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Abstract. Recently, Zhang et al. [Applied Mathematics Letters 104

(2020) 106287] proposed a preconditioner to improve the convergence
speed of three types of Jacobi iterative methods for solving multi-linear

systems. In this paper, we consider the Jacobi-type method which works

better than the other two ones and apply a new preconditioner. The
convergence of proposed preconditioned iterative method is studied. It is

shown that the new approach is superior to the recently examined one in

the literature. Numerical experiments illustrate the validity of theoretical
results and the efficiency of the proposed preconditioner.
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1. Introduction

We consider the following multi-linear system

(1) A xm−1 = b,

where A ∈ R

m︷ ︸︸ ︷
n× . . .× n is a given n–dimension tensor of m–order, the right-

hand side b ∈ Rn is also available and x is the unknown tensor to be determined.
Similar to [19], we consider the case that the coefficient tensor A is a strong
M-tensor whose definition is recalled later in this section. The entries of vector
A xm−1 are defined as follows:

(A xm−1)i =

n∑
i2,...,im=1

aii2...imxi2 . . . xim , i = 1, 2, . . . , n.

We focus on the case that b is a nonnegative vector and as pointed out above A
is also assumed to be strongM-tensor. These assumptions ensure the existence
of a unique solution for A xm−1 = b; see [16] for details. In practice, the multi-
linear systems in the above form appear in several areas such as engineering
and scientific computing; see [3, 7–11,17,18] for further details.
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In the sequel, the set of all n–dimension real tensor of m–order is denoted
by R[m,n] for notational simplicity. The notation Im represents the unit tensor
in R[m,n] where Im = (δi1...im) such that

δi1...im =

{
1, i1 = · · · = im,

0, otherwise.

Moreover, without loss of generality, we assume that ai...i = 1 for i = 1, 2, . . . , n
and consider the decomposition A = Im−L −F where L = LIm in which
−L is the strictly lower triangle part of M(A ).

The remainder of this paper is organized as follows: Before ending this
section, we review some basic concepts, definitions and properties which are
required for obtaining our main results. In section 2, we give a brief overview
on the results recently established in [19] and propose a new preconditioner
for accelerating the convergence speed of a Jacobi-type iterative method. We
study the properties of presented preconditioned Jacobi-type method and es-
tablish some comparison results in section 3. Test problems are experimentally
examined in section 4 to numerically demonstrate the validity of presented
theoretical results. We finish the paper with a brief conclusion in section 5.

We recall some definitions and preliminaries in the rest of this section. The
following definitions are mostly taken from [16] and the references therein.

Definition 1.1. Corresponding to a given tensor A ∈ R[m,n], the majorization
matrix M(A ) is the n× n matrix whose entries are given by M(A )ij = aij...j
for i, j = 1, 2, . . . , n.

Definition 1.2. Let A ∈ R[m,n]. If M(A ) is a nonsingular matrix and A =
M(A )Im, the matrix M(A )−1 is called the order 2 left-inverse of A .

Definition 1.3. Let A ∈ R[m,n]. If A has an order 2 left-inverse, A is called
a left-invertible tensor or a left-nonsingular tensor.

Definition 1.4. For a given tensor A ∈ R[m,n], the decomposition A = E −F
is called a (tensor) splitting, if E is left-nonsingular.

Definition 1.5. Given a tensor A ∈ R[m,n], the splitting A = E −F is said
to be

• a regular splitting, if M(E )−1 ≥ 0 and F ≥ 0;
• a weak regular splitting, if M(E )−1 ≥ 0 and M(E )−1F ≥ 0;
• a convergent splitting, if ρ(M(E )−1F ) < 1.

Definition 1.6. [12, 13] Let A ∈ R[m,n]. A pair (λ, x) ∈ C × (Cn\{0}) is
called an eigenpair of A , if they satisfy the equation A xm−1 = λx[m−1] where
x[m−1] = (xm−1

1 , . . . , xm−1
n )T . The eigenpair (λ, x) is called an H-eigenpair, if

both λ and x are real.

