Journal of Mahani Mathematical Research Center Print ISSN: 2251-7952 Online ISSN: 2645-4505

ON A CLASS OF BANACH FUNCTION SPACES AND ITS RELATION TO SOME CLASSICAL SPACES

J. FATHI MOURJANI

Article type: Research Article

(Received: 25 August 2019, Revised: 14 February 2021; Accepted: 06 April 2021) (Communicated by A. Armandnejad)

ABSTRACT. Assume that \mathbb{F} denotes a specific space in the class $\mathbb{F}_{\alpha,p}$ constructed by H. Khodabakhshian [2] as a class of separable Banach function spaces similar to the well-known James function spaces. In this note, we prove that $l_p(\alpha)$ is isomorphic to a complemented subspace of $\mathbb{F}_{\alpha,p}$, and that $\mathbb{F}_{\alpha,2}$ is a closed subspace of the Waterman–Shiba space αBV^2

Keywords: Banach space, Complemented subspace, Generalized bounded variation.

2020 MSC: Primary 46B04, 46B20.

1. Introduction

In [2], H. Khodabakhshian introduced a class of separable Banach function spaces $\mathbb{F}_{\alpha,p}$ similar to the well-known James function spaces, with the following

- (1) The James function space JF belongs to this class.
- (2) Each member of this class is a separable Banach space with nonseparable dual.
- (3) The sequence space $X_{\alpha,1}$, constructed by Azimi and Hagler [3], embeds in $\mathbb{F}_{\alpha,1}$.

In this paper, we show that $l_p(\alpha)$ is isomorphic to a complemented subspace of $\mathbb{F}_{\alpha,p}$, and that $\mathbb{F}_{\alpha,p}$ is a closed subspace of the Waterman–Shiba space $\alpha BV^{(p)}$ for p=2.

We use the standard Banach space notation as can be found in [4] and [5]. Let X be a (real) normed space, and let (x_n) be a non-zero sequence in X. We say that (x_n) is a (Schauder) basis for X if for each $x \in X$, there exists a unique sequence (a_n) of scalars such that $x = \sum_{i=1}^{\infty} a_i x_i$, where the series converges to x in norm.

Let X be a linear space. Then, a linear projection on X (or just a projection on X) is a linear map $P: X \to X$ which is an idempotent, that is, $P(P(x)) \equiv$ $P^2(x) = P(x)$ for every $x \in X$.

A sequence $(x_n) \subseteq X$ is said to be normalized if $||x_n|| = 1$ for every n; it is called monotone if $x_n \neq 0$ for every $n \in \mathbb{N}$, and the following inequality holds

E-mail: fathi@hormozgan.ac.ir

DOI: 10.22103/jmmrc.2021.14614.1100

(c) (3)

© the Author

How to cite: J. Fathi Mourjani, On a class of Banach function spaces and its relation to some classical spaces, J. Mahani Math. Res. Cent. 2021; 10(1): 103-110.

for $K \in \mathbb{N}$ and $(a_n)_{n=1}^{K+1} \subseteq \mathbb{R}$.

$$\left\| \sum_{n=1}^{K} a_n x_n \right\| \le \left\| \sum_{n=1}^{K+1} a_n x_n \right\|.$$

A subspace Y of a Banach space X is said to be *complemented* in X if there exists a bounded projection $P: X \to Y$ such that P(X) = Y.

Let (α_i) be a decreasing sequence such that $\alpha_1 = 1$, $\lim_{i \to \infty} \alpha_i = 0$ and $\sum_{i=1}^{\infty} \alpha_i = \infty$. By $l_p(\alpha)$ we denote the space of all sequences $x = (x_i)$ such that $\sum_{i=1}^{\infty} \alpha_i |x_i|^p$ converges with respect to the norm $||x||_{l_p(\alpha)} = (\sum_{i=1}^{\infty} \alpha_i |x_i|^p)^{\frac{1}{p}}$.

For any
$$i$$
, let $e_i = \left(\underbrace{0, \dots, 0}_{i-1}, \left(\frac{1}{\alpha_i}\right)^{\frac{1}{p}}, 0, \dots\right)$. We know that $\{e_i : i \in \mathbb{N}\}$ is a

normalized basis for $l_n(\alpha)$.

Now, we recall the construction of the spaces $\mathbb{F}_{\alpha,p}$. For $1 \leq p < \infty$, the function space $\mathbb{F}_{\alpha,p}$ is defined as the completion of the space of all equivalence classes of the linear spans of characteristic functions of partitions of [0,1], equipped with the following norm.

$$||f|| = \sup_{0=x_0 < x_1 < \dots < x_n = 1} \left[\sum_{i=1}^n \alpha_i | \int_{x_{i-1}}^{x_i} f(x) dx|^p \right]^{\frac{1}{p}}.$$

Clearly, we identify those functions which are equal almost everywhere.

A function f defined on [0,1] is said to be of bounded $p-\alpha-$ variation $(1 \le p < \infty)$ if

$$||f|| = \sup_{0=t_0 < t_1 < \dots < t_n = 1} \left[\sum_{i=1}^n \alpha_i |f(t_{i-1}) - f(t_i)|^p \right]^{\frac{1}{p}} < \infty.$$

The function $\|.\|$ is a norm on the set αBV^p of all functions f such that f(0) = 0 and $\|f\| < \infty$. The normed space $(\alpha BV^p, ||.||)$ is a Banach space.

The Waterman–Shiba space αBV^p has been introduced by M. Shiba in 1980 [6]. When p=1, αBV^p is the well-known Waterman space αBV . See [7] and [8] for example. Throughout this paper, μ denotes the Lebesgue measure in \mathbb{R} . Every interval I has a strictly positive measure and defines a bounded linear functional I^* on $\mathbb{F}_{\alpha,p}$:

$$I^*(f) := \int_I f d\mu.$$

2. The main results

This section contains the proofs of our main results, namely, that $l_p(\alpha)$ is isomorphic to a complemented subspace of $\mathbb{F}_{\alpha,p}$, and that $\mathbb{F}_{\alpha,2}$ is a closed subspace of the Waterman–Shiba space αBV^2 .

Lemma 2.1. Let I_n be a sequence of successive intervals (that is, $\sup(I_n) = \inf(I_{n+1})$) such that $\mu(I_{2n-1}) = \mu(I_{2n})$ for every $n \in \mathbb{N}$. We set $\phi_n = \chi_{I_{2n-1}} - \chi_{I_{2n}}$ for every $n \in \mathbb{N}$. Then, the following inequalities hold for $(a_n) \in \mathbb{R}$.

$$\left\| \sum_{n} a_n e_n \right\|_{\ell_p(\alpha)} \le \left\| \sum_{n} a_n \frac{\phi_n}{\mu(I_{2n-1})} \right\|_{\mathbb{F}_{\alpha,p}} \le 2 \left\| \sum_{n} a_n e_n \right\|_{\ell_p(\alpha)}.$$

Proof. Let the partition $(I_n)_n$ of I = [0,1] satisfy the asserted conditions, and consider some $(a_n) \in \mathbb{R}$. For the first inequality, we consider the partition (I_{2n-1}) . Then,

$$\left\| \sum_{n} a_{n} \frac{\phi_{n}}{\mu(I_{2n-1})} \right\|_{\mathbb{F}_{\alpha,p}} \ge \left\| \sum_{k} \left(\int_{I_{2k-1}} \sum_{n} a_{n} \frac{\phi_{n}}{\mu(I_{2n-1})} \right) e_{k} \right\|_{\ell_{p}(\alpha)}$$
$$\ge \left\| \sum_{n} a_{n} e_{n} \right\|_{\ell_{p}(\alpha)}.$$

For the second inequality, let $(A_j)_j$ be any partition of [0,1]. Since

$$\sum_{n} a_n \frac{\phi_n}{\mu(I_{2n-1})} \Big|_{I_k} = \begin{cases} a_k & \text{if } k \text{ is odd,} \\ -a_k & \text{if } k \text{ is even,} \end{cases}$$

we may assume that each of the intervals A_j is a finite union of successive intervals I_n . The following estimates can be easily obtained for each interval A_j .

$$\left| \int_{A_j} \sum_n a_n \frac{\phi_n}{\mu(I_{2n-1})} \right| \le \begin{cases} 0 & \text{if } A_j = [I_{2k-1}, I_{2m}], \ k \le m, \\ |a_m| & \text{if } A_j = [I_{2k-1}, I_{2m-1}], \ k \le m, \\ |a_k| & \text{if } A_j = [I_{2k}, I_{2m}], \ k \le m, \\ |-a_k + a_m| & \text{if } A_j = [I_{2k}, I_{2m-1}], \ k < m. \end{cases}$$

Since the intervals are successive, each a_n appears at most two times. Therefore,

$$\left\| \sum_{n} a_n \frac{\phi_n}{\mu(I_{2n-1})} \right\|_{\mathbb{F}_{\alpha,p}} \le 2 \left\| \sum_{n} a_n e_n \right\|_{\ell_p(\alpha)}.$$

In the sequel, we denote by $\langle A \rangle$ the linear subspace generated by a subset A of a normed space Y.

Theorem 2.2. The space $\ell_p(\alpha)$ is isomorphic to a complemented subspace of $\mathbb{F}_{\alpha,p}$.

Proof. Let (I_n) and (φ_n) be as in Lemma 2.1. We prove that the space generated by (φ_n) is a complemented subspace of $\mathbb{F}_{\alpha,p}$. Consider the map

$$P: \mathbb{F}_{\alpha,p} \longrightarrow \overline{\left\langle \left\{ \frac{\phi_n}{\mu(I_{2n-1})} : n \in \mathbb{N} \right\} \right\rangle}$$

defined by

$$g \longmapsto \sum_{n} I_{2n-1}^*(g) \frac{\phi_n}{\mu(I_{2n-1})}.$$

It follows from the definition of the map $I_{2n_1}^*$ that

$$I_{2n-1}^* \left(\frac{\phi_n}{\mu(I_{2k-1})} \right) = \delta_{n,k},$$

and by Lemma 1,

$$\begin{split} \left\| \sum_{n} I_{2n-1}^{*}(g) \frac{\phi_{n}}{\mu(I_{2n-1})} \right\|_{\mathbb{F}_{\alpha,p}} & \leq 2 \left\| \sum_{n} I_{2n-1}^{*}(g) e_{n} \right\|_{\ell_{p}(\alpha)} \\ & = 2 \left\| \sum_{n} \left(\int_{I_{2n-1}} g \right) e_{n} \right\|_{\ell_{p}(\alpha)} \leq 2 \|g\|_{\mathbb{F}_{\alpha,p}}. \end{split}$$

Therefore, P is a projection with $||P|| \le 2$.

A finite and ordered sequence $G = \{t_i : i = 1, ..., n \text{ and } t_1 < \cdots < t_n\}$ in [0, 1], not necessarily containing 0 and 1, determines the following seminorm on αBV^2 .

$$|f|^{G} = \left[\sum_{i=1}^{n} \alpha_{i} |f(t_{i-1}) - f(t_{i})|^{2}\right]^{\frac{1}{2}}.$$

A finite and ordered sequence $G = \{(r_i, t_i) : r_1 < t_1 \le r_2 < t_2 \le \cdots \le r_n < t_n\}$ of ordered pairs in [0, 1], not necessarily containing 0 and 1, determines the following seminorm on αBV^2 .

$$|f|_{G} = \left[\sum_{i=1}^{n} \alpha_{i} |f(t_{i}) - f(r_{i})|^{2} \right]^{\frac{1}{2}}.$$

Note that $\mid f\mid^{G}\leq \parallel f\parallel$ and $\mid f\mid_{G}\leq \parallel f\parallel$.

Definition 2.3. For $\delta > 0$, let $S(\delta)$ denote the collection of all seminorms $|.|_G$ determined by finite sequences $G = \{r_1 < t_1 \le r_2 < t_2 \le \cdots \le r_n < t_n\}$ of ordered pairs in [0,1] with the property that $t_i - r_i \le \delta$ for $1 \le i \le n$. Define $\sigma_2^{\delta} : \alpha BV^2 \to \mathbb{R}$ by

$$\sigma_2^{\delta}(f) = \sup_{|\cdot|_G \in S(\delta)} |f|_G.$$

Now, define

$$\alpha BV_0^2 = \left\{ f \in \alpha BV^2 : \lim_{\delta \to 0} \sigma_2^{\delta}(f) = 0 \right\}.$$

Definition 2.4. By the following proposition, αBV_0^2 is a Banach space.

Proposition 2.5. The space αBV_0^2 is a closed subspace of αBV^2 .

Proof. It is easy to see that αBV_0^2 is a linear subspace of αBV^2 . To show that αBV_0^2 is closed, we consider the sequence $(h_j) \in \alpha BV_0^2$, where $h_j \to h$ for some $h \in \alpha BV^2$. Given $\epsilon > 0$, choose J and $\delta > 0$ such that $\|h - h_J\| < \frac{\epsilon}{2}$ and $\sigma_2^{\delta}(h_J) < \frac{\epsilon}{2}$. Let $|.|_G$ be an arbitrary seminorm on $S(\delta)$. Then,

$$|h|_G = |h - h_J + h_J|_G \le ||h - h_J|| + \sigma_2^{\delta}(h_J) < \epsilon.$$

This shows that $h \in \alpha BV_0^2$.

Definition 2.6. For $n \in N^* := \mathbb{N} \cup \{0\}$ and an integer $1 \leq k \leq 2^n$, let

$$D_n^k = \left\lceil \frac{k-1}{2^n}, \frac{k}{2^n} \right\rceil.$$

The sequence $((D_n^k)_{k=1}^{2^n})_{n=0}^{\infty}$ is called a collection of dyadic intervals in [0,1]. An element of [0,1] is a dyadic rational if it is of the form $\frac{k}{2^n}$ for some $n \in N^*$ and $k \in \{0,\ldots,2^n\}$.

Definition 2.7. Let $f:[0,1] \to \mathbb{R}$ be a continuous, piecewise linear function. We say that f changes monotonicity at $t \in (0,1)$ if there exists $\epsilon > 0$ for which one of the following holds.

- 1. $f|_{(t-\epsilon,t)}$ is constant, and $f|_{(t+\epsilon,t)}$ is strictly increasing or decreasing.
- 2. $f|_{(t-\epsilon,t)}$ is strictly increasing or decreasing, and $f|_{(t+\epsilon,t)}$ is constant.
- 3. $f|_{(t-\epsilon,t)}$ is strictly increasing (respectively, decreasing), and $f|_{(t+\epsilon,t)}$ is strictly decreasing (respectively, increasing).

We will adopt the convention that every $f:[0,1]\to\mathbb{R}$ changes monotonicity at 0 and 1.

The following proposition is a fairly straightforward generalization of Proposition 1.7 in [1].

Proposition 2.8. Let $f:[0,1] \to \mathbb{R}$ be a continuous, piecewise linear function with f(0) = 0, and let (α_i) be a decreasing sequence such that $\alpha_1 = 1$, $\lim_{i \to \infty} \alpha_i = 0$ and $\sum_{i=1}^{\infty} \alpha_i = \infty$. Then, there exists a finite, ordered sequence $(d_i)_{i=0}^m$ in [0,1] such that f changes monotonicity at $d_i \in [0,1]$ for $i = 0, 1, \ldots, m$, and

$$||f|| = \left[\sum_{i=1}^{n} \alpha_i |f(d_i) - f(d_{i-1})|^2\right]^{\frac{1}{2}}.$$

Proof. We assume, without loss of generality, that f is not constant on any subinterval I of [0,1]. In this case, the points where f changes monotonicity, say

$$0 = d_0 < d_1 < \dots < d_l = 1$$
,

satisfy item 3 of Definition 4. It is sufficient to show that for a given finite, ordered sequence $G = (s_i)_{i=0}^n$ in [0,1], there exists a finite, ordered subsequence $(t_i)_{i=0}^m$ of $(d_i)_{i=0}^l$ such that

$$|f|^{G} = \left[\sum_{i=1}^{n} \alpha_{i} |f(s_{i}) - f(s_{i-1})|^{2}\right]^{\frac{1}{2}} \leq \left[\sum_{i=1}^{m} \alpha_{i} |f(t_{i}) - f(t_{i-1})|^{2}\right]^{\frac{1}{2}}. (1)$$

For $1 \leq i \leq l$, let $G \cap [d_{i-1}, d_i] = \{s_j, \ldots, s_k\}$. If we remove s_i from G, for some j < i < k, then we can increase $|f|^G$. Thus we may assume that for each $1 \leq i \leq l$, $G \cap [d_{i-1}, d_i]$ has at most two elements. Beginning with i = 1, we inductively "adjust" $G \cap [d_{i-1}, d_i]$ to be a subset of $\{d_{i-1}, d_i\}$ in such a way that we increase $|f|^G$; the ith adjustment, for $1 \leq i \leq l$, is done as follows. (We

deal with the extreme cases i=1 and l similarly.) For notational convenience, we assume that the adjusted set G is still labeled as $\{s_0, \ldots, s_n\}$. Assume that f is increasing on $[d_{i-1}, d_i]$. We consider two cases.

Case 1: $G \cap [d_{i-1}, d_i] = \{s_{i-1}, s_i\}.$

- If $f(s_{j-2}) \geq f(s_{j-1})$, then we replace s_{j-1} with d_{j-1} . If $f(s_j) \geq f(s_{j+1})$, then s_j is replaced by d_i ; otherwise, we remove s_j from G.
- If $f(s_{j-2}) < f(s_{j-1})$, then we remove s_{j-1} from G. Also, if $f(s_j) \ge f(s_{j+1})$, s_j is replaced by d_i ; otherwise, we remove s_j from G.

Case 2: $G \cap [d_{i-1}, d_i] = \{s_i\}.$

- If $f(s_{j-1}) \ge f(s_j) \ge f(s_{j+1})$, then we add d_{i-1} and d_i to G, and remove s_j from it. If $f(s_j) < f(s_{j+1})$, then s_j is replaced by d_{i-1} .
- If $f(s_{j-1}) < f(s_j)$ and $f(s_j) > f(s_{j+1})$, then s_j is replaced by d_i , and if $f(s_j) < f(s_{j+1})$, then we remove s_j from G.

The case where f is decreasing can be handled similarly.

Lemma 2.9. Let $f_1(t) = t$ for $t \in [0, 1]$,

$$f_{2^{n}+1} = \left(\frac{\alpha_{1} + \alpha_{2}}{2}\right)^{\frac{1}{2}} \begin{cases} 2^{n + \frac{1}{2}}t & t \in [0, \frac{1}{2^{n+1}}] \\ -2^{n + \frac{1}{2}}t + \sqrt{2} & t \in [\frac{1}{2^{n+1}}, \frac{1}{2^{n}}] \\ 0 & t \in [0, 1] \setminus D_{n}^{1} \end{cases},$$

for $n \geq 0$, and

$$f_{2^n+k} = \left(\frac{\alpha_2 + \alpha_3}{2}\right)^{\frac{1}{2}} f_{2^n+1} \left(t - \frac{k-1}{2^n}\right)$$

for $1 < k \le 2^n$. Then (f_n) is a normalized, monotone Schauder basis for the space $\mathbb{F}_{\alpha,2}$.

Proof. Note that $supp(f_{2^n+k}) = D_n^k$. It is clear that $[(f_n)] \subseteq \mathbb{F}_{\alpha,2}$. So, we only need to prove the reverse inclusion.

Let f be a continuous, piecewise linear function which is linear on, say, m intervals $([t_{i-1},t_i])_{i=1}^m$. Given $\epsilon>0$, we can find a piecewise linear function g which is linear on m intervals $([c_{i-1},c_i])_{i=1}^m$ with dyadic rational endpoints, and hence an element of $<(f_n)>$, with the property that $||f-g||_{\infty}<\frac{\varepsilon}{2\sqrt{2m-1}}$. Note that if $s,s'\in[0,1]$, then this shows that

$$|(f-g)(s) - (f-g)(s')| < \frac{\varepsilon}{2\sqrt{2m-1}}.$$
 (1)

The function f - g is continuous and piecewise linear, and the points where it changes monotonicity form a subset of $\bigcup_{i=0}^{m} (c_i, t_i)$.

By Proposition 4, there exists a finite, ordered sequence $G = \{s_0, < s_1 < \cdots < s_n\}$ in [0,1] such that $G \subseteq \bigcup_{i=0}^m (c_i,t_i)$ and $|f-g|^G = ||f-g||$. Note that $n \leq 2m-1$. As a result of this discussion and inequality (1), we conclude that $||f-g|| \leq \epsilon$.

To show that (f_n) is a monotone basis for $\mathbb{F}_{\alpha,2}$, it is enough to prove that if $K \in \mathbb{N}$ and $(a_n)_{n=1}^{K+1} \subseteq \mathbb{R}$, then

$$\left\| \sum_{n=1}^{K} a_n f_n \right\| \le \left\| \sum_{n=1}^{K+1} a_n f_n \right\|. \tag{2}$$

Note that $\sum_{n=1}^{K} a_n f_n$ and $\sum_{n=1}^{K+1} a_n f_n$ are piecewise linear functions. Furthermore, if $\sum_{n=1}^{K} a_n f_n$ changes monotonicity at some $t \in [0,1]$, then $\sum_{n=1}^{K+1} a_n f_n$ changes monotonicity at that t as well. Thus by Proposition 4, (2) follows. \square

Theorem 2.10. $\mathbb{F}_{\alpha,2} = \alpha B V_0^2$.

Proof. The proof that $\mathbb{F}_{\alpha,2} \subseteq \alpha BV_0^2$ is rather straightforward. Indeed, since αBV_0^2 is a Banach space, it is sufficient to show that the normalized monotone Schauder basis (f_n) of $\mathbb{F}_{\alpha,2}$ belongs to αBV_0^2 . This is an elementary observation and we omit the details.

We will show that $\alpha BV_0^2\subseteq \mathbb{F}_{\alpha,2}$. Let $\epsilon>0$ and $f\in \alpha BV_0^2$ be given, and let $\epsilon_0>0$ be such that $14\epsilon_0^2<\epsilon^2$. We choose $\delta>0$ and $N\in\mathbb{N}$ such that $\sigma_2^\delta(f)<\epsilon_0$ and $\frac{3}{\delta N^2}<1$. Since $\alpha BV_0^2\subseteq C[0,1],\ f\in C[0,1]$. Thus, we may choose $n\in\mathbb{N}$ in such a way that if $g\in\mathbb{F}_{\alpha,2}$ is linear on each D_n^k and $g(\frac{k}{2^n})=f(\frac{k}{2^n})$ for $0\leq k\leq 2^n$, then $\|f-g\|_\infty<\frac{\epsilon_0}{2N}$. We also require that $2^{-n}<\frac{\delta}{3}$.

Let $G = \{r_1 < s_1 \le \cdots \le r_m < s_m\}$ be a finite, ordered sequence of ordered pairs in [0, 1], determining the seminorm $|.|_G$. We partition G into three finite, ordered sequences G_1 , G_2 and G_3 (so that $|.|_G^2 = |.|_{G_1}^2 + |.|_{G_2}^2 + |.|_{G_3}^2$) as follows. Let i be in $\{1, ..., m\}$.

- 1. If $s_i r_i > \frac{\delta}{3}$, then we consider r_i and s_i as elements of G_1 . Thus, $|f g|_{G_1}^2 < \frac{3}{\delta} \left(\frac{\varepsilon_0}{N}\right)^2 < \epsilon_0^2$.
- 2. If $(r_i s_i) \subseteq D_n^k$ for some k, then r_i and s_i are contained in G_2 . It follows that

$$|g|_{G_2}^2 \le \epsilon_0^2.$$

Also, $|f|_{G_2}^2 \le \sigma_2^{\delta}(f)^2 < \epsilon_0^2$.

3. The remaining s_i s and r_i s are considered as the elements of G_3 . Let $G_3 = \{0 \leq r'_1 < s'_1 \leq \cdots \leq r'_t < s'_t \leq 1\}$. Then, $s'_i - r'_i < \frac{\delta}{3}$ for i = 1, ..., t, and both s'_i and r'_i cannot be in the same dyadic interval D_n^K . Split G_3 into $G_{3,e}$ and $G_{3,o}$ by putting s'_i and r'_i in $G_{3,e}$ if i is even, and putting them in $G_{3,o}$ otherwise. Thus, for example, if $s'_i, r'_i \in G_{3,e}$ and $s'_i \in D_n^k$, then $D_n^k \cap G_{3,e} = \{s'_i\}$. Applying the Intermediate Value Theorem to f and using the fact that $2^{-n} < \frac{\delta}{3}$, we can find (say, if t is even)

$$G_{3,e}^{\prime\prime} = \{0 \leq r_1^{\prime\prime} < s_1^{\prime\prime} \leq \dots \leq r_{\frac{t}{2}}^{\prime\prime} < s_{\frac{t}{2}}^{\prime\prime} \leq 1\}$$

with $|.|_{G_{3,e}''} \in S(\delta)$ and $f(r_i'') = g(r_{2i}'), f(s_i'') = f(s_{2i}')$ for $i = 0, ..., \frac{t}{2}$. Thus $|g|_{G_{3,e}}^2 = |f|_{G_{3,e}''}^2 < \varepsilon_0^2$. Similarly, $|g|_{G_{3,o}}^2 < \varepsilon_0^2$. Hence,

$$|f - g|_{G}^{2} = |f - g|_{G_{1}}^{2} + |f - g|_{G_{2}}^{2} + |f - g|_{G_{3}}^{2}$$

$$< \epsilon_{0}^{2} + (|f|_{G_{2}} + |g|_{G_{2}})^{2} + (|f|_{G_{3}} + |g|_{G_{3}})^{2}$$

$$< \epsilon_{0}^{2} + (2\epsilon_{0})^{2} + (\epsilon_{0} + (|g|_{G_{3,e}}^{2} + |g|_{G_{3,o}}^{2})^{\frac{1}{2}})^{2}$$

$$< \epsilon_{0}^{2} + (2\epsilon_{0})^{2} + (\epsilon_{0} + \sqrt{2}\epsilon_{0})^{2}$$

$$< 14\epsilon_{0}$$

$$< \epsilon^{2}.$$

This completes the proof.

3. Aknowledgement

We would like to thank the reviewers for their thoughtful comments and efforts towards improving our manuscript.

References

- [1] S. Buechler, Ph.D. Thesis, University of Texas at Austin, 1994.
- [2] H. Khodabakhshian, Ph.D. Thesis, University of Sistan and Baluchestan, 2008.
- [3] P. Azimi, J. Hagler, Example of hereditarily l_1 Banach spaces failing the Scher property, Pacific J. Math. 122 (1986), 287-297.
- [4] M. M. Day, Normal Linear Spaces, Springer Verlag, Berlin, 1958.
- [5] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Vol.I sequences spaces, Springer Verlag, Berlin. 1996.
- [6] M. Shiba, On the absolute convergence of Fourier series of functions of class $\Lambda BV^{(p)}$, Sci. Rep. Fukushima Univ. 30 (1980), 7-10.
- [7] D. Waterman, On convergence of Fourier series of functions of bounded generalized variation, Studia Math. 44 (1972), 107-117.
- [8] D. Waterman, On Λ-bounded variation, Studia Math. 57 (1976), 33-45.

JAVAD FATHI MOURJANI

Department of Mathematics

University of Hormozgan

Bandarabbas, Iran.

 $E ext{-}mail\ address: fathi@hormozgan.ac.ir, fathi756@gmail.com}$