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Abstract. Analysis of variance (ANOVA) is an important method in
exploratory and confirmatory data analysis when explanatory variables

are discrete and response variables are continues and independent from

each other. The simplest type of ANOVA is one-way analysis of variance
for comparison among means of several populations. In this paper, we

extend one-way analysis of variance to a case where observed data are

non-symmetric triangular or normal fuzzy observations rather than real
numbers. Meanwhile, a case study on the car battery length-life is pro-

vided on the basis on the proposed method.
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1. The place and importance of fuzzy ANOVA in manufac-
turing and literature

Analysis of variance (ANOVA) is concerned with analyzing variation in
the means of several independent populations. The central point in classi-
cal ANOVA is a test about the significance of the difference among population
means, which allows us to conclude whether or not the differences among the
means of several populations are too deviated to be attributed to the sampling
error [6]. There are several real-life populations in which imprecise values can
be assigned to their experimental outcomes. In such cases, the fuzzy num-
bers are suitable models to formalize and handle these populations, such as
the monthly income of a taxi driver, the desirability amount of life and the
battery lifetime. The Fuzzy ANOVA (FANOVA) model can be realistically
used in numerous industries and applications in which the data observed as
fuzzy numbers. To show the importance of FANOVA, we present some applied
examples as follows:
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(1) Comparing the amount of gas usage for the different vehicles, or the
same vehicle under different fuel types, or road types,

(2) Comparison the quality of the produced product under different condi-
tions (such as different weathers, different personnel, different material
requirements, assemble lines in a workshop/faculty,

(3) Investigation on the pressure or chemical concentration on some chem-
ical reaction (power reactors, chemical plants, etc),

(4) The amount of interest/satisfaction of the workers in different parts of
a factory,

(5) Studying whether the different kinds of product advertisements can
cause to different selling amounts, and

(6) Comparison the amount of exited gas volume from the volcano crater
(per hour, or per day) for different active volcanoes.

Montenegro et al. [11] have presented an exact one-way ANOVA testing
procedure for the case in which the involved fuzzy random variables are assumed
normal as intended by Puri and Ralescu [19]. On the other hand, Montenegro
et al. [10] demonstrated the convenience of incorporating bootstrap method
to approximate the asymptotic one-sample tests with fuzzy random variables.
A one-way ANOVA study has been developed by Cuevas et al. [2] for the
functional data on a given Hilbert space. An introduction to the asymptotic
multi-sample testing of means for simple fuzzy random variables is also was also
sketched by Gil et al. [6], where a bootstrap approach to the multi-sample test
of means for the significance of the difference among population means on the
basis of the evidence supplied by a set of sample fuzzy data is studied. Also one-
way ANOVA with fuzzy data was studied by Wu [23], where the cuts of fuzzy
random variables, optimistic, pessimistic degrees and solving an optimization
problem are used. Lee et al. [9] discussed on the analysis of variance with fuzzy
data based on permutation method as a non-parametric approach.

In this paper a simple method for a fuzzy one-way ANOVA, as an extension
for classical ANOVA, is presented where the observations are non-symmetric
triangular and normal fuzzy numbers. The organization of this paper is as
follows: In section 2, preliminaries on fuzzy concepts and some arithmetic
operations are stated. In the section 3, fuzzy ANOVA is explained for fuzzy
data. Meanwhile in section 3, the decision rule for testing hypothesis of equality
of means of populations data are discussed for FANOVA model, where the
observations are reported by non-symmetric triangular and normal fuzzy. In
section 4 a real applied example on vehicle battery manufacturing is presented
to reveal the ideas of this paper. Conclusion part is given in the final section.

2. Preliminaries

Let X be a universal set and F (X) = {A | A : X → [0, 1]}. Any A ∈ F (X)
is called a fuzzy set on X. In particular, let R be the set of all real numbers.
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We will use FT (R) =
{
T̃ | a, sla, sra ∈ R; sla, s

r
a > 0

}
, where

T̃ (x) = T (a, sla, s
r
a)(x) =


x−a+sla

sla
if a− sla ≤ x < a,

a+sra−x
sra

if a ≤ x < a+ sra,

0 elsewhere.

