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Abstract. In this paper, by using SOR-Like method that introduced

by Golub, Wu and Yuan and generalized Taylor expansion method for

solving linear systems [F. Toutounian, H. Nasabzadeh, A new method
based on the generalized Taylor expansion for computing a series solu-

tion of linear systems, Appl. Math. Comput. 248 (2014) 602-609], the

GTSOR-Like method is proposed for augmented systems. The conver-
gence analysis and the choice of the parameters of the new method are

discussed. While there is no guarantee the SOR-Like method converges

for the negative parameter, ω additional parameters of the new method
can be adjusted for the corresponding GTSOR-Like method to converge.

Finally, numerical examples are given to show that the new method is

much more efficient than the SOR-Like method.
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1. Introduction

Consider the following linear system of equations with 2×2 block structure,

(1)

(
A B
−BT 0

)(
x
y

)
=

(
p
−q

)
,

where A ∈ Rm×m is a symmetric positive definite matrix, B ∈ Rm×n is a
matrix of full column rank, m and n with m ≥ n are two positive integers,
p ∈ Rm and q ∈ Rn are two given vectors. BT denotes the transpose of the
matrix B. These system of linear equations are called saddle point problems,
which arise in many scientific computing and engineering applications such as
optimization [27, 28], Stokes equations and Maxwell equation, computational
fluid dynamics [2, 8, 15, 16], weighted least squares problems [1, 30], optimal
control [9] and absolute value equations [13,18,21] and so on.
the system of linear equation (1) is also termed as a Karush-Kuhn-Tucker
(KKT) system, or an augmented system or an equilibrium system. When
the matrix blocks A and B are large and sparse, iterative methods become
more attractive than direct methods for solving the saddle point problem (1).
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Many efficient iterative methods, for example Uzawa-type methods [3,7,11,14],
HSS iteration methods [4,19], Preconditioned Krylov subspace iteration meth-
ods [10, 20], restrictively preconditioned conjugate gradient methods [5, 29],
have been proposed. Golub et al [17], proposed the SOR-like method and con-
sidered the optimum choice for iteration parameters, Li et al [22] proposed the
GAOR method, also Bai et al [6] proposed the GSOR method on the basis of
the SOR-like method. The SSOR-Like methods presented by the symmetric
processing technique [12,23,25,26].
In this paper, based on the generalized Taylor expansion for solving the linear
systems that introduced by F. Toutounian and H. Nasabzadeh [24], and by the
SOR-like method for saddle point problem (1), we present a new method. We
call the new method, GTSOR-like method. By choosing suitable parameters
the new method is faster than the corresponding SOR-Like method, also from
Theorem 2.2 it is clear that there is no guarante that the SOR-Like method
converges for the negative parameter, ω, while we show that additional param-
eters of the corresponding GTSOR-Like method can be adjusted to converge.
The numerical experiments show that GTSOR-Like method work quit well.
The outline of this paper is as follow. In Section2, we introduce the GTSOR-
Like method, in Section3 we give some Theorems and Lemmas to provide the
convergence property of the new method and choices of the parameters are
discussed. In Section4, numerical examples are given to show that the new
method is much more efficient that the SOR-Like method. Finally, we make
some conclusions and outlook in Section5.

2. The GTSOR-like Method

In this section, we introduce our new iteration method, for this purpose, first
we describe the SOR-Like method that introduced by Golub, Wu and Yuan [17].

Method 1. (The SOR-like method)
Let Q ∈ Rn×n be a nonsingular and symmetric matrix. Given initial vectors
x(0) ∈ Rm and y(0) ∈ Rn and a relaxation factor ω > 0. For k = 0, 1, 2, ... until

the iteration sequence {(x(k)T , y(k)T )} is convergent, compute{
x(k+1) = (1− ω)x(k) + ωA−1(p−By(k)),
y(k+1) = y(k) + ωQ−1(BTx(k+1) − q).

Here, Q is an approximate (preconditioning) matrix of the schur complement
matrix BTA−1B.

We can see [17], that

(2)

(
x(k+1)

y(k+1)

)
= Mω

(
x(k)

y(k)

)
+ ω(D − ωL)−1

(
p
−q

)
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where

(3)

Mω =

(
A 0

−ωBT Q

)−1(
(1− ω)A −ωB

0 Q

)

=

(
A−1 0

ωQ−1BTA−1 Q−1

)(
(1− ω)A −ωB

0 Q

)

=

(
(1− ω)I −ωA−1B

ω(1− ω)Q−1BT −ω2Q−1BTA−1B + I

)
and

D =

(
A 0
0 Q

)
, L =

(
0 0
BT 0

)
, U =

(
0 −B
0 Q

)
,

so (
A B
−BT 0

)
≡ D − L− U.