The spectral radius of A is defined by ρ(A ) = max{|λ| | λ ∈ σ(A )} in
which σ(A ) stands for the set of all eigenvalues of A .
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Definition 1.7. Let A ∈ R[m,n]. The tensor A is called a Z-tensor, if its
off-diagonal entries are non-positive. If there exist a nonnegative tensor B and
a positive real number η ≥ ρ(B) such that A = ηIm −B, then A is said to
be an M-tensor. In the case that η > ρ(B), the tensor A is called a strong
M-tensor.

Definition 1.8. [1,5] If A ∈ R[2,n] and B = (bi1...im) ∈ R[m,n], then the tensor
C = AB belongs to R[m,n] and its entries are given as follows:

cji2...im =

n∑
j2=1

ajj2bj2i2...im , 1 ≤ j, iτ ≤ n (τ = 2, . . . ,m).

Lemma 1.9. [3] If A is a strong M-tensor, then M(A ) is a nonsingular
M -matrix.

We end this section by pointing out that the converse of Lemma 1.9 does
not hold in general, see [3, Lemma 3.6] for further details.

2. Proposed preconditioner

Given the tensor splitting A = E −F , we consider the following iterative
method for solving (1),

(2) xk = [M(E )−1Fxm−1
k−1 +M(E )−1b][

1
m−1 ], k = 1, 2, . . . ,

where x0 is an arbitrary given initial guess. Here, the tensor M(E )−1F is
called the iteration tensor. In [3, Subsection 5.3], it was discussed that the
spectral radius of iteration tensor can be regarded as an approximation for the
asymptotic convergence rate of iterative method (2).

In order to improve the convergence rate of iterative method (2), it is com-
mon to apply left preconditioning technique, e.g., see [3, 8, 17, 19]. Basically,
given the preconditioner P ∈ Rn×n, we employ an iterative method in the form
(2) to solve the following preconditioned multi-linear system,

(3) PA xm−1 = Pb,

instead of A xm−1 = b. In particular, more recently, Zhang et al. [19] exploited
the preconditioner P(c,1) = I + S(c,1) with

(4) S(c,1) =


0 0 0 . . . 0

−α21a21...1 0 0 . . . 0
...

...
...

. . .
...

−αn1an1...1 0 0 . . . 0

 ,
to accelerate the convergence speed of iterative methods in the form (2) corre-
sponding to the following three Jacobi-type splittings:

Ā = E1 −F1, where E1 = P(c,1)Im,

Ā = E2 −F2, where E2 = Im,

Ā = E3 −F3, where E3 = Im − D̄ ,(5)
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here Ā = P(c,1)A and D̄ = D̄Im and D̄ is a diagonal matrix such that

D̄ = diag(M(S(c,1)F )). It was both theoretically and numerically illustrated
that the third splitting outperforms other two splittings.

Remark 2.1. Zhang et al. [19] assumed that A is a strong M-tensor which
implies that Ā = P(c,1)A is also a strong M-tensor [19, Lemma 2] for αi1 ∈
[0, 1] (2 ≤ i ≤ n). Then, throughout the paper, the following assumption is set

0 < αi1ai1...1a1i...i < 1,

where αi1 ∈ [0, 1] for i = 2, . . . , n. We comment that the above assumption is
a direct conclusion of the fact that Ā is a strong M-tensor, see [4] for further
discussion.

In this paper, we consider the Jacobi type method corresponding to splitting
of type (5) with the preconditioner P̃ = I +R where

(6) R =



0 0 0 . . . 0 0
−α21a21...1 0 0 . . . 0 0
−α31a31...1 −α32a32...2 0 . . . 0 0
−α41a41...1 0 −α43a43...3 . . . 0 0
−α51a51...1 0 0 . . . 0 0

...
...

...
. . .

...
...

−α(n−1)1a(n−1)1...1 0 0 . . . 0 0
−αn1an1...1 0 0 . . . −αn(n−1)an(n−1)...(n−1) 0


,

where parameters αi1, αjj−1 ∈ [0, 1] for i = 2, . . . , n and j = 3, . . . , n are given
parameters. Basically, we set

Ã := P̃A = EP̃ −FP̃ , where EP̃ = Im − D̃ ,(7)

here D̃ = D̃Im and D̃ is a diagonal matrix such that D̃ = diag(M(RF )).
We end this section by the definition of semi-positive tensors and a useful

theorem.

