the Lk-conjecture for hypersurfaces of simply connected
space forms as follows:

Lk-conjecture 1.2 ( [8]). Let ϕ : Mn → Rn+1(c), c = 0,±1, be a connected oriented
hypersurface immersed into a simply connected space form Rn+1(c). If M is an Lk-
biharmonic hypersurface, then Hk+1 is zero.

For c = 0,−1, the Lk-conjecture is proved in some cases as hypersurface M
has two principal curvatures, or M is weakly convex, or M is complete with some
constraint on it and on Lk, and it is shown that there is not any Lk-biharmonic hy-
persurface Mn in Hn+1 with two principal curvatures of multiplicities greater than
one, [8].

For the case c = +1, the Lk-conjecture is false by considering hypersurface
Sn(

√
2
2 ) in the n-dimensional unit Euclidean sphere Sn, so Sn(

√
2
2 ) is proper (Hk+1 6=

0) Lk-biharmonic hypersurface. It leads us to the following characterization of proper
totally umbilic hypersurfaces in the unit Euclidean sphere.
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Remark 1.3 ( [8]). Let Mn be a connected totally umbilic isometrically immersed
hypersurface in Sn+1. Then M is proper Lk-biharmonic hypersurface if and only if it
is an open piece of Sn(

√
2
2 ).

We extend this result to hypersurfaces having two distinct principal curvatures and
we show that they are open pieces of the standard products of spheres (Theorem 1.4
and Theorem 1.5). Because of differentiation of proofs, in Theorem 1.4, we consider
hypersurfaces having two distinct principal curvatures with both multiplicities greater
than one, and in Theorem 1.5, we consider hypersurfaces having two distinct principal
curvatures with both multiplicities 1 and n− 1, in the unit Euclidean sphere Sn.

Theorem 1.4. Let Mn be an isometrically immersed Riemannian hypersurface in
Sn+1 having two distinct principal curvatures both with multiplicities greater than
one. Then M is proper Lk-biharmonic hypersurface if and only if it is an open piece
of Sm( 1√

α2+1
)× Sn−m( α√

α2+1
) where m ≥ 2, n−m ≥ 2, α > 0, and α satisfy the

following equations:

(3)
∑
i

(
m

i

)(
n−m
k + 1− i

)
(−α2)i 6= 0 ,

(4) (k + 2)

(
m

k + 2

)
(−α2)k+1 − (n− k)

(
m

n− k

)
(−α2)m+k−n

+
∑

i 6=k+2,m+k−n

[
−m+

n−m
α2

− (k + 2)(n+ i−m− k − 1)

(k + 2− i)α2

− (n− k)(k + 1− i)
(n+ i−m− k)

](
m

i

)(
n−m
k + 1− i

)(
−α2

)i
= 0 .

Theorem 1.5. Let Mn be an isometrically immersed Riemannian hypersurface in
Sn+1 having two distinct principal curvatures with multiplicities 1 and n − 1. Then
M is proper Lk-biharmonic hypersurface if and only if it is an open piece of S1(

√
2
2 )×

Sn−1(
√
2
2 ) where n 6= 2(k + 1).

Remark 1.6. In [10], it is shown that the only proper biharmonic hypersurfaces having
at most two distinct principal curvatures in Euclidean sphere Sn+1 are open pieces of
Sn(

√
2
2 ) or Sm(

√
2
2 ) × Sn−m(

√
2
2 ) where n 6= 2m that we see it by Remark 1.3,

Theorem 1.4 and replacing k = 0 in equations (3) and (4).

Easily by considering k = 1 in Remark 1.3, Theorem 1.4 and Theorem 1.5, we get
the following result for proper L1-biharmonic hypersurfaces which has at most two
principal curvatures.

