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Abstract. The aim of this paper is introduce an approach to convert
the topology of a topological space to another topology(in fact, a coarser

topology). For this purpose, considering a closed set P of subsets of a

topological space (X, τ) and a grill G on the space, we use the closure
operator cl associated with τ , to define a new Kuratowski closure opera-

tor cl∗P on X. The operator cl∗P induces the desired topology. We then

characterize the form of this resulting topology and also determine its re-
lationship to the initial topology of the space. Some examples are given.

Also, using a suitable grill in the method, we convert each topological

space to corresponding D-space.

Keywords: Kuratowski closure operator, Kuratowski closure axioms, grill,
D-topology, D-space.

2020 MSC : Primary 54A05, 54A10, 54C25.

1. Introduction

When geographic (spatial) data is modeled for use in GIS systems, we find
that some of the modeled data must have spatial relationships with other data
in the model. For example, taxi stations are located in specific locations and
taxis are allowed to move in a certain area. These defined relationships can be
presented in the form of topological laws. In fact, topological structures- e.g.
topology, generalized topology, supra topology, m-topology, proximity spaces,
closure spaces and etc- are models that can describe the geometric sharing of
data and also provides a mechanism for establishing and maintaining spatial
relationships between the data in the model. Now, if the range of taxi traffic ex-
pands or decreases, it changes the model and the relationships. So, application
of topological structures in spatial geography can be very valuable, because the
change in the role of points and places can be interpreted as a kind of change in
the formed topological structure. Therefore, the issue of change in topological
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structures appears. Inspired by this issue, in this paper we intend to present a
way to change the topology of a topological space.

It is noteworthy that for the first time, I(the author) was confronted with
the concept of change in topology in the master course. On page 29 of [10], it
is stated; “If A ⊆ X and τ is any topology for X, then {U ∪ (V ∩A) : U, V ∈ τ}
is a topology for X. It is called the simple extension for τ over A.”. This was
very interesting to me and caught my attention. Later I came across with a
topic called “Closed Extension Topology” in [1], but the method did not appeal
to me. I was constantly struggling with the issue of changing in topology until
I finally realized that the best way to change the topology is to use its twin,
i.e., Kuratowski closure operator.

In summary, the purpose of this paper is to present a method based on
which we can turn the topology of a desired topological space into another
topology. Indeed in this method, using the initial Kuratowski closure operator
cl corresponding to the desired topological space (X, τ), we try to define a new
Kuratowski closure operator cl∗ to create a new topology on the set X.

2. Preliminaries

In this section, we will introduce some requirements related to the paper.
Denote P(X) as the power set of X. Then cl as an operator on P(X) is called
a Kuratowski closure operator, if it satisfies the following Kuratowski closure
axioms;

(1) : cl(∅) = ∅ (It preserves the empty set),
(2) : A ⊆ cl(A) for any A ⊆ X (It is extensive),
(3) : cl(cl(A)) = cl(A) for any A ⊆ X (It is idempotent),
(4) : cl(A ∪B) = cl(A) ∪ cl(B) for any A,B ⊆ X(It is additive).

It is well-known that topological spaces are characterized by Kuratowski
closure operators and vice versa, that is, in fact associated with any topology τ
on a set X is a Kuratowski closure operator on the set X, denoted clτ (in short,
cl), which gives for any subset A ⊆ X, the smallest closed set clA containing
A. Also, on the other hand, corresponding to any Kuratowski closure operator
cl on a set X, there exists a unique topology, say, τ on the set X in the form
of τ = {X −A : cl(A) = A}, see [10].

As stated in the introduction, the purpose of this paper is to present a
method based on the use of the Kuratowski closure operator to change the
associated topology. It is worth mentioning that in the desired method, we will
use a mathematical tool called grill, which was first introduced by Choquet [5]
in 1947 as follows;

A non-empty collection G of non-empty subsets of X is called a grill on X if

(1) : A ∈ G and A ⊆ B ⇒ B ∈ G and
(2) : A,B ⊆ X and A ∪B ∈ G ⇒ A ∈ G or B ∈ G.

