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ABSTRACT. Assume that F denotes a specific space in the class Fq;, con-
structed by H. Khodabakhshian [2] as a class of separable Banach function
spaces similar to the well-known James function spaces. In this note, we
prove that I, () is isomorphic to a complemented subspace of Fq p, and
that Fo,2 is a closed subspace of the Waterman—Shiba space aBV?2,
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1. Introduction

In [2], H. Khodabakhshian introduced a class of separable Banach function
spaces F, , similar to the well-known James function spaces, with the following
properties.

(1) The James function space JF belongs to this class.

(2) Each member of this class is a separable Banach space with non-
separable dual.

(3) The sequence space X,, 1, constructed by Azimi and Hagler [3], embeds
in ]Fa,1~

In this paper, we show that [,(«a) is isomorphic to a complemented subspace
of F, , and that F,, , is a closed subspace of the Waterman-Shiba space a BV (?)
for p = 2.

We use the standard Banach space notation as can be found in [4] and [5].
Let X be a (real) normed space, and let (z,) be a non-zero sequence in X.
We say that (z,) is a (Schauder) basis for X if for each z € X, there exists
a unique sequence (a,) of scalars such that z = 2 a,x,, where the series
converges to z in norm.

Let X be a linear space. Then, a linear projection on X (or just a projection
on X) is a linear map P : X — X which is an idempotent, that is, P(P(x)) =
P?(x) = P(z) for every x € X.

A sequence (z,) C X is said to be normalized if ||x,|| = 1 for every n; it is
called monotone if x,, # 0 for every n € N, and the following inequality holds
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for K € N and (a,)51}! CR.
K+1

K
E Andn E anTn
n=1 n=1

A subspace Y of a Banach space X is said to be complemented in X if there
exists a bounded projection P : X — Y such that P(X) =Y.

Let (c;) be a decreasing sequence such that «; = 1, lim; o, ; = 0 and
Yoo2, o = 00. By I, () we denote the space of all sequences z = (z;) such that

<

> iy @ilzg|P converges with respect to the norm ||z, ) = (324 ai|xi|p)%.
1
For any i, let ¢; = | 0,...,0, (i_)p,O,... . We know that {e; : i € N} is a
H‘/—/

normalized basis for [, ().

Now, we recall the construction of the spaces F, . For 1 < p < oo, the
function space F, , is defined as the completion of the space of all equiva-
lence classes of the linear spans of characteristic functions of partitions of [0, 1],
equipped with the following norm.

= s Sl [ faydslr

O=zo<z1< - <xTp=1 =1

1
P

Clearly, we identify those functions which are equal almost everywhere.
A function f defined on [0,1] is said to be of bounded p — a—variation
(1<p<oo)if
I1f1l = sup [Z gl f(ti-1) — f(fi)lp] < o0
O=to<t1<--<t,=1 |}
The function ||.|| is a norm on the set a BV? of all functions f such that f(0) =0
and || f|] < oo. The normed space (aBV?,||.||) is a Banach space.

The Waterman—Shiba space aBVP has been introduced by M. Shiba in
1980 [6]. When p = 1, aBV? is the well-known Waterman space aBV. See [7]
and [8] for example. Throughout this paper, u denotes the Lebesgue measure
in R. Every interval I has a strictly positive measure and defines a bounded
linear functional I* on F, p:

()= | san

2. The main results

This section contains the proofs of our main results, namely, that [,(«)
is isomorphic to a complemented subspace of F, p, and that F, s is a closed
subspace of the Waterman-Shiba space a BV2.
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Lemma 2.1. Let I,, be a sequence of successive intervals (that is, sup(I,) =
inf(Ip4+1)) such that p(lan—1) = p(l2yn) for everyn € N. We set ¢, = X1p, 4 —
X1, for every n € N. Then, the following inequalities hold for (a,) € R.

[l <[ Syl <2 S,

Proof. Let the partition (I,,), of I = [0, 1] satisfy the asserted conditions, and
consider some (a,) € R. For the first inequality, we consider the partition

(I2,—1). Then,
¢n ¢’!‘L
H Za" n(l2n—1) ’ H <*f[2k—1 Zan 11(1271,1)) ek”
n n £p(cr)

Iin’ Ly ()

lp(e)

For the second inequality, let (A, ) ; be any partition of [0,1]. Since

ZG :{ Qg if k is Odd7
" IQn 1(Izn—1) 11

—ap  if k is even,
we may assume that each of the intervals A; is a finite union of successive
intervals I,,. The following estimates can be easily obtained for each interval
Aj.

0 lfA = [ng 1,[27”} k S m,
/ Za |G| 1fA = [lak—1, Iom—1], k <m,
IQn 1 |a’k| if A - [I2k7[2m] k < m,
|—ak+am| lfA = [Iglﬁfgm,ﬂ, k< m.

Since the intervals are successive, each a,, appears at most two times. Therefore,

IZ ol <2 S,
2n1

O

In the sequel, we denote by (A) the linear subspace generated by a subset
A of a normed space Y.

Theorem 2.2. The space £, () is isomorphic to a complemented subspace of
F

a,p

Proof. Let (I,,) and (¢,,) be as in Lemma 2.1. We prove that the space gener-
ated by (¢y) is a complemented subspace of F,, ,. Consider the map

P:Fa,p—><{/£:_1):n€N}>

¢n
I2n 1)

defined by
gr— Z I3, 1(9)
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It follows from the definition of the map I3, that

P >
L, | ———— ) =0nk,
et <M(12k1) *
and by Lemma 1,

H ;I;nfl(g)ﬁ

< 2H ZI;nfl(g)en ()
:2Hzn:<f12n,1 9) €n ) §2||9||Fa,p'

Therefore, P is a projection with ||P|| < 2. O

‘IFQ,

Ly

A finite and ordered sequence G = {t; : i =1,...,nand t; < --- < t,} in
[0, 1], not necessarily containing 0 and 1, determines the following seminorm
on aBV?Z.

n 3
| 19= D ail f(tin) — f(ti)|2] :
i=1
A finite and ordered sequence G = {(r;,t;) 111 <t1 <rog <to <--- <71, <t,}
of ordered pairs in [0, 1], not necessarily containing 0 and 1, determines the
following seminorm on aBV2.

|/ lo= [Z al f(t) f(m)Z]
1=1
Note that | £ [6<|| f || and | fla<]| 1.

Definition 2.3. For § > 0, let S(J) denote the collection of all seminorms |.|¢
determined by finite sequences G = {r1 < t; < re < tg < -+- <71, < t,} of
ordered pairs in [0, 1] with the property that t; — r; < ¢ for 1 < i < n. Define
03 :aBV? - R by

2

a3(f)= sup |fla.
|.lcE€S(5)

Now, define
aBV} = {f € aBV?: limoy(f) = o} .
6—0
Definition 2.4. By the following proposition, « BV is a Banach space.

Proposition 2.5. The space aBV is a closed subspace of aBV?2.

Proof. Tt is easy to see that aBV{ is a linear subspace of a BV2. To show that
aBV§ is closed, we consider the sequence (h;) € aBV{, where h; — h for
some h € aBVZ2. Given € > 0, choose J and § > 0 such that || h — hy ||< §
and 03(hy) < %. Let |.|¢ be an arbitrary seminorm on S(§). Then,

hlg = [h = hy+hyle < ||h = hyll + 03(hy) <e.
This shows that h € aBV. 0
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Definition 2.6. For n € N* := NU {0} and an integer 1 < k < 2", let

n on 7 on | ”

The sequence ((Dfl)ill)zozo is called a collection of dyadic intervals in [0, 1].

An element of [0, 1] is a dyadic rational if it is of the form 2 for some n € N*
and k € {0,...,2"}.

Definition 2.7. Let f :[0,1] — R be a continuous, piecewise linear function.
We say that f changes monotonicity at ¢ € (0, 1) if there exists € > 0 for which
one of the following holds.
1. fl(t—e) is constant, and f[;1c) is strictly increasing or decreasing.
2. fl(t—e, is strictly increasing or decreasing, and f|(;4 ) is constant.
3. flt—e,u) is strictly increasing (respectively, decreasing), and f] ;1) is
strictly decreasing (respectively, increasing).

We will adopt the convention that every f : [0,1] — R changes monotonicity
at 0 and 1.
The following proposition is a fairly straightforward generalization of Proposi-
tion 1.7 in [1].

Proposition 2.8. Let f : [0,1] — R be a continuous, piecewise linear func-
tion with f( ) = 0, and let (o;) be a decreasing sequence such that oy = 1,
lim; yooa; = 0 and Z _,0; = oo. Then, there erists a finite, ordered se-
quence (d;)™, in [0,1] such that f changes monotonicity at d; € [0,1] for
1=0,1,...,m, and

2

| f]l = Zai|f(di) — f(di—1)P?

Proof. We assume, without loss of generality, that f is not constant on any
subinterval I of [0,1]. In this case, the points where f changes monotonicity,
say

O=do<dy <---<d; =1,
satisfy item 3 of Definition 4. It is sufficient to show that for a given finite,

ordered sequence G = (s;)1_ in [0, 1], there exists a finite, ordered subsequence
()™, of (di)l_, such that

| f16= Z%If f(si-1) ] Zazlf D)

For1 <1<, let GNldi—1,d;] = {sj, .. .,sk}. Ifwe remove s; from G, for some
j < i < k, then we can increase | f |. Thus we may assume that for each
1 <i <1, GNJ[d;—1,d;] has at most two elements. Beginning with i = 1, we
inductively “adjust” GN[d;_1,d;] to be a subset of {d;_1,d;} in such a way that
we increase | f |¢; the ith adjustment, for 1 < i < [, is done as follows. (We

[N
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deal with the extreme cases i = 1 and [ similarly.) For notational convenience,
we assume that the adjusted set G is still labeled as {sg, ..., s,}. Assume that
f is increasing on [d;_1, d;]. We consider two cases.
Case 1: GN [difl, dl] = {ijl, Sj}.
o If f(sj—2) > f(sj—1), then we replace s;_1 with d;j_. If f(s;)
f(s;j+1), then s; is replaced by d;; otherwise, we remove s; from G.
o If f(sj—2) < f(sj—1), then we remove s;_; from G. Also, if f(s;) >
f(sj+1), s; is replaced by d;; otherwise, we remove s; from G.
Case 2: GN [di—17di] = {SJ}
o If f(sj—l) Z f(SJ) Z f(5j+1)7 then we add di—l and dz to G, and
remove s; from it. If f(s;) < f(s;+1), then s; is replaced by d;_;.
o If f(sj—1) < f(s;) and f(s;) > f(sj+1), then s; is replaced by d;, and
if f(s;) < f(sj+1), then we remove s; from G.

v

The case where f is decreasing can be handled similarly. O

Lemma 2.9. Let f1(t) =t fort € [0,1],

ontat t €10, 5er]
fonsy = (G102)3 —2MTI V2 tE [, ]
2 2 0 te[0,1]\ D}

form >0, and

2 2m

for 1 < k < 2™ Then (f,) is a normalized, monotone Schauder basis for the
space Fy 2.

Qg+ g\ i k—1
f2"+k == (u) 2f2n+1 <t - >

Proof. Note that supp(fanyx) = DE. Tt is clear that [(f,)] € Fa.2. So, we only
need to prove the reverse inclusion.

Let f be a continuous, piecewise linear function which is linear on, say, m
intervals ([t;—1,%:;])7,. Given € > 0, we can find a piecewise linear function
¢ which is linear on m intervals ([¢;—1, ¢;])™, with dyadic rational endpoints,
and hence an element of < (f,,) >, with the property that || f —g|lco < 55

2v/2m—1"
Note that if s, s’ € [0, 1], then this shows that

[(f = 9)(s) = (f —9)(s")] <

€

2W2m —1 (1)

The function f — g is continuous and piecewise linear, and the points where it
changes monotonicity form a subset of U™ (¢;, ;).

By Proposition 4, there exists a finite, ordered sequence G = {sg, < s1 <
<o+ < 8p} in [0,1] such that G C U (ci,t;) and |f — g|% = ||f — g||. Note that

n < 2m — 1. As a result of this discussion and inequality (1), we conclude that
If —gll <e
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To show that (f,,) is a monotone basis for F,, o, it is enough to prove that if
K €N and (a,)¥f! CR, then

K K+1
Z a"”/f'fb S Z aTLfn (2)
n=1 n=1

Note that 25:1 an frn and 25;11 ay, fn are piecewise linear functions. Further-

more, if Zfl{:l an frn changes monotonicity at some t € [0, 1], then Zf;ll an fn

changes monotonicity at that ¢ as well. Thus by Proposition 4, (2) follows. O

Theorem 2.10. F, > = aBV{.

Proof. The proof that F, o C aBV{ is rather straightforward. Indeed, since
aBV{# is a Banach space, it is sufficient to show that the normalized monotone
Schauder basis (f,,) of F, 2 belongs to aBVZ. This is an elementary observation
and we omit the details.

We will show that aBV C Faa. Let € > 0 and f € aBV{ be given,
and let €9 > 0 be such that 14 < €. We choose § > 0 and N € N such
that 03(f) < € and 53> < 1. Since aBV{ C C[0,1], f € C[0,1]. Thus, we
may choose n € N in such a way that if g € F, 2 is linear on each DF and
g(£) = f(£) for 0 < k < 2", then ||f — gllc < £%. We also require that
27 < 2

3

Let G ={r1 < s1 <+ <1y < $n} be a finite, ordered sequence of ordered
pairs in [0, 1], determining the seminorm |.|g. We partition G into three finite,
ordered sequences Gy, Gy and G (so that || = |.|&, +.[&, + &) as follows.
Let i be in {1,...,m}.

1. If s —r; > g, then we consider r; and s; as elements of G;. Thus,
7=t <3(2)" <&

2. If (r; — s;) € DF for some k, then r; and s; are contained in Gy. It
follows that

l91&:, < €.

Also, |f[%, < 03(f)? < &

3. The remaining s;s and 7;s are considered as the elements of G3. Let
Gs={0<r] <s) < <r,<s, <1}. Then, s, —r, < & for
i =1,...,t, and both s and 7} cannot be in the same dyadic interval
DE . Split G3 into G3 . and G3 , by putting s, and 7 in G . if i is even,
and putting them in G, otherwise. Thus, for example, if s},7; € G5 .
and s, € D then D¥ NG5 . = {s}}. Applying the Intermediate Value
Theorem to f and using the fact that 27" < g, we can find (say, if ¢ is
even)

g7e:{0§7‘i’<8’1’§~--§r’%'<8” <1}

with [y, € S(6) and f(r!)) = g(rhy), f(s¥) = f(sh;) for i = 0,..., L.
Thus 9]z, . = |f|2G/3,_C < 5. Similarly, [g]g, = < 5.
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Hence,
If—9l& = |f—gle, +1f —ale, +1f —9lg,
2 2
< e+ (Ifla. +19la)” + (Iflas + lglas)
142

< &+ 20+ (co+ (gl +lol,)?)

< €+ (260)% + (€0 + V2€0)?

< 1460

< €.
This completes the proof. O
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