Definition 2.2. A tensor A is said to be a semi-positive tensor, if there exists
x > 0 such that A xm−1 > 0.

In [16, Theorem 2], it is proved that x > 0 in the above definition can be
relaxed into x ≥ 0 in view of the continuity of the tensor-vector product on the
entries of the vector.

Theorem 2.3. [16, Theorem 3] A Z-tensor is a strong M-tensor if and only
if it is semi-positive.

3. Convergence and comparison analyses

In this section, we study the convergence of the preconditioned Jacobi type
method with preconditioner P̃ and prove a comparison result between the pro-
posed method and the one corresponding to splitting (5). Associated with

P̃ = I + R, we consider the following preconditioned multi-linear system



A preconditioned Jacobi-type method – JMMRC Vol. 10, No. 2 (2021) 25

Ã xm−1 = b̃ where Ã = (I + R)A and b̃ = (I + R)b. It can be observed
that

Ã = Im −L −F +RIm −RL −RF ,

recalling that A = Im −L −F where L = LIm , −L is the strictly lower
triangle matrix of M(A ). As a natural way, we propose the preconditioned
Jacobi-type method as follows:

xk = [M(EP̃ )−1FP̃x
m−1
k−1 +M(EP̃ )−1b̃][

1
m−1 ], k = 1, 2, . . . ,

where the initial guess x0 is given and

(8) EP̃ = Im − D̃ and FP̃ = EP̃ − Ã ,

here D̃ = D̃Im and D̃ is a diagonal matrix such that D̃ = diag(M(RF )).
The following lemma shows that if A ∈ R[m,n] is assumed to be a strong

M-tensor then the preconditioned tensor P̃A is also a strong M-tensor.

Lemma 3.1. Let A ∈ R[m,n] be a strong M-tensor. Then, Ã = P̃A is a
strongM-tensor where P̃ = I+R and R is defined by (6) such that αi1, αjj−1 ∈
[0, 1] for i = 2, . . . , n and j = 3, . . . , n.

Proof. We first show that Ã = [ãi1i2...im ] ∈ R[m,n] is a Z-tensor, i.e., all off-

diagonal of Ã are non-positive. In the sequel, we assume that δii2...im = 0.
Evidently ã1i2...im = a1i2...im for 1 ≤ ij ≤ n and j = 2, . . . ,m. One can
observe that for i = 2, we have ã21...1 = (1 − α21)a21...1 ≤ 0 and ã2i2...im =

a2i2...im − α21a21...1a1i2...im ≤ 0 when δ1i2...im = 0. Other entries of Ã are
determined by

ãii2...im = aii2...im − αi1ai1...1a1i2...in − αi(i−1)ai(i−1)...(i−1)a(i−1)i2...in ,

for i = 3, . . . , n and 1 ≤ ij ≤ n for j = 2, . . . ,m. It is obvious that if δi2...im = 0,
then ãii2...im ≤ 0. Now we consider the case that i2 = i3 = . . . = im = η. For
η = 1, it is already shown that ã21...1 ≤ 0. Furthermore, we have

ãi1...1 = (1− αi1)ai1...1 − αi(i−1)ai(i−1)...(i−1)a(i−1)1...1 ≤ 0,

for i = 3, . . . , n. Without loss of generality, we assume that η 6= 1. If η 6= i− 1,
then

ãiη...η = aiη...η − αi1ai1...1a1η...η − αi(i−1)ai(i−1)...(i−1)a(i−1)η...η ≤ 0,

noticing that η 6= i. Otherwise, we have

ãiη...η = (1− αiη)aiη...η − αi1ai1...1a1η...η ≤ 0.

From the above discussion, we can deduce that Ã is a Z-tensor. To complete
the proof, by Theorem 2.3, we need to show that Ã is semi-positive. By the
assumption and Theorem 2.3, the tensor A is semi-positive. Therefore there
exists a nonnegative vector x such that A xm−1 > 0. Consequently, since I+R
is a nonnegative matrix, we have Ã xm−1 = (I + R)A xm−1 > 0 which shows

that Ã is a strong M-tensor. �
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Lemma 3.2. Let A be a strong M-tensor. Then Ã = EP̃ −FP̃ is a regular
splitting where αi1, αjj−1 ∈ [0, 1] for i = 2, 3, . . . , n and j = 3, . . . , n.