Lemma 2.1. [17].
Suppose that µ is an eigenvalue of Q−1BTA−1B. If λ satisfies

(4) (λ− 1)(1− ω − λ) = λω2µ,

then λ is an eigenvalue of Mω. Conversely, if λ is an eigenvalue of Mω such
that λ 6= 1 and λ 6= 1 − ω, and µ satisfies (4), then µ is a nonzero eigenvalue
of Q−1BTA−1B.

Theorem 2.2. [17].
suppose that B has full rank and A is symmetric and positive definite. Assume
that all eigenvalues µi of Q−1BTA−1B are real, then if µi > 0, i = 1, 2, ..., n.
The SOR-like method is convergent for all ω such that

(5) 0 < ω <
4

1 +
√

4µmax + 1

where µmax = maxni=1(µi).

Now, put

(6) G = Mω =

(
(1− ω)I −ωA−1B

ω(1− ω)Q−1BT −ω2Q−1BTA−1B + I,

)
taking

(7) Gα,~ =
~G− α(~ + 1)I

~− α(~ + 1)
,

where α and ~ are real parameters, see [24], so

(8)
Gα,~ =

1

~− α(~ + 1)

(
(~(1− ω)− α(~ + 1))I −ω~A−1B
ω~(1− ω)Q−1BT −ω2~Q−1BTA−1B + (~− α(~ + 1))I

)
.
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Let

(
u0
v0

)
be an initial approximation to the exact solution

(
u
v

)
of the system

(1), put:

(9)

(
u1
v1

)
=

−~
~− α(~ + 1)

[(I −G)

(
u0
v0

)
− ω(D − ωL)−1

(
p
−q

)
](

ui
vi

)
= Gα,~

(
ui−1
vi−1

)
, i = 2, 3, ...,

then,

(
u
v

)
=
∑∞
i=0

(
ui
vi

)
.

Method 2. (The GTSOR-like method) Let Q ∈ Rn×n be a nonsingular and
symmetric matrix. Given initial vectors u0 ∈ Rm and v0 ∈ Rn and α, ~ ∈ R
where, ~− α(~ + 1) 6= 0 and a relaxation factor ω 6= 0. For k = 0, 1, 2, ... until

the iteration sequence
∑k
j=0(uTj , v

T
j ) is convergent, compute

(10)

u1 =
−ω~

~− α(~ + 1)
[u0 +A−1(Bv0 − p)],

v1 = ωQ−1BTu1 +
ω~

~− α(~ + 1)
Q−1[BTu0 − q],

ui =
1

~− α(~ + 1)
[(~(1− ω)− α(~ + 1))ui−1 − ω~A−1Bvi−1],

vi = ωQ−1BTui + vi−1 +
ωα(~ + 1)

~− α(~ + 1)
Q−1BTui−1, i = 2, 3, 4, ....

3. Convergece analysis of GTSOR-Like method

Here, we give some Theorems and Lemmas to provide the convergence prop-
erty of the GTSOR-Like method.

Lemma 3.1. Suppose that all eigenvalues µ of Q−1BTA−1B are real and
positive then:

(1) G has not real simple eigenvalue if :

(11) max
µi

(
−2
√
µi − 1

µi
) < ω < min

µi

(
2
√
µi − 1

µi
).

(2) G has not complex eigenvalue if :

(12) ω ∈ (−∞,min
µi

(
−2
√
µi − 1

µi
)] ∪ [max

µi

(
2
√
µi − 1

µi
),+∞).

Proof. From Lemma 2.1 the eigenvalues of G satisfies (4) or equivalently

(13) λ2 + (ω2µ+ ω − 2)λ+ 1− ω = 0.

We can easily see if:

max
µi

(
−2
√
µi − 1

µi
) < ω < min

µi

(
2
√
µi − 1

µi
),
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then

4 = (ω2µ+ ω − 2)2 − 4(1− ω) ≤ 0.

So the roots of equation (13) are not real simple. In similar way, also we can
see if

ω ≤ min
µi

(
−2
√
µi − 1

µi
) or ω ≥ max

µi

(
2
√
µi − 1

µi
),

then 4 ≥ 0 so the roots of equation (13) are real. �

Remark 3.2. The function f1(µ) =
−2
√
µ− 1

µ
for µ > 0 is an increasing func-

tion, so

max
µi

(
−2
√
µi − 1

µi
) =
−2
√
µmax − 1

µmax

and

min
µi

(
−2
√
µi − 1

µi
) =
−2
√
µmin − 1

µmin

where µmax = maxi(µi) and µmin = mini(µi).