(1)

Any T̃ ∈ FT (R) is called a triangular fuzzy number (TFN), where a is center
point, sla and sra are the left and right widths of TFN and it may written as
T (a, sla, s

r
a). We assume T (a, 0, 0) be I{a}, the indicator function of a.

Also, we will show FN (R) =
{
Ñ | a, sla, sra ∈ R; sla, s

r
a > 0

}
, where

Ñ(x) = N(a, sla, s
r
a)(x) =


exp

{
−
(
a−x
sla

)2}
if x ≤ a,

exp

{
−
(
x−a
sra

)2}
if x > a.

(2)

Any Ñ ∈ FN (R) is called a normal fuzzy number (NFN), where a is center
point, sla and sra are the left and right widths of NFN and it may written as

N(a, sla, s
r
a). If Ñ is a fuzzy number, the α-cut of Ñ is a closed and bounded

interval, for α ∈ (0, 1], which denoted by Ñα = [n1(α), n2(α)].

Definition 2.1 (24). Let Ã, B̃ ∈ F (R). Then

Ã	 B̃ =

{∫ 1

0

g(α)
[
Ãα(−)B̃α

]2] 1
2

(3)

is called distance between Ã and B̃, in which for any α ∈ [0, 1]

Ãα(−)B̃α =
{

[a1(α)− b1(α)]
2

+ [a2(α)− b2(α)]
2
} 1

2

(4)

measured the distance between Ãα = [a1(α), a2(α)] and B̃α = [b1(α), b2(α)],
a1(0), b1(0), a2(0), b2(0) are taken as finite real numbers and g is a real valued

non-decreasing function on [0, 1] with g(0) = 0 and
∫ 1

0
g(α) dα = 1

2 (for instance

g(α) = m+1
2 αm where m = 1, 2, 3, · · · ).

It must be mentioned that the distance 	 is a metric on the set of all fuzzy
numbers which has been proved in Theorem 4.1 of [17].

Remark 2.2. In Definition 2.1, a1(α)−b1(α) and a2(α)−b2(α) are the distance

between the left and the right end points of the α-cut of Ã and B̃, respectively.

The value of g(α) can be understood as the weight of
[
Ãα(−)B̃α

]2
, and the

non-decreasing property of g means that the higher the membership of α-cut,
the more important it is in determining the distance between Ã and B̃. This
defined operation synthetically reflects the information on every membership
degree. The advantage of this arithmetic operation on fuzzy numbers is that
they can let different α-cuts have different weights.
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Remark 2.3. The introduced distance in Definition 2.1 coincides to the absolute
deviation of a and b, when two numbers Ã and B̃ are real numbers a and b,
respectively (see [16], for proof).

Theorem 2.4. The distance between two TFNs Ã = T (a, sla, s
r
a) and B̃ =

T (b, slb, s
r
b) is[

Ã	 B̃
]2

= (a− b)2 +
1

(m+ 2)(m+ 3)

[
(sla − slb)2 + (sra − srb)2

]
+
a− b
m+ 1

[
(sra − srb)− (sla − slb)

]
,(5)

where the weighted function g is defined by g(α) = m+1
2 αm for m = 1, 2, 3, · · · .

Proof. The α-cuts of TFNs Ã and B̃ are Ãα =
[
a− sla(1− α), a+ sra(1− α)

]
and B̃α =

[
b− slb(1− α), b+ srb(1− α)

]
for any α ∈ [0, 1]. Therefore by Defi-

nition 2.1, [
Ãα(−)B̃α

]2
=

= [a1(α)− b1(α)]
2

+ [a2(α)− b2(α)]
2

=
[
a− sla(1− α)− b+ slb(1− α)

]2
+ [a+ sra(1− α)− b− srb(1− α)]

2

=
[
α(sla − slb) + (a− b)− (sla − slb)

]2
+ [α(sra − srb) + (a− b)− (sra − srb)]