Proof. The proof is basically a direct conclusion from Lemma 3.1. More pre-
cisely, Lemma 1.9 implies that M(Ã ) is an M -matrix which implies that its

diagonal entries are all positive. That is, EP̃ = (I − D̃)Im is a nonnega-

tive (diagonal) tensor where D̃ = D̃Im and D̃ is a diagonal matrix such that

D̃ = diag(M(RF )). As a result, we conclude that M(EP̃ )−1 = (I − D̃)−1 ≥ 0.
The tensor FP̃ in (8) is given by

FP̃ = (L −RIm) + F +RL + F̃ ,

where F̃ = RF − D̃Im. Evidently, we can observe that F +RL +F̃ ≥ 0. In
addition, one can see that (L −RIm)ii2...im = 0, if δi2...im = 0 and δii2...im = 1
for 1 ≤ i ≤ n. It can be verify that

(L −RIm)ij...j =


(αij − 1)aij...j , j = 1 or j = i− 1,

−aij...j , j ≤ i and j 6= 1, i− 1,

0, otherwise,

for i = 2, . . . , n. Now, the assertion can be conclude from the fact that L −
RIm ≥ 0. �

Remark 3.3. Under the assumptions of Lemma 3.2, we deduce that Ã = EP̃ −
FP̃ is a convergent splitting, see [16, Lemma 2.8] for more details.

Consider the splitting A = Ē3 − F̄3 such that

(9) Ē3 = P−1
(c,1)E3 and F̄3 = P−1

(c,1)F3,

where E3 and F3 are given by (5). Evidently, we have

M(Ē3)−1F̄3 = M(E3)−1F3 ≥ 0.

Let (ρ̄, x̄) be the Perron eigenpair of M(Ē3)−1F̄3 and assume that ρ̄ 6= 0.
Therefore, we derive

(10) A x̄m−1 =
1− ρ̄
ρ̄

F̄3x̄
m−1.

It can be verify that

F̄3 = (I + S(c,1))
−1((L − S(c,1)Im) + F + S(c,1)L + S(c,1)F − D̄Im)

= (I + S(c,1))
−1((I + S(c,1))L + (I + S(c,1))F − S(c,1)Im − D̄Im)

= L + F − (I + S(c,1))
−1(S(c,1)Im + D̄Im)

= L + F − (I − S(c,1))(S(c,1)Im + D̄Im)

= (L − S(c,1)Im) + (F − D̄Im) + S(c,1)D̄Im ≥ 0,

noticing that S(c,1)S(c,1) = 0. In view of (10), we can conclude that A x̄m−1 ≥
0.
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We end this section by a comparison theorem which shows that under cer-
tain conditions the considered Jacobi-type iterative method with preconditioner
P̃ has better (asymptotic) rate of convergence in comparison with the one
corresponding to P(c,1). To this end, we first need to recall the concept of
(ir)reducibility for tensors and a useful theorem.

Definition 3.4. [6] A tensor C = (ci1...im) ∈ R[n,m] is called reducible if there
exists a nonempty proper index subset I ⊂ {1, . . . , n} such that ci1...im = 0 for
all i1 ∈ I, for all i2, . . . , im /∈ I. If C is not reducible, then C is said to be
irreducible.

Theorem 3.5. [15, Theorem 5.2] Let A ∈ R[n,m], and A ≥ 0. Furthermore,
suppose that A has a positive eigenvector corresponding to some eigenvalue.
Then,

ρ(A ) = min
x>0

max
xi>0

(
A xm−1

)
i

xm−1
i

.

Theorem 3.6. Let A ∈ R[n,m] be a strong M-tensor and M(E3)−1F3 be
irreducible. Assume that S(c,1) ≤ R where S(c,1) and R are respectively given

by (4) and (6). Then, ρ(M(EP̃ )−1FP̃ ) ≤ ρ(M(E3)−1F3) < 1.

