
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,003 |
تعداد دریافت فایل اصل مقاله | 3,580,072 |
ON TOPOLOGICAL ENTROPY WITH THE LEVELS (a; b) OF ab-RELATIVES DYNAMICAL SYSTEMS | ||
Journal of Mahani Mathematical Research | ||
دوره 10، شماره 1، مرداد 2021، صفحه 119-129 اصل مقاله (474.95 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmrc.2021.14762.1102 | ||
نویسندگان | ||
Zahra Eslami Giski* 1؛ ABOLFAZL EBRAHIMZADEH2 | ||
1Islamic Azad University, Sirjan Branch. | ||
2Islamic Azad University, Zahedan Branch | ||
چکیده | ||
ABSTRAct. In this paper, a relative intuitionistic dynamical system with the levels (α, β), as a mathematical model compatible with a natural phenome- non, is proposed. In addition, the notion of RI topological entropy with the levels (α, β) for RI dynamical systems with the levels (α, β) is defined and its properties are studied. As a significant result, it was shown that, this topolog- ical entropy is an invariant object up to conjugate relation. | ||
کلیدواژهها | ||
Relative intuitionistic topological entropy؛ Relative intuitionistic dynamical system؛ Dynamical system؛ Topological entropy | ||
مراجع | ||
[1] Adler, R.L. and Konheim, A.G. and McAndrew, M.H. Topological entropy. Trans. Amer. Math. Soc., 114, 309-319, 1965. [2] Atanassov, K. and Stoeva, S. Intuitionistic fuzzy sets, In polish symposium on interval and fuzzy mathematics, Poznan, 23-26, 1983. [3] Atanassov, K. Intuitionistic fuzzy sets, Fuzzy sets and systems, 20(1), 87-96, 1986. [4] Broumi, S. and Majumdar, P. New operations on intuitionistic fuzzy soft sets based on second Zadeh's logical operators, I.J. Information Engineering and Electronic Business, 1, 25-31, 2014. [5] Canovasa, J. and J.Kupka. On the topological entropy on the space of fuzzy num- bers,Fuzzy Sets and systems, 257, 132-145, 2014. [6] Chen, S.M. and Chang, C.H. A novel similarity measure between Atanassovs intuition- istic fuzzy sets based on transformation techniques with applications to pattern recog- nition, Information Sciences, 291, 96 - 114, 2015. [7] Coker, D. A note on intuitionistic sets and intuitionistic points, TU.J. Math. 20, 343- 351, 1996. [8] Deng, G. and Jiang, Y. Fuzzy reasoning method by optimizing the similarity of truth- tables, Information Sciences, 288, 290313, 2004. [9] Eslami Giski, Z. and Ebrahimi, M. The concept of topological entropy from the view point of an intuitionistic observer, Indian journal of mathematic, 8(23), 54258, 2015. [10] Joshi, D. and Kumar, S. Intuitionistic fuzzy entropy and distance measure based TOPSIS method for multi-criteria decision making, Egyptian Informatics Journal, 15(2), 97104, 2014. [11] Kolmogorov, A.N. New metric invariants of transitive dynamical systems and automor- phisms of Lebesgue spaces, Dokl. Akad. Nauk SSSR, 119, 861-864, 1958. [12] Molaei, M.R. Relative semi-dynamical system, International Journal of Uncertainty Fuzziness and knowledge-Based Systems, 12, 237-243, 2004. [13] Molaei, M.R. and Anvari, M.H. and Haqiri, T. On relative semi dynamical systems, Intelligent Automation and Soft Computing, 13, 413-421, 2007. [14] Molaei, M.R. Observational modeling of topological spaces, Chaos, Solitons and Fractals, 42(1), 615-619, (2009). [15] R. Roopkumar, C. Kalaivani, Continuity of intuitionistic fuzzy proper functions on in- tuitionistic smooth fuzzy, Notes on Intuitionistic Fuzzy Sets, 16(3), 1-21, 2010. [16] Sinai, Y.G. On the concept of entropy of a dynamical system, Dokl. Akad. Nauk SSSR, 124, 781-786, 1959. [17] Walters, P. An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982. [18] L. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338353. | ||
آمار تعداد مشاهده مقاله: 292 تعداد دریافت فایل اصل مقاله: 171 |