
KLEEN’S THEOREM FOR BL-GENERAL L-FUZZY

AUTOMATA

M. Shamsizadeh*, M.M. Zahedi, and Kh. Abolpour

Dedicated to sincere professor Mehdi Radjabalipour on turning 75

Article type: Research Article

(Received: 13 February 2021, Revised: 12 May 2021, Accepted: 24 July 2021)

(Communicated by M. Mashinchi)

Abstract. The contribution of general fuzzy automata to neural net-

works has been considerable, and dynamical fuzzy systems are becoming
more and more popular and useful. Basic logic, or BL for short, has

been introduced by Hájek [5] in order to provide a general framework for

formalizing statements of fuzzy nature. In this note, some of the closure
properties of the BL-general fuzzy automaton based on lattice valued such

as union, intersection, connection and a serial connection are considered,

after that, the behavior of them are discussed. Moreover, for a given
BL-general fuzzy automaton on the basis of lattice valued, a complete

BL-general fuzzy automaton on the basis of lattice valued is presented.

Afterward, we may test the Pumping Lemma for the BL-general fuzzy
automaton based on lattice valued. In particular, a connection between

the behavior of BL-general fuzzy automaton based on lattice valued and

its language is presented. Also, it is proven that L is a recognizable set
if and only if L is rational. Also, it is driven that Kleen’s Theorem is

valid for the BL-general fuzzy automaton on the basis of lattice valued.
Finally, we give some examples to clarify these notions.
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1. Introduction

As the simplest mathematical model in the theory of computation, finite
automata not only lay the theoretical foundations of complexity theory [6,19],
but also are closely related to other fields such as neural networks. In 1965,
L.A. Zadeh [35] introduced the notion of fuzzy set as a method for repre-
senting uncertainty. His ideas have been applied to a wide range of scientific
areas. In 1967, Wee [28] first introduced the mathematical formulation of
fuzzy automata. As an important application, fuzzy automata have been used
to simulate fuzzy discrete event systems. There were many authors such as
Santos [20], Lee and Zadeh [7], Peeva and Topencharov [13, 26] who have con-
tributed to this field. The fuzzy finite automaton can be applied in many areas
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such as learning systems, the model computing with words, pattern recog-
nition, lattice-valued fuzzy finite automaton, database theory and simulation
theory [3, 4, 6, 8, 9, 11,12,21–25,34].

Malik et al. [9, 10] systematically established the theory of algebraic fuzzy
finite automata. It is worthy of mention that Doostfatemeh and Kremer [2]
introduced a new general definition for fuzzy automata. Their key motivation
for introducing the notion of general fuzzy automata was the insufficiency of
the current literature to handle the applications which rely on fuzzy automata
as a modeling tool and to assign membership values to active states of a fuzzy
automaton and to resolve the multi-membership. Another important insuffi-
ciency of the current literature is the lack of methodologies that enable us to
define and analyze the continuous operation of fuzzy automata.

Basic logic (BL) has been introduced by Hájek [5] in order to provide a gen-
eral framework for formalizing statements of fuzzy nature. By considering the
notions of BL-algebra and residuated lattice, every BL-algebra is a residuated
lattice. The supervisory control of fuzzy discrete event systems was established
first by Qiu [18].

The idea of studying fuzzy automaton with membership values in some struc-
tured abstract set comes back to Wechler [27], and in recent years, researcher’s
attention has been aimed mostly at fuzzy automaton with membership values
in complete residuated lattices, lattice-ordered monoids, and other kinds of
lattices. Fuzzy automaton taking membership values in a complete residuated
lattice were first studied by Qiu in [14, 15], where some basic concepts were
discussed, and later, Qiu and his coworkers have carried out extensive research
of these fuzzy automata( cf. [16, 17,29–33]).