Proof. Consider the splittings A = Ē3 − F̄3 = ÊP̃ − F̂P̃ where Ē3 and F̄3 are
given by (9) and

ÊP̃ = P̃−1ẼP̃ and F̂P̃ = P̃−1F̃P̃ .

Let x̄ be the Perron vector of nonnegative irreducible tensor M(Ē3)−1F̄3, by
the Perron–Frobenius theorem for nonnegative irreducible tensors x̄ > 0 [6,
Theorem 1.4]. By some straightforward computation, we derive

(11) M(Ē3)−1A x̄m−1 = (1− ρ(M(Ē3)−1F̄3))x[m−1] > 0.

It is not difficult to see that

M(ÊP̃ )−1 = M(ẼP̃ )−1P̃ ≥M(ẼP̃ )−1P(c,1) ≥M(E3)−1P(c,1) = M(Ē3)−1.

As a results, from Eq. (11) and the above relation, we deduce that

x̄[m−1] −M(ÊP̃ )−1F̂P̃ x̄
m−1 = M(ÊP̃ )−1A x̄m−1 ≥M(Ē3)−1A x̄m−1

= (1− ρ(M(Ē3)−1F̄3))x̄[m−1].

As a result, we have M(ÊP̃ )−1F̂P̃ x̄
m−1 ≤ ρ(M(Ē3)−1F̄3)x̄[m−1]. Now, using

Theorem 3.5, we conclude that

ρ(M(ÊP̃ )−1F̂P̃ ) = min
x>0

max
xi>0

(M(ÊP̃ )−1F̂P̃x
m−1)

i

xm−1
i

≤ max
x̄i>0

(M(ÊP̃ )−1F̂P̃ x̄
m−1)

i

x̄m−1
i

≤ ρ(M(Ē3)−1F̄3),

which completes the proof. �
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4. Numerical Results

In this section, we examine the proposed preconditioner numerically and
compare its performance with the preconditioner proposed by Zhang et al.
[19]. All of numerical experiments were computed using Matlab version 9.4
(R2018a) running on an Intel Core i5 CPU at 2.50 GHz with 8 GB of memory.

We report the total required number of iterations and consumed CPU-time
(in seconds) under “Iter” and “CPU(s)”, respectively. The iterations were ter-
minated once the maximum iteration number 1000 reached or ‖A xm−1

k − b‖
2
≤

ε where xk denotes the kth approximate solution and ε = 10−11. The the ini-
tial vector x0 is taken to be zero. The spectral radii of nonnegative tensors are
computed by the power method given in [14].
Two test examples from the literature were chosen for which ai...i ≥ 1 for
i = 1, . . . , n. Therefore, we consider the multi-linear system D−1A xm−1 =
D−1b which is equivalent to (1), where D is a diagonal matrix such that D =
diag(a1...1, . . . , an...n). In the implementation of preconditioners, here, we limit
ourselves to the cases that αi1 = α for i = 2, . . . , n, and αj(j−1) = β for
j = 3, . . . , n in (6). Although, in theory, we only considered the case that
parameters are lower than one. In the sequel, we further report the results for
the cases that the parameters are larger than one for more details.

Example 4.1 ( [2]). Let B ∈ R[3,10] be a nonnegative tensor with majorization
matrix M(B) = rand(10) where “rand(·)” is a Matlab function. For 2 ≤
i ≤ 10, bi,i−1,i = bi,i,i−1 = 1/6, for 1 ≤ i ≤ 9, bi,i+1,i = bi,i,i+1 = 1/6 and
other entries of B are zero. We set A = (5.8225)I −B commenting that we
obtain ρ(B) = 4.8225 using power method. The right-hand side is chosen to
be a random vector. More precisely, the matrix M(B) and the right-hand side
vector b are given as follows:

M(B) =


0.7894 0.4845 0.1123 0.1098 0.6733 0.0924 0.0986 0.5557 0.9879 0.1544
0.3677 0.1518 0.7844 0.9338 0.4296 0.0078 0.1420 0.1844 0.1704 0.3813
0.2060 0.7819 0.2916 0.1875 0.4517 0.4231 0.1683 0.2120 0.2578 0.1611
0.0867 0.1006 0.6035 0.2662 0.6099 0.6556 0.1962 0.0773 0.3968 0.7581
0.7719 0.2941 0.9644 0.7978 0.0594 0.7229 0.3175 0.9138 0.0740 0.8711
0.2057 0.2374 0.4325 0.4876 0.3158 0.5312 0.3164 0.7067 0.6841 0.3508
0.3883 0.5309 0.6948 0.7690 0.7727 0.1088 0.2176 0.5578 0.4024 0.6855
0.5518 0.0915 0.7581 0.3960 0.6964 0.6318 0.2510 0.3134 0.9828 0.2941
0.2290 0.4053 0.4326 0.2729 0.1253 0.1265 0.8929 0.1662 0.4022 0.5306
0.6419 0.1048 0.6555 0.0372 0.1302 0.1343 0.7032 0.6225 0.6207 0.8324

 , b =


0.5975
0.3353
0.2992
0.4526
0.4226
0.3596
0.5583
0.7425
0.4243
0.4294

 .
We report the numerical results in Table 1 which illustrates that the precon-
ditioned Jacobi-type method with preconditioner P̃ converges faster than the
corresponding one to preconditioner P(c,1).

Example 4.2 ( [17]). Let A ∈ R[3,n] and b ∈ Rn×n with

a111 = annn = 1,

aiii = 2, i = 2, 3, . . . , n− 1,

aii−1i = −1/2, i = 2, 3, . . . , n− 1,

aii−1i−1 = −1/2, i = 2, 3, . . . , n− 1,

aii+1i+1 = −1/2, i = 2, 3, . . . , n− 1,
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Table 1. Example 4.1: Comparison results for the precondi-
tioned Jacobi-type method.

Preconditioners

α
P(c,1) P̃ (β = α) P̃ (β = 2α) P̃ (β = 3α)

Iter CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s)

0.4 115 0.1353 111 0.1311 107 0.1267 104 0.1249
0.8 111 0.1321 104 0.1234 97 0.1146 91 0.1102
1.0 110 0.1316 101 0.1176 93 0.1093 85 0.0989
1.2 108 0.1295 97 0.1139 88 0.1066 80 0.0940
1.6 104 0.1258 91 0.1078 79 0.0935 69 0.0814
2.0 101 0.1219 85 0.0995 71 0.0824 58 0.0674

and 
b1 = c20,

bi = a
(n−1)2 , i = 2, 3, . . . , n− 1,

bn = c21.

Taking c0 = 1/2, c1 = 1/3 and a = 2, we report the numerical results in Table

2 associated with the experimentally obtained optimal parameter α∗ for P̃ .
For more details, we further plot the convergence histories of (preconditioned)
Jacobi-type method with respect to α in Figure 1. It is seen that the pre-
conditioned Jacobi-type method with P̃ requires less number of iterations and
CPU-time than the Jacobi-type method with P(c,1).

Table 2. Example 4.2: Comparison results for the Jacobi-
type method with optimal parameter α.

Preconditioned Jacobi-type method

Preconditioner P(c,1) Preconditioner P̃

n α∗
No preconditioning α = α∗ α = β = α∗

Iter CPU(s) Iter CPU(s) Iter CPU(s)

20 2.1 73 0.0390 72 0.0397 36 0.0206
50 2.1 74 0.0413 72 0.0411 36 0.0211
100 2.0 75 0.0424 73 0.0418 37 0.0217
300 2.0 76 0.0466 74 0.0444 37 0.0257
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Figure 1. Example 4.2: Required number of iterations
for the convergence versus parameter α for the Jacobi-type
method (n = 100).

5. Conclusion

We presented a new preconditioner in conjunction with a Jacobi-type method
for solving multi-linear systems. The performance of preconditioner was ana-
lyzed and compared with a recently proposed preconditioner in the literature by
Zhang et al. [Applied Mathematics Letters. 2020; 104:106287] for accelerating
the speed of convergence of Jacobi-type methods. The reported experimental
results demonstrate that the new preconditioner outperforms the previously ex-
amined one by Zhang et al. and numerically confirm the established theoretical
analyses.
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