Corollary 1.7. The only proper L1-biharmonic hypersurfaces in Sn+1 which has
at most two distinct principal curvatures are open pieces of Sn(

√
2
2 ) or Sm(

√
2
2 ) ×

Sn−m(
√
2
2 ) where n 6= 4m+1±

√
8m+1

2 . Especially the only proper L1-biharmonic
surfaces in S3 are open pieces of S2(

√
2
2 ) or S1(

√
2
2 )× S1(

√
2
2 ).
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In the following we shall study the proper Lk-biharmonic compact hypersurfaces
with respect to tr(S2◦Pk) andHk and by assuming definiteness of transformation Pk,
we show that Hk+1 is constant. The following results is an extension of Propositions
3.12 and 3.13 in [11] for proper Lk-biharmonic hypersurfaces.

Proposition 1.8. Let M be a compact and proper Lk-biharmonic hypersurface in
Sn+1. If Hk+1 is nowhere zero on M and tr(S2 ◦ Pk) ≥ (n − k)

(
n
k

)
Hk or tr(S2 ◦

Pk) ≤ (n−k)
(
n
k

)
Hk , then tr(S2 ◦Pk) = (n−k)

(
n
k

)
Hk. In addition, if Pk is definite

then Hk+1 is constant.

Proposition 1.9. Let M be a compact and proper Lk-biharmonic hypersurface in
Sn+1. If Pk is positive definite and tr(S2 ◦ Pk) ≥ (n − k)

(
n
k

)
Hk , or that Pk is

negative definite and
tr(S2 ◦ Pk) ≤ (n − k)

(
n
k

)
Hk , then tr(S2 ◦ Pk) = (n − k)

(
n
k

)
Hk and Hk+1 is

constant.

2. Preliminaries

We recall the prerequisites from [3, 8, 15, 26]. Let ϕ : Mn → Rn+1(c) be an
isometric immersion from a connected oriented Riemannian manifold Mn into the
simply connected Riemannian space form Rn+1(c) of constant sectional curvature c
which is the Euclidean space Rn+1 for c = 0 and the Hyperbolic space Hn+1 for
c = −1 and the Euclidean Sphere Sn+1 for c = +1, <,>g

M
the induced Riemannian

metric on M by ϕ, N the unit normal vector field, ∇ and ∇ the Levi-Civita con-
nections on M and Rn+1(c), respectively. For simplicity we also denote the induced
connection on the pullback bundle ϕ∗TRn+1(c) by ∇. Let X,Y be vector fields on
M . We have the following formula for the shape operator of M ,

dϕ(SX) = −∇XN .

The shape operator S : X (M) → X (M) is a self-adjoint linear operator. Let
k1, . . . , kn be its eigenvalues which are called principal curvatures of M . Define
s0 = 1 and

sk =
∑

1≤i1<···<ik≤n

ki1 · · · kik .

The k-th mean curvature of M is defined by(
n

k

)
Hk = sk .

For k = 1, H1 = 1
n tr(S) is the mean curvature of M . If M has two principal

curvatures, we denote them by

k1 = · · · = km = f, km+1 = · · · = kn = g ,
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By assumption that
(
l

r

)
= 0 if r > l or r < 0, we can write sk as

(5) sk =
∑
i

(
m

i

)(
n−m
k − i

)
f igk−i .

The Newton transformations Pk : X (M) → X (M) are defined inductively by
P0 = I and

Pk = skI − S ◦ Pk−1 , 1 ≤ k ≤ n.
From the Cayley-Hamilton theorem, one gets that Pn = 0. Each Pk is a self adjoint
linear operator which commutes with S.

We recall that the natural generalization of the Laplace operator is the Lk operator,
[17, 26, 27], which is the linearized operator of the (k + 1)th mean curvature of a
hypersurface for k = 0, . . . , n− 1, and it is defined by

Lkf = tr(Pk ◦ ∇2f) ,

where∇2f is metrically equivalent to the Hessian of f and is defined by
〈
(∇2f)X, Y

〉
g
M

= 〈∇X(∇f), Y 〉g
M

for all vector fieldsX,Y ∈ X (M), and∇f is the gradient vector
field of f .