Remark 3.3. The function f2(µ) =
2
√
µ− 1

µ
has the following properties:

(i) It has only one root, µ =
1

4
.

(ii) Its maximum point is (1, 1).
(iii) limµ−→+∞ f2(µ) = 0.
(iv) limµ−→0+ f2(µ) = −∞.

Corollary 3.4. If µi ≥
1

4
for i = 1, 2, ..., n then the interval

(max
µi

(
−2
√
µi − 1

µi
),min

µi

(
2
√
µi − 1

µi
))

is non-empty.

Now, let λi = Re(λi) + iIm(λi), i = 1, 2, ...,m+ n are the eigenvalues of G
and Remin(λi) = minn+mi=1 (Re(λi)) and Remax(λi) = maxn+mi=1 (Re(λi)), so

Lemma 3.5. Suppose that all eigenvalues µi of Q−1BTA−1B are real and
positive.

If maxµi
(
−2
√
µi − 1

µi
) < ω < minµi

(
2
√
µi − 1

µi
) then:

(1) Remax(λi) < 1 if

ω ∈ K = ((−∞,− 1

µmin
) ∪ (0,+∞)) ∩ (max

µi

(
−2
√
µi − 1

µi
),min

µi

(
2
√
µi − 1

µi
))
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(2) Remax(λi) > 1 if

−1

µmax
< ω < 0

Proof. Since maxµi
(
−2
√
µi − 1

µi
) < ω < minµi

(
2
√
µi − 1

µi
) , from Lemma 3.1,

G has not real simple eigenvalue so by (13), we have

Re(λi) = −1

2
(ω2µi + ω − 2).

By simple computation, we can show that if

ω ∈ K = ((−∞,− 1

µmin
) ∪ (0,+∞)) ∩ [maxµi

(
−2
√
µi − 1

µi
),minµi

(
2
√
µi − 1

µi
)],

then Remax(λi) < 1 and if
−1

µmax
< ω < 0 then Remax(λi) > 1. �

Lemma 3.6. Suppose that all eigenvalues µi of Q−1BTA−1B are real and
positive.

If ω ∈ (−∞,minµi(
−2
√
µi − 1

µi
)]∪ [maxµi(

2
√
µi − 1

µi
),+∞), then Remax(λi) <

1.

Proof. Clearly, if ω ∈ (−∞,minµi(
−2
√
µi − 1

µi
)] ∪ [maxµi(

2
√
µi − 1

µi
),+∞).

then from Lemma 3.1, G has not complex eigenvalue, so Re(λi) = λi. From
(13), with few computation we can see that

±
√
ω4µ2

i + 2ω2(ω − 2)µi < ω2µi + ω, i = 1, 2, ..., n+m

and this leads to λi < 1 for i = 1, 2, ..., n+m so Remax(λi) < 1. �

Theorem 3.7. Suppose that all eigenvalues µi of Q−1BTA−1B are real and
positive and let λi = Re(λi) + iIm(λi), i = 1, 2, ...,m + n are the eigenvalues
of G and Remin(λi) = minn+mi=1 (Re(λi)) and Remax(λi) = maxn+mi=1 (Re(λi))

and let θi =
|λi|2 − 1

Re(λi)− 1
, i = 1, 2, . . . , n + m, and θmin = minn+mi=1 (θi) and

θmax = maxn+mi=1 (θi). Suppose that α 6= Remin(λi) +Remax(λi)

2
. Let

L = K ∪ (−∞,min
µi

(
−2
√
µi − 1

µi
)] ∪ [max

µi

(
2
√
µi − 1

µi
),+∞).

Then the GTSOR-like method converges if the parameters α, ~ and ω take any
values from their domains, as these are defined and given in the Table 1.