It is worth noting that grill like ideals, nets and filters are very useful tool. It
is also seen that in many situations, grills are more productive and more flexible
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than these concepts. For instance, we can see its role in proximity spaces( [9]),
closure spaces ( [3, 4]) and the theory of extension of compactification( [2, 7]).

For a space (X, τ), the following collections are examples of grills on X;

• the collection of all uncountable subsets of X,
• the collection of all nowhere dense subsets of X,
• for A ⊆ X the collection {B ⊆ X : B ∩A 6= ∅} and especially for every

point p of X the collection {A ⊆ X : p ∈ A},
• and also, G = P(X) \ {∅}.

We denote the family of all grills on X with the symbol of G(X) and note
that the maximum element of G(X) is G = P(X) \ {∅}.

Remark 2.1. Here we remind the reader that, the condition (1) in definition of
grills requires X ∈ G for any G ∈ G(X) and from condition (2) it follows that
X \A ∈ G when A /∈ G for any A ⊆ X and G ∈ G(X).

Now, let us dedicate the end of this section to a brief description of the
method.
Let (X, τ) be an arbitrary topological space, P ∈ P(X) and G be a grill on
(X, τ). We define the operator cl∗P on X based on the grill G and the closure
operator cl associated with τ , as follows;

(1) cl∗P (A) = clGP (A) =

{
clA clA /∈ G
clA ∪ P clA ∈ G

where A ∈ P(X)(we prefer to use the symbol cl∗P instead of the symbol clGP if
there is no ambiguity about the grill G).

Considering a suitable condition about the set P in the next section, it will
be shown that the operator cl∗P satisfies Kuratowski closure axioms, that is,
the operator can constitute a topology, say, τ∗P on X.

3. Main Results

As proposed in the previous section, this section intends to provide a method
to construct another topology on a topological space. To that end, first the
general construction of a new Kuratowski closure operator from the old one, in
any topological space is presented.

Theorem 3.1. Let (X, τ) be a topological space and P be a closed subset of X.
Also, let G be a grill on (X, τ). Then the operator cl∗P : P(X)→ P(X) defined
by

(2) cl∗P (A) =

{
clA clA /∈ G
clA ∪ P clA ∈ G

where A be any subset of X, is a Kuratowski closure operator so induces a
topology τ∗P on X.
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Proof. From cl(∅) = ∅ /∈ G, we have cl∗P (∅) = ∅. Also, it is clear that A ⊆
cl∗P (A) for any A ⊆ X.

We now verify that for any A,B ⊆ X, cl∗P (A ∪B) = cl∗P (A) ∪ cl∗P (B).
Let A and B are two subsets of X and consider two cases;

◦ (i): cl(A ∪B) /∈ G
◦ (ii): cl(A ∪B) ∈ G

In case (i); we have

cl∗P (A ∪B) = cl(A ∪B) = clA ∪ clB

and also, we have clA = cl∗PA and clB = cl∗PB, because cl(A ∪B) /∈ G implies
that clA, clB /∈ G. So, in this case

cl∗P (A ∪B) = clA ∪ clB = cl∗P (A) ∪ cl∗P (B).

In case (ii); we have

cl∗P (A ∪B) = cl(A ∪B) ∪ P = clA ∪ clB ∪ P

also, we have clA∪ clB ∪P = cl∗PA∪ cl∗PB, because cl(A∪B) ∈ G implies that
clA ∈ G or clB ∈ G. So, in this case

cl∗P (A ∪B) = clA ∪ clB ∪ P = cl∗P (A) ∪ cl∗P (B).

Hence, cl∗P has the property of additive.
We next show that cl∗P (cl∗P (A)) = cl∗P (A), for any A ⊆ X.
Here, let A be a subset of X and consider two cases;

◦ (i): clA /∈ G
◦ (ii): clA ∈ G

In case (i); we have

cl∗P (cl∗P (A)) = cl∗P (clA) (from cl(clA) = clA /∈ G) = clA = cl∗P (A),

while in case (ii); we have
cl∗P (cl∗P (A)) = cl∗P ((clA) ∪ P )(due to the additive property of cl∗P shown

above)= cl∗P (clA) ∪ cl∗P (P ) = ((clA) ∪ P ) ∪ cl(P )(due to closedness of P in
hypothesis)= (clA) ∪ P = cl∗PA. So, cl∗P has the property of idempotency.