2

= 2(a− b)2 + (α− 1)2(sla − slb) + 2(a− b)(sla − slb)(α− 1)
+(α− 1)2(sra − srb) + 2(a− b)(sra − srb)(α− 1)

and so, we will have g(α) = m+1
2 αm and[

Ã	 B̃
]2

=

∫ 1

0

m+ 1

2
αm
{

[a1(α)− b1(α)]
2

+ [a2(α)− b2(α)]
2
}

= (a− b)2 +
1

(m+ 2)(m+ 3)

[
(sla − slb)2 + (sra − srb)2

]
+
a− b
m+ 1

[
(sra − srb)− (sla − slb)

]
,

for m = 1, 2, 3, · · · . �

Theorem 2.5. The distance between two NFNs Ã = N(a, sla, s
r
a) and B̃ =

N(b, slb, s
r
b) is[
Ã	 B̃

]2
= (a− b)2 +

1

2(m+ 1)

[
(sla − slb)2 + (sra − srb)2

]
+

√
π

m+ 1

(a− b)
[
(sla − slb)− (sra − srb)

]
2

,(6)

where the weighted function g is defined by g(α) = m+1
2 αm for m = 1, 2, 3, · · · .
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Proof. The α-cuts of NFNs Ã and B̃ are Ãα =
[
a− sla

√
− lnα, a+ sra

√
− lnα

]
and B̃α =

[
b− slb

√
− lnα, b+ srb

√
− lnα

]
for any α ∈ [0, 1]. Therefore by

Definition 2.1,[
Ãα(−)B̃α

]2
= [a1(α)− b1(α)]

2
+ [a2(α)− b2(α)]

2

=
[
a− sla

√
− lnα− b+ slb

√
− lnα

]2
+
[
a+ sra

√
− lnα− b− srb

√
− lnα

]2
=

[
(a− b)−

√
− lnα(sla − slb)

]2
+
[
(a− b) +

√
− lnα(sra − srb)

]2
= 2(a− b)2 − lnα

[
(sla − slb)2 + (sra − srb)2

]
−2(a− b)

√
− lnα

[
(sla − slb)2 − (sra − srb)2

]
and so, we will have g(α) = m+1

2 αm and[
Ã	 B̃

]2
=

∫ 1

0

m+ 1

2
αm
{

[a1(α)− b1(α)]
2

+ [a2(α)− b2(α)]
2
}

= (a− b)2 +
1

2(m+ 1)

[
(sla − slb)2 + (sra − srb)2

]
+

√
π

m+ 1

(a− b)
[
(sla − slb)− (sra − srb)

]
2

,

for m = 1, 2, 3, · · · . �

3. Fuzzy analysis of variance (FANOVA)

The classical ANOVA model can be consulted in any book on linear models
as well as well-known references, e.g. [7, 11]. We have been reviewed classical
ANOVA model in our previously works [14, 15, 16] with similar notations and
we refer the readers to these references.

In real world, the fuzziness of an observed variable often happens in two
cases. The first case is due to technical conditions of measurements where the
response variable cannot be measured exactly and so in this case data cannot
be recorded clearly with precise numbers but only in linguistic terms to justify
the required tolerance of the errors in measurements. The second case is due
to the fact that the response variable will be given in terms of linguistic forms,
such as linguistic report of experts or report of a farmer about his products,
which are not numeric. In both cases, the data could be represented by the
notion of fuzzy sets to analyze the experiment [14]. To explain this situation, an
example from [23] is quoted. The water level of a river cannot be measured in
an exact way because of the fluctuation; therefore, fuzzy sets naturally provide
an appropriate tool in processing the imprecise data. Under this consideration,
the more appropriate way to describe the water level is to say that the water
level is “around 3 meters”. The phrase around 3 meters should be regarded as a
fuzzy number 3̃. So here, only the observed values of a classical random variable
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can be considered as a fuzzy number while the model for observed values is still
precise. Note that a similar idea is used by authors in [5, 20]. In this case,
observations and recorded data are considered as TFNs ỹij = T (yij , s

l
yij , s

r
yij )

or NFNs ỹij = N(yij , s
l
yij , s

r
yij ) where ỹij is interpreted as “approximately yij”.

