
تعداد نشریات | 26 |
تعداد شمارهها | 447 |
تعداد مقالات | 4,557 |
تعداد مشاهده مقاله | 5,380,003 |
تعداد دریافت فایل اصل مقاله | 3,580,074 |
Perron-Frobenius theory on the higher-rank numerical range for some classes of real matrices | ||
Journal of Mahani Mathematical Research | ||
دوره 10، شماره 2، دی 2021، صفحه 49-61 اصل مقاله (495.59 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22103/jmmrc.2021.17564.1147 | ||
نویسندگان | ||
Mostafa Zangiabadi* 1؛ Hamidreza Afshin2 | ||
1Department of Mathematics, University of Hormozgan, Bandar Abbas, Iran | ||
2Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran. | ||
چکیده | ||
We present an extension of Perron-Frobenius theory to the higher-rank numerical range of real matrices. We define a new type of the rank-k numerical radius for real matrices, i.e., the sign-real rank-k numerical radius, and derive some properties of it. In addition, we extend Issos' results on the higher-rank numerical range of nonnegative matrices to real matrices. Finally, we give some examples that are used to illustrate our theoretical results. | ||
کلیدواژهها | ||
Sign-real rank-k numerical radius؛ sign-real spectral radius؛ Perron-Frobenius theory, signature matrices؛ higher-rank numerical range | ||
مراجع | ||
[1] A. Aretaki and J. Maroulas, The higher rank numerical range of nonnegative matrices,Cent. Eur. J. Math., vol. 11, no.3(2013), 435{446. [2] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,vol. 9, SIAM, Philadelphia, 1994. [3] M.T. Chien and H. Nakazato, Boundary generating curves of the c-numerical range,Linear Algebra Appl., vol. 294, no. 1-3(1999), 67{84. [4] M.D. Choi, D.W. Kribs and K. Zyczkowski, Higher-rank numerical ranges and compression problems, Linear Algebra Appl., vol. 418 no. 2-3(2006), 828{839. [5] M.D. Choi, D.W. Kribs and K. Zyczkowski, Quantum error correcting codes from the compression formalism, Rep. Math. Phys., vol. 58, no. 1(2006), 77{86. [6] G. Frobenius, Uber Matrizen aus nichtnegativen Elementen, Math. Nat. K1., (1912),456{477. [7] R.A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. [8] R.A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,Cambridge, 1991. [9] J.N. Issos, The eld of values of non-negative irreducible matrices, Ph.D. Thesis,Auburn University, 1966. [10] C.K. Li, B.-S. Tam and P.Y. Wu, The numerical range of a nonnegative matrix, Linear Algebra Appl., vol. 350, no. 1-3(2002), 1{23. [11] C.K. Li and H. Schneider, Applications of the Perron{Frobenius theory to population dynamics, J. Math. Biol., vol. 44, no. 5(2002), 250{262. [12] C.K. Li, Y.T. Poon and N.S. Sze, Condition for the higher rank numerical range to be non-empty, Linear Multilinear Algebra, vol. 57, no. 4(2009), 365{368. [13] M.-H. Matcovschi and O. Pastravanu, Perron{Frobenius theorem and invariant sets in linear systems dynamics , in Proceedings of the 15th IEEE Mediterranean Conference on Control and Automation (MED07), Athens, Greece, 2007. [14] H. Mink, Nonnegative Matrices, Wiley, New York, 1988. [15] S.M. Rump., Theorems of Perron-Frobenius type for matrices without sign restrictions,linear Algebra Appl., vol. 266(1997), 1{42. [16] S. M. Rump, Conservatism of the Circle Criterion Solution of a Problem posed by A.Megretski, IEEE Trans. Autom. Control, vol. 46, no. 10(2001), 1605{1608. [17] S. M. Rump, conditioned Matrices are componentwise near to singularity, SIAM Rev.,vol. 41, no. 1(1999), 102{112. [18] B. Shafai, J. Chen and M. Kothandaraman, Explicit formulas for stability of nonnegative and Metzlerian matrices, IEEE Transactions on Automatic Control, vol. 42, no. 2(1997),265{270. [19] M. Zangiabadi and H. R. Afshin, A new concept for numerical radius: the sign-real numerical radius, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., vol.76, no. 3(2014), 91{98. [20] M. Zangiabadi and H. R. Afshin, Perron{Frobenius theory on the numerical range for some classes of real matrices, J. Mahani Math. Res. Cent., vol. 2, no. 2(2013), 1{15. | ||
آمار تعداد مشاهده مقاله: 230 تعداد دریافت فایل اصل مقاله: 192 |