It follows that cl∗P is a Kuratowski closure operator on X which gives rise
to a topology(say) τ∗P on X. �

Remark 3.2. In the above theorem, if the set P is selected equal to the empty
set then, cl∗P = cl∗∅ = cl, so τ∗P = τ∗∅ = τ . Hence from here onwards we assume
that P is a nonempty set.

To determine the general form of τ∗P , we first characterize the operator int∗P
as dual of the topological closure operator cl∗P in the sense of int∗P (A) = X \
cl∗P (X \A) and cl∗P (A) = X \ int∗P (X \A) for any A ⊆ X.
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Theorem 3.3. Let (X, τ) be a topological space and cl∗P be the operator con-
structed in Theorem 3.1. Then for any subset A of X the interior operator
int∗P as dual of the operator cl∗P has the form of

(3) int∗P (A) =

{
intA P ∩A = ∅ or P ∩A 6= ∅ with cl(X \A) /∈ G
(intA) \ P P ∩A 6= ∅ with cl(X \A) ∈ G

Proof. Let A be a subset of X and consider two cases;
(i): P ∩A 6= ∅,

(ii): P ∩A = ∅.
In case (i), considering cl(X \A) /∈ G, we have cl∗P (X \A) = cl(X \A), so

int∗P (A) = X \ cl∗P (X \A) = X \ cl(X \A) = intA,

while considering cl(X \A) ∈ G leads to cl∗P (X \A) = cl(X \A) ∪ P , and so

int∗PA = X \ cl∗P (X \A) = X \ [cl(X \A) ∪ P ]

= (X \ cl(X \A)) ∩ (X \ P ) = (intA) \ P.

In case (ii) we have; P ⊆ X \ A. Here, considering cl(X \ A) /∈ G leads to
cl∗P (X \A) = cl(X \A), so

int∗P (A) = X \ cl∗P (X \A) = X \ cl(X \A) = intA,

while considering cl(X \A) ∈ G requires that we have cl∗P (X \A) = cl(X \A)∪
P (as P ⊆ X \A) = cl(X \A) and so

int∗P (A) = X \ cl∗P (X \A) = X \ cl(X \A) = intA.

Therefore, according to the above we have the following formula

(4) int∗P (A) =


intA P ∩A 6= ∅ with cl(X \A) /∈ G
(intA) \ P P ∩A 6= ∅ with cl(X \A) ∈ G
intA P ∩A = ∅

�

By determining the set {A ⊆ X : int∗PA = A} as the fixed points of the
operator int∗P , the topology τ∗P is determined.

Corollary 3.4. The topology τ∗P as the set of fixed points of the operator int∗P
on the space (X, τ), has the following form;

(5) τ∗P = τGP = {A ∈ τ : P ∩A = ∅} ∪ {A ∈ τ : P ∩A 6= ∅, X \A /∈ G}.

Proof. To determine τ∗P , we note that A ∈ τ∗P if and only if int∗PA = A.
Considering cl(X \A) /∈ G in case (i) in the proof of the Theorem 3.3, leads to
int∗PA = intA, so A ∈ τ∗P if and only if A ∈ τ , while considering cl(X \A) ∈ G
in case (i), leads to int∗PA = (intA)\P , so A ∈ τ∗P if and only if A = (intA)\P
and this is impossile. Therefore, no subset A of X, which intersects P and is
valid under the condition cl(X \A) ∈ G, can belong to τ∗P .
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In case (ii) of the proof of the Therorem 3.3, because int∗PA = intA, hence
A ∈ τ∗P if and only if A ∈ τ . So according to the above we have

τ∗P = {A ∈ τ : P ∩A = ∅} ∪ {A ∈ τ : P ∩A 6= ∅, X \A = cl(X \A) /∈ G}.
�

Below we describe different forms of τ∗P by considering some special cases
for the set P and grill G.