Here we recall following useful properties of the shape operator and the Newton
transformation Pk to be used later. Let X,Y be tangent vector fields on M , then we
have

(∇XS)Y = (∇Y S)X (Codazzi equation),
divPk = 0,(6)

tr(S2 ◦ Pk) = s1sk+1 − (k + 2)sk+2 .(7)

Here we mention definition of Amin-tension field and Amin-Lk operator and then
Lk-biharmonic map introduced in [8].

Definition 2.1. The Amin-tension field of ϕ is defined by

(8) Ak(ϕ) =
∑
i,j

Pk ij
(
∇eidϕ(ej)− dϕ(∇eiej)

)
where {ei}ni=1 is a local orthonormal frame field on M and Pk ij = 〈Pk(ei), ej〉. For
a vector field V ∈ X (ϕ), the Amin-Lk operator is defined by:

(9) L̄kV =
∑
i,j

Pk ij
(
∇ei∇ejV −∇∇ei

ejV
)
.

One can see that in local coordinates {xi} for M , {yα} for Rn+1(c), g
M

= (g
Mij

)
and ϕ = (ϕα), the Amin-tension field has the following expression:

Ak(ϕ) =

(
Lkϕ

γ + gii
′

M
gjj
′

M

〈
Pk(

∂

∂xi
),

∂

∂xj

〉
g
M

∂ϕα

∂xi′
∂ϕβ

∂xj′
Γ
γ

αβ ◦ ϕ
)

∂

∂yγ
◦ ϕ ,

where Γ
γ

αβ’s are Christoffel symbols of the Levi-Civita connection∇.
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Definition 2.2. The map ϕ is an Lk-biharmonic if it satisfies the following equation:

L̄k(Ak(ϕ)) + Pk ijR̄(Ak(ϕ), dϕ(ei))dϕ(ej) = 0 ,

where R̄ is curvature tensor of Rn+1(c) and {ei}ni=1 is a local orthonormal frame
field on M . The L.H.S of above equation is called Amin-bitension field A2 k(ϕ). An
Lk-biharmonic map is proper if Hk+1 6= 0.

3. Proof of Main Results

In this section, we prove our main results mentioned in Introduction. Here we men-
tion the following auxiliary theorem which easily it can be obtained by using proofs
of theorems 4.5 and 4.6 of [8]. Below we use Theorem 3.1 to prove Theorem 1.4 and
Theorem 1.5.

Theorem 3.1. LetMn be a connected, oriented isometrically immersedLk-biharmonic
hypersurface in Sn+1 having at most two principal curvatures. ThenHk+1 is constant.

Proof of Theorem 1.4. Suppose f and g denote principal curvatures of M with multi-
plicitiesm and n−m, respectively. By Theorem 3.1, sk+1 is constant. So by formulae
(5), for example g is a smooth function of f . Take g = F (f) for some smooth func-
tion F : R → R. Let {ei}ni=1 is a local orthonormal frame field on M which are the
eigenvectors of the shape operator S of M w.r.t. the globally chosen unit normal vec-
tor field N . Since the multiplicities are greater than one, equations Sei = fei i ≤ m,
Sei = gei i > m and the Codazzi equation, (∇eiS)ej = (∇ejS)ei, imply that

∇eif = 0 i ≤ m,(10)
∇eig = 0 i > m .(11)

We have ∇eig = F ′(f)∇eif . So equations (10) and (11) imply that ∇eig = 0 for
each i. Thus g is constant and since sk+1 is constant by our assumption, f is also
constant. So M is an isoparametric hypersurface in Sn+1. Then, by the classical
results on isoparametric hypersurfaces in the Euclidean sphere, we get that fg = −1.
Let f > 0 and f = α and so g = −1

α . By Example 3.4 of [4], M is an open piece
of Sm( 1√

α2+1
) × Sn−m( α√

α2+1
). Since sk+1 is non-zero constant, straightforward

calculations using equations (5), (2) and properties of combinations, we get equations
(3) and (4). �

Proof of Theorem 1.5. Suppose f and g denote principal curvatures of M with multi-
plicities 1 and n − 1, respectively. By Theorem 3.1, sk+1 is non-zero constant. Now
by formulae (5), if g = 0 then f is constant. Therefore M is an isoparametric hy-
persurface in Sn+1 but by the classical results on isoparametric hypersurfaces in the
Euclidean sphere, we know that fg = −1 which is a contradiction. So we get g 6= 0
and again by formulae (5), we have

(12) f =
sk+1 −

(
n−1
k+1

)
gk+1(

n−1
k

)
gk

.
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Using equations (2) and (12), we get a non zero polynomial of variable g. So g and
then f is constant. Therefore M is an isoparametric hypersurface in Sn+1 and by
the classical results on isoparametric hypersurfaces in the Euclidean sphere as The-
orem 1.4, it is an open piece of S1( 1√

α2+1
) × Sn−1( α√

α2+1
) where α > 0 and

α satisfy equations (3) and (4) by replacing m = 1 which yields that α = 1 and
n 6= 2(k + 1). �

To prove Proposition 1.8 and Proposition 1.9, we shall need the following lemmas
for properties of Lk operator. In Lemma 3.2 and Lemma 3.4, we introduce extra
properties of Lk operator by use of Amin-Lk operator.

Lemma 3.2. Let f1 and f2 be smooth functions onM and,X and Y be smooth vector
fields on M . Then

i) Lk(f1f2) = f2Lkf1 + f1Lkf2 + 2 〈Pk(∇f1),∇f2〉ϕ∗g
ii) Lk 〈X,Y 〉ϕ∗g =

〈
L̄kdϕ(X), dϕ(Y )

〉
g

+
〈
dϕ(X), L̄kdϕ(Y )

〉
g

+ 2
∑
i

〈
∇Pk(ei)dϕ(X),∇eidϕ(Y )

〉
g

where {ei}ni=1 is a local orthonormal frame on M .

Remark 3.3. For part (i) of Lemma 3.2, the reader can see (cf. [4]). Here we give a
proof for part (ii) of it.

Proof of part (ii) of Lemma 3.2. Assume a local orthonormal frame {ei}ni=1 such that
(∇eiej) (p) = 0 at a fix point p ∈M for every i, j. From (6), we get that

∑
i∇eiPk ij(p) =

0 for every j. So at p, we have

Lk 〈X,Y 〉ϕ∗g =
∑
i,j

Pk ij

(
∇ei∇ej 〈dϕ(X), dϕ(Y )〉g

)
=
∑
i,j

Pk ij

(
∇ei

(〈
∇ejdϕ(X), dϕ(Y )

〉
g

+
〈
dϕ(X),∇ejdϕ(Y )

〉
g

))
=
∑
i,j

Pk ij

( 〈
∇ejdϕ(X),∇eidϕ(Y )

〉
g

+
〈
∇ei∇ejdϕ(X), dϕ(Y )

〉
g

+
〈
∇eidϕ(X),∇ejdϕ(Y )

〉
g

+
〈
dϕ(X),∇ei∇ejdϕ(Y )

〉
g

)
=
(9)

〈
L̄kdϕ(X), dϕ(Y )

〉
g

+
〈
dϕ(X), L̄kdϕ(Y )

〉
g

+ 2
∑
i,j

Pk ij
〈
∇ejdϕ(X),∇eidϕ(Y )

〉
g

=
〈
L̄kdϕ(X), dϕ(Y )

〉
g

+
〈
dϕ(X), L̄kdϕ(Y )

〉
g

+ 2
∑
i

〈
∇Pk(ei)dϕ(X),∇eidϕ(Y )

〉
g
. �
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Lemma 3.4. Let f1 and f2 be smooth functions onM and,X and Y be smooth vector
fields on M . Suppose that support of f1 and X is in a compact domain. Then

i)

∫
M

f1 Lkf2 dM =

∫
M

f2 Lkf1 dM ,

ii)

∫
M

〈
dϕ(X), L̄kdϕ(Y )

〉
g

dM =

∫
M

〈
L̄kdϕ(X), dϕ(Y )

〉
g

dM .

Remark 3.5. For part (i) of Lemma 3.4, the reader can see (cf. [12]). Here we give a
proof for part (ii) of it.

Proof of part (ii) of Lemma 3.4. Assume a local orthonormal frame {ei}ni=1 such that
(∇eiej) (p) = 0 at a fix point p ∈M for every i, j. From (6), we get that

∑
i∇eiPk ij(p) =

0 for every j. Let’s define a well-defined vector field Z on M as

Z := Pk ij
〈
dϕ(X),∇ejdϕ(Y )

〉
g
ei .

So at p, we have

divZ =Pk ij
〈
∇eidϕ(X),∇ejdϕ(Y )

〉
g

+ Pk ij
〈
dϕ(X),∇ei∇ejdϕ(Y )

〉
g

=Pk ij
〈
∇eidϕ(X),∇ejdϕ(Y )

〉
g

+
〈
dϕ(X), L̄kdϕ(Y )

〉
g
.

Therefore by Divergence Theorem we get∫
M

〈
dϕ(X), L̄kdϕ(Y )

〉
g

dM =−
∫
M

Pk ij
〈
∇eidϕ(X),∇ejdϕ(Y )

〉
g

dM

=

∫
M

〈
L̄kdϕ(X), dϕ(Y )

〉
g

dM .

�

The following proposition is a known result of Maximum Principle for operators.
Here for convenience, we give a proof for Proposition 3.6 to be used later.

Proposition 3.6. Let f be a smooth function on M and its support be in a compact
domain. If Pk is definite and Lkf = 0 then f is constant.

Proof. By Lemma 3.2, we have

(13) Lkf
2 = 2 〈Pk(∇f),∇f〉ϕ∗g .

Now using Lemma 3.4, we get

(14)
∫
M

Lkf
2dM = 0 .

So equations (13) and (14) result in∫
M

〈Pk(∇f),∇f〉ϕ∗g dM = 0 .

Since Pk is definite, we get 〈Pk(∇f),∇f〉ϕ∗g = 0 and so ∇f = 0. Therefore f is
constant. �
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Proof of Proposition 1.8. We know by equations (7) and (2),

(15) Lksk+1 = sk+1

(
tr(S2 ◦ Pk)− (n− k)sk

)
.

By Lemma 3.4, we have
∫
M

Lksk+1dM = 0. So equation (15) yields that∫
M

sk+1

(
tr(S2 ◦ Pk)− (n− k)sk

)
dM = 0 .

By the hypothesis, above integrand does not change sign, thus
sk+1

(
tr(S2 ◦ Pk)− (n− k)sk

)
= 0 and since sk+1 6= 0, we get tr(S2 ◦ Pk) =

(n − k)sk. By equation (15), Lksk+1 = 0 and if Pk is definite then Proposition 3.6
gives that sk+1 is constant. �

Proof of Proposition 1.9. We get by equations (7) and (2), and Lemma 3.2,

Lks
2
k+1 = 2sk+1Lksk+1 + 2 〈Pk∇sk+1,∇sk+1〉ϕ∗g

= 2s2k+1

(
tr(S2 ◦ Pk)− (n− k)sk

)
+ 2 〈Pk∇sk+1,∇sk+1〉ϕ∗g .(16)

By Lemma 3.4, we have
∫
M

Lks
2
k+1dM = 0. Assume that Pk is positive definite and

tr(S2 ◦ Pk) ≥ (n − k)sk, in other case the proof is similar. So equation (16) yields

that
∫
M

〈Pk∇sk+1,∇sk+1〉ϕ∗g dM ≤ 0 and because of Pk is positive definite we get

〈Pk∇sk+1,∇sk+1〉ϕ∗g ≤ 0 and so ∇sk+1 = 0. Therefore sk+1 is constant and by
equation (2), tr(S2 ◦ Pk) = (n− k)sk. �
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