Proof. From Theorem 4.3 in [24] and lemmas (3.5) and (3.6) it is trival. �
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Table 1: The possible domains of the parameters ω, α and ~

case ω- domain α- domain ~- domain

1
−1

µmax
< ω < 0

θmax
2

< α (−∞, 2α

θmax − 2α
) ∪ (0,+∞)

2
−1

µmax
< ω < 0 0 < α <

θmin
2

(0,
2α

θmax − 2α
)

3
−1

µmax
< ω < 0 α < 0 (

2α

θmax − 2α
, 0)

4 ω ∈ L 0 < α and
θmax

2
< α (

2α

θmin − 2α
, 0)

5 ω ∈ L θmax
2

< α < 0 (0,
2α

θmin − 2α
)

6 ω ∈ L 0 < α <
θmin

2
(−∞, 0) ∪ (

2α

θmin − 2α
,+∞)

7 ω ∈ L α <
θmin

2
and α < 0 (−∞, 2α

θmin − 2α
) ∪ (0,+∞)

4. Numerical Example

In this section we give an example to compare the SOR-Like method and
the GTSOR-Like method.

Example 4.1. [10] Consider the augmented system (1) in which

A =

(
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

)
∈ R2p2×2p2 and B =

(
I ⊗ F
F ⊗ I

)
∈ R2p2×p2

and T =
1

h2
.tridiag(−1, 2,−1) ∈ Rp×p, F =

1

h
.tridiag(−1, 1, 0) ∈ Rp×p

with ⊗ being the kronecker product symbol and h =
1

p+ 1
being the mesh size.

Here, we set m = 2p2 and n = p2. We choose the matrix Q the identity
matrix (as an approximation of the matrix BTA−1B).
In our computations, the initial guesses are set with the zero vector and termi-
nated if the current iteration satisfy EER < 10−9, where

EER =

√
‖ x(k) − x∗ ‖22 + ‖ y(k) − y∗ ‖22√
‖ x(0) − x∗ ‖22 + ‖ y(0) − y∗ ‖22

also, we choose the right hand side vector (pT ,−qT )T ∈ Rm+n, such that the
exact solution of (1) is ((x∗)T , (y∗)T )T = (1, 1, ..., 1)T ∈ Rm+n.
All the computations results are show in MATLAB R2015a and performed on
a PC with Intel(R) Core(TM) i3-2330M Processor/ 2.20 GHz and RAM 4GBz.

In Tables 2-4, we list the values ω and ~ and we report the numerical results,
IT (the iteration step), CPU (the CPU time in seconds)and ERR, when p = 8,
p = 16 and p = 24.
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Table 2: p = 8 and α = 1

Method ω ~ IT ERR CPU

SOR-Like 1.0585 – 127 8.8776e− 10 0.251176
GTSOR-Like 1.0585 −1.1 114 9.3871e− 10 0.197615
GTSOR-Like 1.0585 −1.3 95 8.2062e− 10 0.171492

SOR-Like 1.2 – 185 8.8994e− 10 0.322125
GTSOR-Like 1.2 −0.9 123 8.5986e− 10 0.239337
GTSOR-Like 1.2 −0.8 139 9.8915e− 10 0.252605

Tables 2-4 indicate that the GTSOR-Like method is much more effective than
the SOR-Like method, since the GTSOR-Like requires much less iteration steps
and CPU times than the SOR-Like method. Table 5 show that the SOR-Like
method diverges for negative ω while the GTSOR-Like converges.

Table 3: p = 16 and α = 1

Method ω ~ IT ERR CPU

SOR-Like 1.03 – 232 9.4364e− 10 10.126101
GTSOR-Like 1.03 −1.2 191 9.6420e− 10 8.321967
GTSOR-Like 1.03 −1.5 155 7.7704e− 10 6.763611

SOR-Like 0.731 – 331 9.7599e− 10 14.101262
GTSOR-Like 0.731 −1.6 202 9.7255e− 10 8.788048
GTSOR-Like 0.731 −2.1 154 9.4438e− 10 6.838050

Table 4: p = 24 and α = 1

Method ω ~ IT ERR CPU

SOR-Like 0.731 – 475 9.5808e− 10 238.767499
GTSOR-Like 0.731 −1.8 258 9.6540e− 10 129.184637
GTSOR-Like 0.731 −2.1 219 9.8753e− 10 110.570769

Table 5: p = 8 and α = −1

Method ω ~ IT ERR CPU

SOR-Like −0.5 – – – –
GTSOR-Like −0.5 −0.256 753 8.9664e− 10 1.266614
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5. Conclusions

In this paper, by using SOR-Like method [17] and generalized Taylor expan-
sion method for solving linear systems [24], the GTSOR-Like method is intro-
duced for augmented systems. The convergence property of the new method is
derived and choices of the parameters are discussed in detail. Numerical results
verified the effectiveness of the proposed method.
However, the proposed method involves three iteration parameters, ω, ~ and
α, the choice of the optimal parameters was not discussed in this work, how
to determine these three optimal parameters should be a direction for future
research.
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