Remark 3.5. If we choose P as a closed subset of (X, τ), then P is closed in
(X, τ∗P ), hence if P 6= X then P is not dense in (X, τ∗P ).

Proof. According to Formula (5) in Corollary 3.4, clearly closedness of P in
(X, τ), implies closedness of P in (X, τ∗P ), so if P 6= X be a closed set of (X, τ),
we will have cl∗PP = P 6= X which completes the proof. �

Example 3.6. By choosing P = X in Corollary 3.4, we will have;

τ∗X = {A ∈ τ : A ∩X = ∅} ∪ {A ∈ τ : A ∩X 6= ∅, X \A /∈ G}
= {∅} ∪ {A ∈ τ \ {∅} : X \A /∈ G}.

Remark 3.7. If we put G = P(X) \ {∅} in Example 3.6, then the result will be
the trivial topology.

Definition 3.8. A topology ς for a set X is called a D-topology (and (X, ς)
is called D-space) whenever every non-empty open set is dense in X.

Remark 3.9. If we put G∗ = {A ⊆ X : intclA 6= ∅} in Example 3.6, then there
will be a way to extract D-topology D(τ), from the original topology of any
topological space (X, τ). Because, we have

τ∗X = {∅} ∪ {A ∈ τ \ {∅} : X \A /∈ G}
= {∅} ∪ {A ∈ τ \ {∅} : intcl(X \A) = ∅}
= {∅} ∪ {A ∈ τ \ {∅} : int(X \A) = ∅}
= {∅} ∪ {A ∈ τ \ {∅} : clA = X} = D(τ).

In the following we will try to calculate the rule of the Kuratowski closure
operator clG

∗

P corresponding to the D-topology D(τ).
From Remark 3.9, we have;

D(τ) = {∅} ∪ {A ∈ τ \ {∅} : clA = X}
= {A ∈ τ : A ∩X = ∅} ∪ {A ∈ τ \ {∅} : int(X \A) = intcl(X \A) = ∅}
= {A ∈ τ : A ∩X = ∅} ∪ {A ∈ τ : A ∩X 6= ∅, intcl(X \A) = ∅}
= {A ∈ τ : A ∩X = ∅} ∪ {A ⊆ X : A ∩X 6= ∅, cl(X \A) /∈ G∗}.

Now, according to Corollary 3.4 and Theorem 3.3, we have;

(6) int∗P=X(A) =


∅ A = ∅
(intA) \ P intcl(X \A) 6= ∅
intA intcl(X \A) = ∅

=

{
intA clintA = X

∅ otherwise
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and correspondingly;

(7) X \ int∗P=X(A) =

{
X \ intA clintA = X

X otherwise

Thus

(8) cl∗P=X(X \A) =

{
cl(X \A) intcl(X \A) = ∅
X otherwise

and so;

(9) cl∗P=X(A) =

{
clA A is a nowhere dense set

X otherwise

In the following remark, the relationship between τ and τ∗P has been deter-
mined.

Remark 3.10. In general, τ∗P is coarser than τ , because τ = {A ∈ τ : P ∩ A =
∅} ∪ {A ∈ τ : P ∩A 6= ∅} and clearly, {A ∈ τ : P ∩A 6= ∅, X \A /∈ G} ⊆ {A ∈
τ : P ∩A 6= ∅}.

In the following example, we show that by choosing the appropriate grills,
τ∗P and τ can be matched in some topological spaces.

Example 3.11. Let τ denotes the cofinite topology on a(an infinite) set X and
G be the grill of all infinte subsets of X, then

τ∗P = {A ∈ τ : P ∩A = ∅} ∪ {A ∈ τ : P ∩A 6= ∅, X \A /∈ G}
= {A ∈ τ : P ∩A = ∅} ∪ {A ∈ τ : P ∩A 6= ∅, X \A is finite(so is closed)}
= {A ∈ τ : P ∩A = ∅} ∪ {A ∈ τ : P ∩A 6= ∅} = τ.