By the above discussion, in this section and hereafter, it is assumed that
we are concerned with a classical ANOVA, where the entiretheoretical elements
of the model such as random variables, statistical hypothesis and populations
parameter are crisp and hence the model is considered as Yij = µi + εij , with
εij ' N(0, σ2) in which Yij ’s are ordinary random variables and the statistical
hypotheses are considered as classical ones:

H0 : µ1 = µ2 = · · · = µr
H1 : not all µi’s are equal (at least one pair with unequal means).(7)

But, just one point that will departed from classical ANOVA assumptions in
classical ANOVA model is that the sampled observations are STFNs or SNFNs
rather than being real numbers and nothing else is altered in the ANOVA model
prior to collecting the data. Regarding to the Definition 2.1, the observed values
of the statistics SST , SSTR, SSE, MSTR, MSE and F can be obtained as
follows:

s̃st =

r∑
i=1

ni∑
j=1

(
ỹij 	 ỹ..

)2
,(8)

s̃str =

r∑
i=1

ni
(
ỹi. 	 ỹ..

)2
,(9)

and

s̃se =

r∑
i=1

ni∑
j=1

(
ỹij 	 ỹi.

)2
,(10)

when ỹij ’s are TFNs then

ỹi. =
1

ni

ni∑
j=1

ỹij = T
(
yi., slyi. , s

r
yi.

)
,(11)

ỹ.. =
1

nt

r∑
i=1

ni∑
j=1

ỹij = T
(
y.., sly.. , s

r
y..

)
,(12)

and if ỹij ’s are NFNs, then

ỹi. =
1

ni

ni∑
j=1

ỹij = N
(
yi., slyi. , s

r
yi.

)
,(13)

ỹ.. =
1

nt

r∑
i=1

ni∑
j=1

ỹij = N
(
y.., sly.. , s

r
y..

)
,(14)
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yi. =
∑ni

j=1 yij

ni
and y.. =

∑r
i=1

∑ni
j=1 yij

nt
. Then, we have

m̃str =
s̃str

r − 1
,(15)

m̃se =
s̃se

nt − r
,(16)

and

f̃ =
m̃str

m̃se
=
nt − r
r − 1

s̃str

s̃se
,(17)

The decision rule: Let f̃ be the observed value of the test statistic and
F1−α;r−1,nt−r be the α-th quantile of the Fisher distribution with r − 1 and
nt − r degrees of freedom. At the given significance level α, we accept the

null hypothesis H0 if f̃ ≤ F1−α;r−1,nt−r; otherwise we accept the alternative
hypothesis H1.

In testing ANOVA based on fuzzy numbers the p-value can be calculated by

p-value= P
(
F > f̃

)
in which f̃ is introduced by (17) as the observed value of

the test statistic on the basis of fuzzy observations.

Remark 3.1. Considering Remark , when the observed data are precise numbers
yij , that is they are indicator functions Iyij for i = 1, · · · , r and j = 1, · · · , ni,
then all the introduced extended statistics in equations (8)(17) coincide to
statistics of classical ANOVA.

Remark 3.2. Although the observed data are considered fuzzy in this paper,
but it must be highlighted that all fuzzy observed data are from a crisp random
variable and so this fact causes to achieve the precise Fisher distribution with
r − 1 and nt − r degrees of freedom for the test statistic; see [16].

In continue of this section, we are going to obtain several fast computation
formulas for FANOVA test.

3.1. FANOVA for non-symmetric TFNs. In this subsection, we assume
all observations are TFNs. Then fuzzy statistics obtains as following theorems.