In 2012, Kh. Abolpour and M. M. Zahedi [1] extended the notion of general
fuzzy automata and gave the notion of BL-general fuzzy automata (BL-GFA).
An interesting problem in this context is the realization problem, which says
that given a behavior, we can design a machine which realizes it. Now, by con-
sidering the definition of BL-GLFA, we present closure properties of BL-GLFA
for example union, intersection, connection and serial connection. Also, we
prove the Pumping Lemma for the BL-general L-fuzzy automaton. After that,
we show that there is a connection between the behavior of a finite realization
and a recognizable language of a BL-general L-fuzzy automaton. Finally, it is
driven that Kleen’s Theorem is valid for the BL-general fuzzy L-automaton.

2. Preliminaries

In this section, we give some definitions that we need in the sequel.

Definition 2.1. [5] A BL-algebra is an algebra structure (L,∧,∨, ∗,→, 0, 1)
with four binary operations ∧,∨, ∗,→ and two constants 0, 1 such that:

i. (L,∧,∨, 0, 1) is a bounded lattice,
ii. (L, ∗, 1) is a commutative monoid,
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iii. ∗ and → form an adjoint pair, i.e., x ≤ y → z if and only if x ∗ y ≤ z
for all x, y, z ∈ L,

iv. x ∧ y = x ∗ (x→ y),
v. (x→ y) ∨ (y → x) = 1.

Definition 2.2. [2] A general fuzzy automaton (GFA) F̃ is an eight-tuple

machine denoted by F̃ = (Q,X, R̃, Z,

δ̃, ω, F1, F2), such that: (i) Q is a finite set of states, Q = {q1, q2, ..., qn}, (ii)

X is a finite set of input symbols, X = {a1, a2, ..., am}, (iii) R̃ is the set of

fuzzy start states, R̃ ⊆ P̃ (Q), (iv) Z is a finite set of output symbols, Z =

{b1, b2, ..., bk}, (v) δ̃ : (Q× [0, 1])×X ×Q→ [0, 1] is the augmented transition
function, (vi) ω : Q→ Z is the output function, (vii) F1 : [0, 1]×[0, 1]→ [0, 1] is
called the membership assignment function. The function F1(µ, δ), is motivated
by two parameters µ and δ, where µ is the membership value of a predecessor
and δ is the value of a transition.

µt+1(qj) = δ̃((qi, µ
t(qi)), ak, qj) = F1(µt(qi), δ(qi, ak, qj)).

(viii) F2 : [0, 1]∗ → [0, 1] is called the multi-membership resolution function.
The multi-membership resolution function resolves the multi-membership

active states and assigns a single membership value to them.
Let the set of all transitions of F̃ is denoted by ∆. Now, suppose thatQact(ti)

is the set of all active states at time ti, for all i ≥ 0. We have Qact(t0) = R̃ and
Qact(ti) = {(q, µti(q))

∣∣∃q′ ∈ Qact(ti−1),∃a ∈ X, δ(q′, a, q) ∈ ∆}, for all i ≥ 1.
Since Qact(ti) is a fuzzy set, to show that a state q belongs to Qact(ti) and T
is a subset of Qact(ti), we write q ∈ Domain(Qact(ti)). Hereafter, we denote
these notations by

q ∈ Qact(ti) and T ⊆ Qact(ti).

Definition 2.3. [22] Let F̃ = (Q,X, R̃, Z, δ̃, ω, F1, F2) be a general fuzzy
automaton and Q̄ = (P (Q),⊆,∩,∪, ∅, Q) be a BL-algebra in Example 2 of [22].
Then the BL-general L-fuzzy automaton (BL-GLFA) as a ten-tuple machine

denoted by F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2), such that:
(i) Q̄ = P (Q), where Q is a finite set and Q̄ is the power set of Q, (ii) X

is a finite set of input symbols, (iii) R̃ is a set of fuzzy start states, (iv) Z̄
is a finite set of output symbols, where Z̄ is the power set of Z, (v) ωl :
Q̄ → Z̄ is the output function defined by: ωl(Qi) = {ω(q)

∣∣q ∈ Qi}, (vi)