Here, by selecting X as an uncountable set equipped with cocountable topology
τ and grill G = {A ⊆ X : A is an uncountable subset of X}, we will have the
same result again.

As we have seen, considering G∗ = P(X) \ {∅} and G∗ = {A ⊆ X : intclA 6=
∅}, as grills on (X, τ) in τ∗P , we have;

τG∗P = {A ∈ τ : P ∩A = ∅} ∪ {X}
and

τG
∗

P = {A ∈ τ : P ∩A = ∅} ∪ {A ∈ τ : clA = X}.
So, as we see τG∗P ⊆ τ

G∗
P . In this regard, we have the following proposition.

Proposition 3.12. Let I and J be grills on a space (X, τ) such that I ⊆ J ,
then τJP ⊆ τIP .

Proof. If I ⊆ J , then for any B ⊆ X, B /∈ J implies that B /∈ I. Putting
B = X \ A, we have {A ∈ τ : P ∩ A 6= ∅, X \ A /∈ J } ⊆ {A ∈ τ : P ∩ A 6=
∅, X \A /∈ I} and therefore τJP ⊆ τIP . �
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Based on the above proposition, we have the following corollary.

Corollary 3.13. For any grill G defined on a topological space (X, τ), we have

{A ∈ τ : A ∩ P = ∅} ∪ {X} ⊆ τGP ⊆ τ.

Proof. Clearly, P(X) \ {∅} ⊇ G for any grill G ∈ G(X). Now, from Corollary
3.4, Proposition 3.12 and Remarks 3.7 and 3.10 we get the result. �

Example 3.14. Let X = {a, b, c} and also, let τ = {∅, {a}, {c}, {a, c}, {a, b, c}}
and G = {{b}, {a, b}, {b, c}, {a, b, c}} are respectively a topology and a grill on
X. If P0 = ∅, P1 = {b}, P2 = {a, b}, P3 = {b, c} and P4 = X, then we have;

τ∗P0
= τ∗P1

= {∅, {a}, {c}, {a, c}, {a, b, c}} = τ,

τ∗P2
= {∅, {c}, X}, τ∗P3

= {∅, {a}, X}, τ∗P4
= {∅, X}.

Next example shows that using two different closed subsets in our method
may lead to the same topology.

Example 3.15. PutX = {a, b, c, d} and let τ = {∅, {a}, {a, b}, {a, b, c}, {a, b, d}, X}
and G = {{a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}, {a, b, c, d}} be re-
spectively, a topology and a grill on X. Then for closed sets {c} and {d} of
(X, τ), we have

{A ∈ τ : {c} ∩A = ∅} = {∅, {a}, {a, b}, {a, b, d}}
and

{A ∈ τ : {d} ∩A = ∅} = {∅, {a}, {a, b}, {a, b, c}},
also, we have

{A ∈ τ : {c} ∩A 6= ∅, X \A /∈ G} = {{a, b, c}, {a, b, c, d}}
and

{A ∈ τ : {d} ∩A 6= ∅, X \A /∈ G} = {{a, b, d}, {a, b, c, d}}.
So we will have,

τ∗{c} = {∅, {a}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}} = τ∗{d}.

Therefore, it is possible to obtain the same topology for different closed sets.

Proposition 3.16. The set {A ∈ τ : A∩P = ∅} as a part of τ∗P , is a topology
on X \ P , in fact it is the subspace topology from τ on X \ P .

Proof. Clearly ∅ is in {A ∈ τ : A ∩ P = ∅} and X \ P (since we choose P as
a closed set of τ) is in {A ∈ τ : A ∩ P = ∅}. Now, let A1 and A2 are in
{A ∈ τ : A ∩ P = ∅}, then A1 ∩ A2 ∈ τ and also, P ∩ (A1 ∩ A2) = ∅. So
A1 ∩A2 ∈ {A ∈ τ : A ∩ P = ∅}.

Also if for an arbitrary indexing set K, {Ak : k ∈ K} be a subcollection
of {A ∈ τ : A ∩ P = ∅}, then ∀k ∈ K we have Ak ∈ τ and P ∩ Ak = ∅. So
∪k∈KAk ∈ τ and ∪k∈KAk∩P = ∅, hence ∪k∈KAk ∈ {A ∈ τ : A∩P = ∅}. Thus,
we show that the set {A ∈ τ : A∩P = ∅} forms a topology on X\P , but as X\P
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is an open set in (X, τ), then we infer that the topology {A ∈ τ : A ∩ P = ∅}
is the subspace topology from τ on X \ P . �

Proposition 3.16 brings to mind the following lemma.

Lemma 3.17. Let (Y, τ
′
) be a topological space with a grill G on it and P be

any set with P ∩Y = ∅. Then the collection τ
′ ∪{A∪P : A ∈ τ ′ , cl(Y \A) /∈ G}

is a topology on X, where X = Y ∪ P .

Proof. Assuming Y = X \ P in Proposition 3.16 we conclude that the set
{A ∈ τ : A∩P = ∅} as a part of τ∗P is the same as the subspace topology (τ∗P )|Y
induced by τ∗P on Y , that is, {A ∈ τ : A ∩ P = ∅} = (τ∗P )|Y = τ

′
(therefore, we

can consider Y as an original topological space from the beginning). So, from
Corollary 3.4 we can write

τ∗P = (τ∗P )|Y ∪ {A ∈ τ : P ∩A 6= ∅, X \A /∈ G}.

So from the beginning, we can assume (Y, τ
′
) as the initial topological space.

We now check that τ
′ ∪ {A∪P : A ∈ τ ′ , cl(Y \A) /∈ G} is a topology on X.

Let Γ = {A ∪ P : A ∈ τ ′ , cl(Y \ A) /∈ G} and Γ∗ = τ
′ ∪ Γ. Clearly ∅ ∈ Γ∗.

Assuming A = Y , we will have A ∈ τ ′ and cl(Y \A) = ∅ /∈ G, so X = A ∪ P ∈
Γ ⊆ Γ∗.
Now, let B1 and B2 are in Γ∗, we show that B1 ∩B2 is in Γ∗. Here if both B1

and B2 are in τ
′
, then clearly B1 ∩B2 is in τ

′
and so B1 ∩B2 is in Γ∗. But if

both B1 and B2 are in Γ, taking B1 = A1∪P and B2 = A2∪P for A1, A2 ∈ τ
′

and cl(Y \ A1), cl(Y \ A2) /∈ G, we will have B1 ∩ B2 = (A1 ∩ A2) ∪ P ∈ Γ,

because A1 ∩A2 ∈ τ
′

and cl(Y \ (A1 ∩A2)) = cl(Y \A1)∪ cl(Y \A2) /∈ G. So,
here B1 ∩B2 = (A1 ∩A2) ∪ P ∈ Γ∗.
Also for B1 ∈ τ and B2 ∈ Γ, by placing B1 = A1 and B2 = A2 ∪ P for
A1, A2 ∈ τ we will have B1 ∩B2 = A1 ∩ (A2 ∪ P ) = A1 ∩A2 ∈ τ ⊆ Γ∗.

Also, for any {Bα}α∈Λ ⊆ Γ∗, we show that ∪α∈ΛBα ∈ Γ∗.

(1) if {Bα}α∈Λ ⊆ τ
′

then clearly ∪α∈ΛBα ∈ τ
′
, so ∪α∈ΛBα ∈ Γ∗.

(2) if {Bα}α∈Λ ⊆ Γ then for each α ∈ Λ we put Bα = Aα ∪ P where

Aα ∈ τ
′

and cl(Y \Aα) /∈ G. Then ∪α∈ΛBα = (∪α∈ΛAα)∪P such that

∪α∈ΛAα ∈ τ
′

and cl(Y \ ∪α∈ΛAα) ⊆ cl(Y \Aα0
) /∈ G for some α0 ∈ Λ.

Hence ∪α∈ΛBα ∈ Γ ⊆ Γ∗.
(3) if {Bα}α∈Λ = {Bαλ}∪ {Bαγ} ⊆ Γ∗ where {Bαλ} ⊆ τ

′
and {Bαγ} ⊆ Γ,

then we have ∪α∈ΛBα = (∪{Bαλ}) ∪ (∪{Bαγ}). Now, from part (1)

∪Bαλ = A1 ∈ τ
′

and from part (2) ∪Bαγ = A2 ∪ P for some A2 ∈ τ
′

with cl(Y \A2) /∈ G. Thus ∪α∈ΛBα = (A1∪P )∪A2 = (A1∪A2)∪P ∈
Γ ⊆ Γ∗, because A1 ∪A2 ∈ τ and cl(Y \ (A1 ∪A2)) ⊆ cl(Y \A2) /∈ G.

�

Definition 3.18. [6] Let X be a nonempty set and µ be a nonempty collection
of subsets of X. µ is called a supratopology on X whenever ∅, X ∈ µ and
{Gα}α∈Λ ⊆ µ implies ∪α∈ΛGα ∈ µ.
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Following proposition introduces a way to extract some supratopologies from
any topological space.

Proposition 3.19. Let (X, τ) be a topological space, P be a closed subset of
X and G ∈ G(X). If we put T = {A ∈ τ : P ∩A 6= ∅, X \A /∈ G}, then

(1) : Each pair of elements of T has nonempty intersection.
(2) : T ∪ {∅} is a supratopology on X.

Proof. (1) : For any A1, A2 ∈ T , we have A1 ∩ A2 6= ∅. Because from
A1, A2 ∈ T , we will haveX\A1, X\A2 /∈ G and thereforeX\(A1∩A2) =
(X \ A1) ∪ (X \ A2) /∈ G. Now the assumption A1 ∩ A2 = ∅ gives
X \ (A1 ∩A2) = X /∈ G which is a contradiction.

(2) : Clearly ∅ ∈ T ∪ {∅} and also by putting A = X we have, A is in τ
such that P ∩A 6= ∅ and X \A = ∅ /∈ G, so we get X ∈ T .
On the other hand, if for an arbitrary indexing set K we put {Ak : k ∈
K} ⊆ T , then clearly ∪k∈KAk is in τ such that P ∩ (∪k∈KAk) 6= ∅ and
X \ ∪k∈KAk = ∩k∈K(X \Ak) ⊆ X \A1 /∈ G, so ∪k∈KAk ∈ T .

�

Definition 3.20. [2] A topological space (Y, µ) is called an extension of a
space (X, τ) if (Y, µ) contains (X, τ) as a dense subspace. Also, if Y is an
extension of X, then we call the subspace Y \X of Y , the remainder of Y .

According to the previous definition, we get next corollary from Proposition
3.16.

Corollary 3.21. Let (X, τ) be a topological space. Then, each of spaces (X, τ∗P )
associted to each grill G ∈ G(X) can be counted as an extension of the (sub)space
X \ P . Moreover between them, (X, τ∗) for τ∗ = {A ∈ τ : P ∩ A = ∅} ∪ {X}
is the smallest.

Proof. In Corollary 3.4, we showed that τ∗P = {A ∈ τ : P ∩ A = ∅} ∪ {A ∈ τ :
P∩A 6= ∅, X\A /∈ G} and it was also shown in Proposition 3.16 that the induced
subspace topology (τ∗P )|X\P from τ∗P on X \P is equal to {A ∈ τ : P ∩A = ∅}.
Note X \ P is dense in (X, τ∗P ). So by definition 3.20, the space (X, τ∗P ) is
an extension of the space (X \ P, (τ∗P )|X\P ). According to Corollary 3.13, the

proof of the expression τ∗ = {A ∈ τ : P ∩A = ∅} ∪ {X} is the smallest one, is
straightforward. �

As the final point, it is appropriate to say that replacing the role of grills
with stacks in the method of this paper, instead of changing the topology of
a space leads to extract supra topologies from that topology, for this purpose
see [8].
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