Theorem 3.3. In ANOVA model, suppose the observed data are
ỹij = T (yij , s

l
yij , s

r
yij ) ∈ FT (R) , i = 1, · · · , r, j = 1, · · · , ni then observed

values of s̃st, s̃str and s̃se are as following real values:

s̃st = ssty +
1

(m+ 2)(m+ 3)

[
sstsry + sstsly

]
,(18)

s̃str = sstry +
1

(m+ 2)(m+ 3)

[
sstrsry + sstrsly

]
,(19)

s̃se = ssey +
1

(m+ 2)(m+ 3)

[
ssesry + ssesly

]
,(20)
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where ssty, sstry and ssey are the crisp values of sst, sstr and sse for the
centre points of ỹij = T (yij , s

l
yij , s

r
yij ), and and the crisp values of sst, sstr

and sse for the left widths of ỹij = T (yij , s
l
yij , s

r
yij ), and and the crisp values

of sst, sstr and sse for the right widths of ỹij = T (yij , s
l
yij , s

r
yij ), respectively.

Proof. From (8), Definition 2.1 and Theorem 2.4, and assumption g(α) =
m+1
2 αm, m = 1, 2, 3, · · · , we have

s̃st =

r∑
i=1

ni∑
j=1

(
ỹij 	 ỹ..

)2
=

r∑
i=1

ni∑
j=1

[
T (yij , s

l
yij , s

r
yij )	 T (y.., sly.. , s

r
y..

)
]2

=

r∑
i=1

ni∑
j=1

{
(yij − y..)2 +

1

(m+ 2)(m+ 3)

[(
slyij − s

l
y..

)2
+
(
sryij − s

r
y..

)2]
+

(yij − y..)
m+ 2

[(
slyij − s

l
y..

)
+
(
sryij − s

r
y..

)]}
=

r∑
i=1

ni∑
j=1

(yij − y..)2

+
1

(m+ 2)(m+ 3)

 r∑
i=1

ni∑
j=1

(
slyij − s

l
y..

)2
+

r∑
i=1

ni∑
j=1

(
sryij − s

r
y..

)2+ 0

= ssty +
1

(m+ 2)(m+ 3)

[
sstsry + sstsly

]
.

Similarly, one can prove (19) and (20). �

Remark 3.4. Under the same assumption of Theorem 3.3, the observed values

of the mean squares m̃str, m̃se and the test statistic f̃ are respectively as
follows:

m̃str =
s̃str

r − 1
= mstry +

1

(m+ 2)(m+ 3)

[
mstrsly +mstrsry

]
,(21)

m̃se =
s̃se

nt − r
= msey +

1

(m+ 2)(m+ 3)

[
msesly +msesry

]
,(22)

and

f̃ =
m̃str

m̃se
=
mstry + 1

(m+2)(m+3)

[
mstrsly +mstrsry

]
msey + 1

(m+2)(m+3)

[
msesly +msesry

] ,(23)

3.2. FANOVA for non-symmetric NFNs. In this subsection, we assume
all observations are TFNs. Then fuzzy statistics obtains as following theorems.
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Theorem 3.5. In ANOVA model, suppose the observed data are
ỹij = N(yij , s

l
yij , s

r
yij ) ∈ FN (R) , i = 1, · · · , r, j = 1, · · · , ni then observed

values of s̃st, s̃str and s̃se are as following real values:

s̃st = ssty +
1

2(m+ 1)

[
sstsly + sstsry

]
,(24)

s̃str = sstry +
1

2(m+ 1)

[
sstrsly + sstrsry

]
,(25)

s̃se = ssey +
1

2(m+ 1)

[
ssesly + ssesry

]
.(26)

Proof. From (8), Definition 2.1 and Theorem 2.5, and assumption g(α) =
m+1
2 αm, m = 1, 2, 3, · · · , we have

s̃st =

r∑
i=1

ni∑
j=1

(
ỹij 	 ỹ..

)2
=

r∑
i=1

ni∑
j=1

[
N(yij , s

l
yij , s

r
yij )	N(y.., sly.. , s

r
y..

)
]2

=

r∑
i=1

ni∑
j=1

{
(yij − y..)2 +

1

2(m+ 1)

[(
slyij − s

l
y..

)2
+
(
sryij − s

r
y..

)2]

+

√
π

m+ 1

(yij − y..)
[(
slyij − s

l
y..

)
+
(
sryij − s

r
y..

)]
2


=

r∑
i=1

ni∑
j=1

(yij − y..)2

+
1

2(m+ 1)

 r∑
i=1

ni∑
j=1

(
slyij − s

l
y..

)2
+

r∑
i=1

ni∑
j=1

(
sryij − s

r
y..

)2+ 0

= ssty +
1

2(m+ 1)

[
sstsly + sstsry

]
.

Similarly, one can prove (25) and (26). �

Theorem 3.6. Under the same assumption of Theorem 3.5, the observed val-

ues of the mean squares m̃str and m̃se are as follows:

m̃str = mstry +
1

2(m+ 1)

[
mstrsly +mstrsry

]
,(27)

m̃se = msey +
1

2(m+ 1)

[
msesly +msesry

]
.(28)
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Proof. It is obvious that

m̃str =
s̃str

r − 1
=
sstry
r − 1

+
1

2(m+ 1)

[
sstrsly
r − 1

+
sstrsry
r − 1

]
= mstry +

1

2(m+ 1)

[
mstrsly +mstrsry

]
,

m̃se =
s̃se

nt − r
=

ssey
nt − r

+
1

2(m+ 1)

[
ssesly
nt − r

+
ssesry
nt − r

]
= msey +

1

2(m+ 1)

[
msesly +msesry

]
.

�

Remark 3.7. Under the same assumption of Theorem 3.5, the observed values

of the test statistic f̃ in analysis of variance is as following:

f̃ =
m̃str

m̃se
=
mstry + 1

2(m+1)

[
mstrsly +mstrsry

]
msey + 1

2(m+1)

[
msesly +msesry

] .(29)

4. Case study: FANOVA application on the average length
of car battery life

Under ideal conditions, the average length of car battery life manufactured
by an Iranian factory is estimated to be about 3 to 4 years. In addition to
the quality of battery building, factors such as the amount of battery usage,
maintenance, ambient temperature, vibration, audio system usage, charging
and discharging can also affect the length life of the batteries used. Consider
this fact that the length of car battery life does not end at a moment and its
useful life/capability will down slowly over the time. Therefore, the length of
car battery life can be recorded by a non-precise / fuzzy number. On the other
hand, on most car batteries, an visual marker is Embedded to measure the
electrolyte concentration of the battery (which is in fact a simple hydrometer /
acidometer) and shows the battery status to the user by displaying one of the
three following colors:

(1) the green color means a healthy battery
(2) the black (or red) color means the battery is lower than the standard

and needs to be charged, but the car is still able to start, and
(3) the white color means the battery is completely discharged and the car

can not start.

Therefore, in this research, asymmetric triangular numbers are used to record
the data on the battery lifetime. Three assembly lines at an Iranian factory
are simultaneously producing car batteries with a similar brand. Recently, a
claim has been made that the length of battery life is different in these three
assembly lines. Therefore, in order to check the independency of the produced
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batteries lifetime from the production line number, the factory wish to test
whether the batteries lifetime from the different production line number are
the same or not. In other words, we are going to test

H0 : µ1 = µ2 = µ3

H1 : not all µi’s are equal, for i=1,2,3.

To this lifetime test, 29 triangular fuzzy batteries lifetimes are selected as the
experimental units in FANOVA test with sample sizes n1 = 10 , n2 = 8 and
n3 = 11, respectively (see Table 1).
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Figure 1. Triangular fuzzy observed data for the batteries
lifetime in assembly lines 1, 2 and 3 (from above figure to
bellow figure).

Considering Theorem 3.3 and Result 3.4, one can obtain the observed values
of FANOVA statistics which are reported in Table 2, based on the given non-
symmetric TFNs. For instance, the total sum of squares is calculated for m = 1
by Theorem3.3 in bellow

s̃st = ssty +
1

(m+ 2)(m+ 3)

[
sstsry + sstsly

]
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Table 1. Fuzzy observed data for the length of car battery
life in three factory assembly lines.

Observation # Line 1 Line 2 Line 3

1 T(1.60, 0.79, 0.56) T(2.06, 0.86, 0.80) T(2.13, 0.54, 1.17)
2 T(2.73, 1.21, 1.25) T(3.30, 0.87, 0.36) T(2.76, 0.53, 1.07)
3 T(2.91, 0.78, 0.42) T(3.28, 1.11, 0.50) T(2.14, 1.08, 0.47)
4 T(1.90, 0.78, 1.15) T(3.15, 1.04, 1.31) T(2.16, 0.72, 1.20)
5 T(1.75, 0.66, 0.56) T(2.80, 1.57, 0.81) T(2.26, 1.09, 0.90)
6 T(1.55, 0.84, 0.62) T(3.39, 0.64, 0.77) T(2.54, 0.68, 1.27)
7 T(1.77, 0.86, 0.91) T(2.92, 1.41, 0.85) T(2.42, 1.04, 0.44)
8 T(2.46, 0.94, 0.53) T(3.20, 0.51, 0.72) T(1.95, 0.95, 0.57)
9 T(1.53, 1.07, 0.83) T(2.77, 0.75, 1.09)
10 T(1.51, 0.51, 1.10) T(2.13, 0.68, 0.59)
11 T(1.74, 1.26, 0.36)

=

3∑
i=1

ni∑
j=1

(yij − y..)2 +
1

12

 3∑
i=1

ni∑
j=1

(
slyij − sly..

)2
+

3∑
i=1

ni∑
j=1

(
sryij − sry..

)2
=

[
(1.60− 2.37)2 + · · ·+ (1.74− 2.37)2

]
+

1

12

[{
(0.79− 0.89)2 + · · ·+ (1.26− 0.89)2

}
+
{

(0.56− 0.80)2 + · · ·+ (036− 0.80)2
}]

= 8.68.

And, also by Eq. (23) from Result 3.4 the observed value of FANOVA test

statistic is f̃ = 17.09 for m = 1 (see Table 2). Moreover, all computations of
this paper are done by R software [20].

Table 2. Details of ANOVA for the length of car battery.

Source of variation s̃s Degrees of freedom m̃s f̃

Between treatments 4.93 2 2.49
Within treatments (error) 3.75 26 0.14 17.09

Total 8.68 28

By comparing the computed FANOVA test statistic, one can accept the al-
ternative hypothesis at significance level 0.05. The critical value of ANOVA test
is F1−α;r−1,nt−r = F0.95;2,26 = 3.37 and also the computed p-value= 1.82×10−5

indicates very weak evidence in favour of null hypothesis. Therefore, we con-
clude that there is a relation between produced batteries lifetime and the pro-
duction line number at the considered significance level, based on the recorded
fuzzy data in Table 1. It must be emphasised that the obtained p-value result
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is related to both randomness uncertainty and fuzziness uncertainty. In other
words, the proposed decision rule is a function of the stochastic uncertainty
due to the random sample, and also, is a function of the vagueness uncertainty
due to the fuzzy observations.

5. Conclusion

In applied sciences such as economics, agriculture and social sciences, it may
be confront with vague / fuzzy concepts, such as the threshold of patient tol-
erance, the degree of utility of life and the monthly income of a Taxi driver. In
such situations, the classical ANOVA can not solve the vague test and it need
to generalize based on fuzzy data. The proposed fuzzy ANOVA (FANOVA)
model is a generalized version of the classical ANOVA using non-symmetric
triangular and normal fuzzy observations, such that when all observations are
real numbers, FANOVA reduces to ANOVA because vagueness of the fuzzy sta-
tistics are removed and what remain is only the center point of them. FANOVA
is easy to be implemented as it is almost developed similar to classical ANOVA
for its components, and it is easy to be used by professional clients who are
familiar with ANOVA. For future works, one can try to use the approach of this
paper to extend other experimental designs such as random block design, Latin
square design and etc., for the case where the observations are fuzzy numbers
rather than being numbers. As, the observations in this paper are assumed to
be non-symmetric triangular / normal fuzzy numbers, another interesting issue
is to extend the results of this paper to trapezoidal fuzzy numbers, and in gen-
eral LR fuzzy numbers. Building user-friendly software packages for FANOVA
based on fuzzy data is another field for future works.
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