δl : Q̄ × X × Q̄ → L is the transition function defined by: δl({p}, a, {q}) =
δ(p, a, q) and δl(Qi, a,Qj) = ∨qi∈Qi,qj∈Qj

δ(qi, a, qj), for all Qi, Qj ∈ P (Q) and

a ∈ X, (vii) fl : Q̄ × X → Q̄ is the next state map defined by: fl(Qi, a) =

∪qi∈Qi
{qj
∣∣δ(qi, a, qj) ∈ ∆}, (viii) δ̃l : (Q̄× L)×X × Q̄→ L is the augmented

transition function defined δ̃l((Qi, µ
t(Qi)), a,Qj) = F1(µt(Qi), δl(Qi, a,Qj)),

(ix) F1 : L×L→ L is called membership assignment function, (x) F2 : L∗ → L
is called multi-membership resolution function.
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In the next example, at first, for a given general fuzzy automaton, we present
the BL-GFA.

Example 2.4. [22] Let (L,∧,∨, 0, 1) be a complete lattice as in Figure 1.

Now, consider general fuzzy automaton F̃ = (Q,X, δ̃, R̃, Z, ω, F1, F2) as in Fig-

Figure 1. The complete lattice L of Example 2.4

ure 2, where Q = {q0, q1, q2}, R̃ = {(q0, 1)}, X = {σ}, Z = {z1, z2}, ω(q0) =
z1, ω(q1) = z1, ω(q2) = z2 and

δ(q0, σ, q0) = a, δ(q0, σ, q1) = b,

δ(q1, σ, q1) = c, δ(q2, σ, q0) = d,

δ(q2, σ, q2) = e.

Also, we have BL-general fuzzy automaton F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})),
Z̄, ωl, δl, fl, δ̃l, F1, F2), where

Q̄ = {∅, {q0}, {q1}, {q2}, {q0, q1}, {q0, q2}, {q1, q2}, {q0, q1, q2}},

Z̄ = {∅, {z1}, {z2}, {z1, z2}}, ωl({q0}) = ωl({q1}) = ωl({q0, q1}) = {z1}, ωl({q2})
= {z2}, ωl({q0, q2}) = ωl({q1, q2}) = {z1, z2} = ωl({q0, q1, q2}), and

fl({q0}, σ) = fl({q0, q1}, σ) = {q0, q1},
fl({q1}, σ) = {q1},
fl({q2}, σ) = {q0, q2},
fl({q0, q2}, σ) = fl({q1, q2}, σ) = fl({q0, q1, q2}, σ) = {q0, q1, q2}



Kleen’s Theorem for BL-general L-fuzzy automata – JMMRC Vol. 10, No. 2 (2021) 129

Figure 2. general fuzzy automaton F̃ of Example 2.4

and

δl({q0}, σ, {q0}) = a,

δl({q0}, σ, {q1}) = b,

δl({q0}, σ, {q0, q1}) = b,

δl({q0}, σ, {q0, q2}) = a,

δl({q0}, σ, {q1, q2}) = b,

δl({q0}, σ, {q0, q1, q2}) = b,

δl({q1}, σ, {q1}) = c,

δl({q1}, σ, {q0, q1}) = c,

δl({q1}, σ, {q1, q2}) = c,

δl({q1}, σ, {q0, q1, q2}) = c,

δl({q2}, σ, {q0}) = d,

δl({q2}, σ, {q2}) = e,

δl({q2}, σ, {q0, q1}) = d,

δl({q2}, σ, {q0, q2}) = e,

δl({q2}, σ, {q1, q2}) = e,

δl({q2}, σ, {q0, q1, q2}) = e,

δl({q0, q1}, σ, {q0}) = a,

δl({q0, q1}, σ, {q1}) = d,

δl({q0, q1}, σ, {q0, q1}) = d,

δl({q0, q1}, σ, {q0, q2}) = a,

δl({q0, q1}, σ, {q1, q2}) = d,

δl({q0, q1}, σ, {q0, q1, q2}) = d,
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δl({q0, q1}, σ, {q0, q1, q2}) = d,

δl({q1, q2}, σ, {q0}) = d,

δl({q1, q2}, σ, {q1}) = c,

δl({q1, q2}, σ, {q2}) = e,

δl({q1, q2}, σ, {q0, q1}) = d,

δl({q1, q2}, σ, {q0, q2}) = e,

δl({q1, q2}, σ, {q1, q2}) = e,

δl({q1, q2}, σ, {q0, q1, q2}) = e,

δl({q0, q2}, σ, {q0}) = d,

δl({q0, q2}, σ, {q1}) = b,

δl({q0, q2}, σ, {q2}) = e,

δl({q0, q2}, σ, {q0, q1}) = d,

δl({q0, q2}, σ, {q0, q2}) = e,

δl({q0, q2}, σ, {q1, q2}) = e,

δl({q0, q2}, σ, {q0, q1, q2}) = e,

δl({q0, q1, q2}, σ, {q0}) = d,

δl({q0, q1, q2}, σ, {q1}) = d,

δl({q0, q1, q2}, σ, {q2}) = e,

δl({q0, q1, q2}, σ, {q0, q1}) = d,

δl({q0, q1, q2}, σ, {q0, q2}) = e,

δl({q0, q1, q2}, σ, {q1, q2}) = e,

δl({q0, q1, q2}, σ, {q0, q1, q2}) = e.

Definition 2.5. [1] Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2)

be a BL-GLFA. The run map of the BL-GLFA F̃l is the map ρ : X∗ → Q̄ defined
by the following induction: ρ(Λ) = {q0} and ρ(a1a2...an) = Qin , ρ(a1a2...anan+1)
= fl(Qin , an+1), where (Qin , µ

t0+n(Qin)) ∈ Qact(tn), for every a1, ..., an ∈ X.

The behavior of F̃l is the map β = ωl ◦ ρ : X∗ → Z̄.

In the rest of this note, L is denoted as a bounded complete lattice.

3. Closure properties for BL-general L-fuzzy automata

In this section, we present some properties of BL-general L-fuzzy automata
such as union, intersection, connection and serial connection also study the
behavior of them.

Definition 3.1. Let β : X∗ → Z̄. Then we say that the behavior β is a finite
realization if there exists a BL-GLFA F̃l, where βF̃l

= β.
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Example 3.2. Let BL-general fuzzy automaton F̃l1 as in Figure 3, where Q̄1 =

Figure 3. The BL-general fuzzy automaton F̃l1 of Example 3.2

{{p0}, {p1}, {p0, p1}, ∅}, R̃1 = ({p0}, 1), Z̄ = {{z1}, {z2}, {z1, z2}, ∅},

δl1({p0}, a, {p0}) = 0.3, δl1({p0}, a, {p1}) = 0.4,

δl1({p0}, a, {p0, p1}) = 0.4, δl1({p1}, a, {p1}) = 0.5,

δl1({p1}, a, {p0, p1}) = 0.5, δl1({p0, p1}, a, {p0}) = 0.3,

δl1({p0, p1}, a, {p1}) = 0.5, δl1({p0, p1}, a, {p0, p1}) = 0.5,

δl1({p0}, b, {p0}) = 0.7, δl1({p0}, b, {p0, p1}) = 0.7,

δl1({p1}, b, {p1}) = 0.3, δl1({p1}, b, {p0, p1}) = 0.3,

δl1({p0, p1}, b, {p0}) = 0.7, δl1({p0, p1}, b, {p1}) = 0.3,

δl1({p0, p1}, b, {p0, p1}) = 0.7,

ωl1({p0}) = {z1}, ωl1({p1}) = {z2}, ωl1({p0, p1}) = {z1, z2}.

β(a) = {z1, z2}, β(b) = {z1},
β(ba) = {z1, z2}.

Also, we have β(a+) = {z1, z2}.

Definition 3.3. Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2)

be a BL-GLFA. Then we say that F̃l is a complete BL-GLFA if for any ∅ 6=
Q′ ∈ Q̄ and a ∈ X there exists ∅ 6= Q′′ ∈ Q̄ such that fl(Q

′, a) = Q′′.

Example 3.4. Let BL-general fuzzy automaton F̃l1 as in Example 3.2, Since
for every ∅ 6= Q′ ∈ Q̄ and a ∈ X there exists ∅ 6= Q′′ ∈ Q̄ such that fl(Q

′, a) =



132 M. Shamsizadeh, M.M. Zahedi and Kh. Abolpour

Q′′, so F̃l1 is complete. For example for {p0} ∈ Q and a, b ∈ X, we have
fl({p0}, a) = {p0, p1} and fl({p0}, b) = {p0, p1}.

Theorem 3.5. Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2) be

a BL-GLFA. Then there exists a complete BL-GLFA F̃ cl such that βF̃l
= βF̃ c

l
.

Proof. Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2) does not be
a complete BL-GLFA. Consider

F̃ cl = (Q̄c, X, R̃ = ({q0}, µt0({q0})), Z̄, ωcl , δcl , fcl , δ̃cl , F1, F2),

where Q̄c = P (Q ∪ t), t is an element such that t /∈ Q.
If fl(Q

′, a) = ∅, then δcl (Q
′, a, P ′) = d, where ∅ 6= Q′ ∈ Q̄, t ∈ P ′ ∈ Q̄c. If

fl(Q
′, a) 6= Q′, then δcl (Q

′, a,Q′′) = δl(Q
′, a,Q′′), where t /∈ Q′, Q′′ ∈ Q̄. Also,

let δcl ({t}, a,Q′) = d, where t ∈ Q′, and consider δcl (Q
′, a,Q′′) = δl(Q

′, a, P ′′),
where t /∈ Q′, Q′′ = P ′′ ∪ {t} and P ′′ 6= ∅. If Q′ = P ′ ∪ {t}, P ′ 6= ∅ and t /∈ Q′′,
then consider δcl (Q

′, a,Q′′) = δl(P
′, a,Q′′). If Q′ = P ′ ∪ {t}, Q′′ = P ′′ ∪ {t}

and P ′, P ′′ /∈ ∅, then consider δcl (Q
′, a,Q′′) = δl(P

′, a, P ′′) ∨ d. Finally, if
Q′ = P ′ ∪ {t} and P ′ 6= ∅, then δcl (Q

′, a, {t}) = d. Also, let ωcl (Q
′) = ωl(Q

′),
for every Q′ ∈ Q̄.

It is easy to see that the BL-GLFA

F̃ cl = (Q̄c, X, R̃ = ({q0}, µt0({q0})), Z̄, ωcl , δcl , fcl , δ̃cl , F1, F2),

is complete and βF̃l
= βF̃ c

l
. �

Definition 3.6. Let

F̃li = (Q̄i, X, R̃i = ({q0i}, µt0({q0i})), Z̄, ωli, δli, fli, δ̃li, F1, F2), i = 1, 2,

be two BL-GLFAs. Then

F̃l1∪F̃l2 = (Q̄1×Q̄2, X, (({q01}, {q02}), µt0(({q01}, {q02})), Z̄, ωl∪, δl, fl, δ̃l, F1, F2),

where µt0(({q01}, {q02})) = (µt0({q01}), µt0({q02})), ωl∪(Q′, Q′′) = ωl1(Q′) ∪
ωl2(Q′′),

δl((Q
′, Q′′), a, (P ′, P ′′)) = (δl1 × δl2)((Q′, Q′′), a, (P ′, P ′′))

= (δl1(Q′, a, P ′), δl2(Q′′, a, P ′′)),

fl((Q
′, Q′′), a) = (fl1 × fl2)((Q′, Q′′), a) = (fl1(Q′, a), fl2(Q′′, a)) and

δ̃l(((Q
′, Q′′), µt(Q′, