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Abstract. Assume that F denotes a specific space in the class Fα,p con-

structed by H. Khodabakhshian [2] as a class of separable Banach function
spaces similar to the well-known James function spaces. In this note, we

prove that lp(α) is isomorphic to a complemented subspace of Fα,p, and

that Fα,2 is a closed subspace of the Waterman–Shiba space αBV 2.
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1. Introduction

In [2], H. Khodabakhshian introduced a class of separable Banach function
spaces Fα,p similar to the well-known James function spaces, with the following
properties.

(1) The James function space JF belongs to this class.
(2) Each member of this class is a separable Banach space with non-

separable dual.
(3) The sequence space Xα,1, constructed by Azimi and Hagler [3], embeds

in Fα,1.

In this paper, we show that lp(α) is isomorphic to a complemented subspace

of Fα,p, and that Fα,p is a closed subspace of the Waterman–Shiba space αBV (p)

for p = 2.
We use the standard Banach space notation as can be found in [4] and [5].

Let X be a (real) normed space, and let (xn) be a non-zero sequence in X.
We say that (xn) is a (Schauder) basis for X if for each x ∈ X, there exists
a unique sequence (an) of scalars such that x =

∑∞
i=1 anxn, where the series

converges to x in norm.
Let X be a linear space. Then, a linear projection on X (or just a projection

on X) is a linear map P : X → X which is an idempotent, that is, P (P (x)) ≡
P 2(x) = P (x) for every x ∈ X.

A sequence (xn) ⊆ X is said to be normalized if ‖xn‖ = 1 for every n; it is
called monotone if xn 6= 0 for every n ∈ N, and the following inequality holds
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for K ∈ N and (an)K+1
n=1 ⊆ R.∥∥∥∥∥

K∑
n=1

anxn

∥∥∥∥∥ ≤
∥∥∥∥∥
K+1∑
n=1

anxn

∥∥∥∥∥ .
A subspace Y of a Banach space X is said to be complemented in X if there

exists a bounded projection P : X → Y such that P (X) = Y.
Let (αi) be a decreasing sequence such that α1 = 1, limi→∞ αi = 0 and∑∞
i=1 αi =∞. By lp(α) we denote the space of all sequences x = (xi) such that∑∞
i=1 αi|xi|p converges with respect to the norm ||x||lp(α) = (

∑∞
i=1 αi|xi|p)

1
p .

For any i, let ei =

0, . . . , 0︸ ︷︷ ︸
i−1

,
(

1
αi

) 1
p

, 0, . . .

. We know that {ei : i ∈ N} is a

normalized basis for lp(α).
Now, we recall the construction of the spaces Fα,p. For 1 ≤ p < ∞, the

function space Fα,p is defined as the completion of the space of all equiva-
lence classes of the linear spans of characteristic functions of partitions of [0, 1],
equipped with the following norm.

‖f‖ = sup
0=x0<x1<···<xn=1

 n∑
i=1

αi|
xi∫

xi−1

f(x)dx|p
 1
p

.

Clearly, we identify those functions which are equal almost everywhere.
A function f defined on [0, 1] is said to be of bounded p − α−variation

(1 ≤ p <∞) if

‖f‖ = sup
0=t0<t1<···<tn=1

[
n∑
i=1

αi|f(ti−1)− f(ti)|p
] 1
p

<∞.

The function ‖.‖ is a norm on the set αBV p of all functions f such that f(0) = 0
and ‖f‖ <∞. The normed space (αBV p, ||.||) is a Banach space.

The Waterman–Shiba space αBV p has been introduced by M. Shiba in
1980 [6]. When p = 1, αBV p is the well-known Waterman space αBV . See [7]
and [8] for example. Throughout this paper, µ denotes the Lebesgue measure
in R. Every interval I has a strictly positive measure and defines a bounded
linear functional I∗ on Fα,p:

I∗(f) :=

∫
I

fdµ.

2. The main results

This section contains the proofs of our main results, namely, that lp(α)
is isomorphic to a complemented subspace of Fα,p, and that Fα,2 is a closed
subspace of the Waterman–Shiba space αBV 2.
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Lemma 2.1. Let In be a sequence of successive intervals (that is, sup(In) =
inf(In+1)) such that µ(I2n−1) = µ(I2n) for every n ∈ N. We set φn = χI2n−1

−
χI2n for every n ∈ N. Then, the following inequalities hold for (an) ∈ R.∥∥∥∑

n

anen

∥∥∥
`p(α)

≤
∥∥∥∑

n

an
φn

µ(I2n−1)

∥∥∥
Fα,p
≤ 2
∥∥∥∑

n

anen

∥∥∥
`p(α)

.

Proof. Let the partition (In)n of I = [0, 1] satisfy the asserted conditions, and
consider some (an) ∈ R. For the first inequality, we consider the partition
(I2n−1). Then,∥∥∥∑

n
an

φn
µ(I2n−1)

∥∥∥
Fα,p

≥
∥∥∥∑
k

(∫
I2k−1

∑
n
an

φn
µ(I2n−1)

)
ek

∥∥∥
`p(α)

≥
∥∥∥∑
n
anen

∥∥∥
`p(α)

.

For the second inequality, let (Aj)j be any partition of [0, 1]. Since∑
n

an
φn

µ(I2n−1)

∣∣∣
Ik

=

{
ak if k is odd,
−ak if k is even,

we may assume that each of the intervals Aj is a finite union of successive
intervals In. The following estimates can be easily obtained for each interval
Aj .∣∣∣∣∣
∫
Aj

∑
n

an
φn

µ(I2n−1)

∣∣∣∣∣ ≤


0 if Aj = [I2k−1, I2m], k ≤ m,
|am| if Aj = [I2k−1, I2m−1], k ≤ m,
|ak| if Aj = [I2k, I2m], k ≤ m,
| − ak + am| if Aj = [I2k, I2m−1], k < m.

Since the intervals are successive, each an appears at most two times. Therefore,∥∥∥∑
n

an
φn

µ(I2n−1)

∥∥∥
Fα,p
≤ 2
∥∥∥∑

n

anen

∥∥∥
`p(α)

.

�

In the sequel, we denote by 〈A〉 the linear subspace generated by a subset
A of a normed space Y .

Theorem 2.2. The space `p(α) is isomorphic to a complemented subspace of
Fα,p.

Proof. Let (In) and (ϕn) be as in Lemma 2.1. We prove that the space gener-
ated by (ϕn) is a complemented subspace of Fα,p. Consider the map

P : Fα,p −→
〈{ φn

µ(I2n−1)
: n ∈ N

}〉
defined by

g 7−→
∑
n

I∗2n−1(g)
φn

µ(I2n−1)
.
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It follows from the definition of the map I∗2n1
that

I∗2n−1

(
φn

µ(I2k−1)

)
= δn,k,

and by Lemma 1,∥∥∥∑
n
I∗2n−1(g) φn

µ(I2n−1)

∥∥∥
Fα,p

≤ 2
∥∥∥∑
n
I∗2n−1(g)en

∥∥∥
`p(α)

= 2
∥∥∥∑
n

(∫
I2n−1

g
)
en

∥∥∥
`p(α)

≤ 2
∥∥g∥∥Fα,p .

Therefore, P is a projection with ||P || ≤ 2. �

A finite and ordered sequence G = {ti : i = 1, ..., n and t1 < · · · < tn} in
[0, 1], not necessarily containing 0 and 1, determines the following seminorm
on αBV 2.

| f |G=

[
n∑
i=1

αi|f(ti−1)− f(ti)|2
] 1

2

.

A finite and ordered sequence G = {(ri, ti) : r1 < t1 ≤ r2 < t2 ≤ · · · ≤ rn < tn}
of ordered pairs in [0, 1], not necessarily containing 0 and 1, determines the
following seminorm on αBV 2.

| f |G=

[
n∑
i=1

αi|f(ti)− f(ri)|2
] 1

2

.

Note that | f |G≤‖ f ‖ and | f |G≤‖ f ‖ .

Definition 2.3. For δ > 0, let S(δ) denote the collection of all seminorms |.|G
determined by finite sequences G = {r1 < t1 ≤ r2 < t2 ≤ · · · ≤ rn < tn} of
ordered pairs in [0, 1] with the property that ti − ri ≤ δ for 1 ≤ i ≤ n. Define
σδ2 : αBV 2 → R by

σδ2(f) = sup
|.|G∈S(δ)

|f |G.

Now, define

αBV 2
0 =

{
f ∈ αBV 2 : lim

δ→0
σδ2(f) = 0

}
.

Definition 2.4. By the following proposition, αBV 2
0 is a Banach space.

Proposition 2.5. The space αBV 2
0 is a closed subspace of αBV 2.

Proof. It is easy to see that αBV 2
0 is a linear subspace of αBV 2. To show that

αBV 2
0 is closed, we consider the sequence (hj) ∈ αBV 2

0 , where hj → h for
some h ∈ αBV 2. Given ε > 0, choose J and δ > 0 such that ‖ h − hJ ‖< ε

2

and σδ2(hJ) < ε
2 . Let |.|G be an arbitrary seminorm on S(δ). Then,

|h|G = |h− hJ + hJ |G ≤ ‖h− hJ‖+ σδ2(hJ) < ε.

This shows that h ∈ αBV 2
0 . �
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Definition 2.6. For n ∈ N∗ := N ∪ {0} and an integer 1 ≤ k ≤ 2n, let

Dk
n =

[
k − 1

2n
,
k

2n

]
.

The sequence
((
Dk
n

)2n
k=1

)∞
n=0

is called a collection of dyadic intervals in [0, 1].

An element of [0, 1] is a dyadic rational if it is of the form k
2n for some n ∈ N∗

and k ∈ {0, . . . , 2n}.

Definition 2.7. Let f : [0, 1]→ R be a continuous, piecewise linear function.
We say that f changes monotonicity at t ∈ (0, 1) if there exists ε > 0 for which
one of the following holds.

1. f |(t−ε,t) is constant, and f |(t+ε,t) is strictly increasing or decreasing.
2. f |(t−ε,t) is strictly increasing or decreasing, and f |(t+ε,t) is constant.
3. f |(t−ε,t) is strictly increasing (respectively, decreasing), and f |(t+ε,t) is

strictly decreasing (respectively, increasing).

We will adopt the convention that every f : [0, 1]→ R changes monotonicity
at 0 and 1.
The following proposition is a fairly straightforward generalization of Proposi-
tion 1.7 in [1].

Proposition 2.8. Let f : [0, 1] → R be a continuous, piecewise linear func-
tion with f(0) = 0, and let (αi) be a decreasing sequence such that α1 = 1,
limi→∞ αi = 0 and

∑∞
i=1 αi = ∞. Then, there exists a finite, ordered se-

quence (di)
m
i=0 in [0, 1] such that f changes monotonicity at di ∈ [0, 1] for

i = 0, 1, . . . ,m, and

‖f‖ =

[
n∑
i=1

αi|f(di)− f(di−1)|2
] 1

2

.

Proof. We assume, without loss of generality, that f is not constant on any
subinterval I of [0, 1]. In this case, the points where f changes monotonicity,
say

0 = d0 < d1 < · · · < dl = 1,

satisfy item 3 of Definition 4. It is sufficient to show that for a given finite,
ordered sequence G = (si)

n
i=0 in [0, 1], there exists a finite, ordered subsequence

(ti)
m
i=0 of (di)

l
i=0 such that

| f |G=

[
n∑
i=1

αi|f(si)− f(si−1)|2
] 1

2

≤

[
m∑
i=1

αi|f(ti)− f(ti−1)|2
] 1

2

. (1)

For 1 ≤ i ≤ l, let G∩ [di−1, di] = {sj , . . . , sk}. If we remove si from G, for some
j < i < k, then we can increase | f |G. Thus we may assume that for each
1 ≤ i ≤ l, G ∩ [di−1, di] has at most two elements. Beginning with i = 1, we
inductively “adjust” G∩[di−1, di] to be a subset of {di−1, di} in such a way that
we increase | f |G; the ith adjustment, for 1 ≤ i ≤ l, is done as follows. (We
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deal with the extreme cases i = 1 and l similarly.) For notational convenience,
we assume that the adjusted set G is still labeled as {s0, . . . , sn}. Assume that
f is increasing on [di−1, di]. We consider two cases.

Case 1: G ∩ [di−1, di] = {sj−1, sj}.
• If f(sj−2) ≥ f(sj−1), then we replace sj−1 with dj−1. If f(sj) ≥
f(sj+1), then sj is replaced by di; otherwise, we remove sj from G.

• If f(sj−2) < f(sj−1), then we remove sj−1 from G. Also, if f(sj) ≥
f(sj+1), sj is replaced by di; otherwise, we remove sj from G.

Case 2: G ∩ [di−1, di] = {sj}.
• If f(sj−1) ≥ f(sj) ≥ f(sj+1), then we add di−1 and di to G, and

remove sj from it. If f(sj) < f(sj+1), then sj is replaced by di−1.
• If f(sj−1) < f(sj) and f(sj) > f(sj+1), then sj is replaced by di, and

if f(sj) < f(sj+1), then we remove sj from G.

The case where f is decreasing can be handled similarly. �

Lemma 2.9. Let f1(t) = t for t ∈ [0, 1],

f2n+1 =
(α1 + α2

2

) 1
2


2n+

1
2 t t ∈ [0, 1

2n+1 ]

−2n+
1
2 t+

√
2 t ∈ [ 1

2n+1 ,
1
2n ] ,

0 t ∈ [0, 1] \D1
n

for n ≥ 0, and

f2n+k =
(α2 + α3

2

) 1
2 f2n+1

(
t− k − 1

2n

)
for 1 < k ≤ 2n. Then (fn) is a normalized, monotone Schauder basis for the
space Fα,2.

Proof. Note that supp(f2n+k) = Dk
n. It is clear that [(fn)] ⊆ Fα,2. So, we only

need to prove the reverse inclusion.
Let f be a continuous, piecewise linear function which is linear on, say, m

intervals ([ti−1, ti])
m
i=1. Given ε > 0, we can find a piecewise linear function

g which is linear on m intervals ([ci−1, ci])
m
i=1 with dyadic rational endpoints,

and hence an element of < (fn) >, with the property that ‖f−g‖∞ < ε
2
√
2m−1 .

Note that if s, s′ ∈ [0, 1], then this shows that

|(f − g)(s)− (f − g)(s′)| < ε

2
√

2m− 1
. (1)

The function f − g is continuous and piecewise linear, and the points where it
changes monotonicity form a subset of ∪mi=0(ci, ti).

By Proposition 4, there exists a finite, ordered sequence G = {s0, < s1 <
· · · < sn} in [0, 1] such that G ⊆ ∪mi=0(ci, ti) and |f − g|G = ‖f − g‖. Note that
n ≤ 2m− 1. As a result of this discussion and inequality (1), we conclude that
‖f − g‖ ≤ ε.
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To show that (fn) is a monotone basis for Fα,2, it is enough to prove that if

K ∈ N and (an)K+1
n=1 ⊆ R, then∥∥∥∥∥

K∑
n=1

anfn

∥∥∥∥∥ ≤
∥∥∥∥∥
K+1∑
n=1

anfn

∥∥∥∥∥ . (2)

Note that
∑K
n=1 anfn and

∑K+1
n=1 anfn are piecewise linear functions. Further-

more, if
∑K
n=1 anfn changes monotonicity at some t ∈ [0, 1], then

∑K+1
n=1 anfn

changes monotonicity at that t as well. Thus by Proposition 4, (2) follows. �

Theorem 2.10. Fα,2 = αBV 2
0 .

Proof. The proof that Fα,2 ⊆ αBV 2
0 is rather straightforward. Indeed, since

αBV 2
0 is a Banach space, it is sufficient to show that the normalized monotone

Schauder basis (fn) of Fα,2 belongs to αBV 2
0 . This is an elementary observation

and we omit the details.
We will show that αBV 2

0 ⊆ Fα,2. Let ε > 0 and f ∈ αBV 2
0 be given,

and let ε0 > 0 be such that 14ε20 < ε2. We choose δ > 0 and N ∈ N such
that σδ2(f) < ε0 and 3

δN2 < 1. Since αBV 2
0 ⊆ C[0, 1], f ∈ C[0, 1]. Thus, we

may choose n ∈ N in such a way that if g ∈ Fα,2 is linear on each Dk
n and

g( k
2n ) = f( k

2n ) for 0 ≤ k ≤ 2n, then ‖f − g‖∞ < ε0
2N . We also require that

2−n < δ
3 .

Let G = {r1 < s1 ≤ · · · ≤ rm < sm} be a finite, ordered sequence of ordered
pairs in [0, 1], determining the seminorm |.|G. We partition G into three finite,
ordered sequences G1, G2 and G3 (so that |.|2G = |.|2G1

+ |.|2G2
+ |.|2G3

) as follows.
Let i be in {1, ...,m}.

1. If si − ri > δ
3 , then we consider ri and si as elements of G1. Thus,

|f − g|2G1
< 3

δ

(
ε0
N

)2
< ε20.

2. If (ri − si) ⊆ Dk
n for some k, then ri and si are contained in G2. It

follows that

|g|2G2
≤ ε20.

Also, |f |2G2
≤ σδ2(f)2 < ε20.

3. The remaining sis and ris are considered as the elements of G3. Let
G3 = {0 ≤ r′1 < s′1 ≤ · · · ≤ r′t < s′t ≤ 1}. Then, s′i − r′i <

δ
3 for

i = 1, ..., t, and both s′i and r′i cannot be in the same dyadic interval
DK
n . Split G3 into G3,e and G3,o by putting s′i and r′i in G3,e if i is even,

and putting them in G3,o otherwise. Thus, for example, if s′i, r
′
i ∈ G3,e

and s′i ∈ Dk
n, then Dk

n ∩G3,e = {s′i}. Applying the Intermediate Value

Theorem to f and using the fact that 2−n < δ
3 , we can find (say, if t is

even)
G′′3,e = {0 ≤ r′′1 < s′′1 ≤ · · · ≤ r′′t

2
< s′′t

2
≤ 1}

with |.|G′′3,e ∈ S(δ) and f(r′′i ) = g(r′2i), f(s′′i ) = f(s′2i) for i = 0, ..., t2 .

Thus |g|2G3,e
= |f |2G′′3,e < ε20. Similarly, |g|2G3,o

< ε20.
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Hence,

|f − g|2G = |f − g|2G1
+ |f − g|2G2

+ |f − g|2G3

< ε20 +
(
|f |G2

+ |g|G2

)2
+
(
|f |G3

+ |g|G3

)2
< ε20 + (2ε0)2 +

(
ε0 +

(
|g|2G3,e

+ |g|2G3,o

) 1
2

)2
< ε20 + (2ε0)2 + (ε0 +

√
2ε0)2

< 14ε0

< ε2.

This completes the proof. �
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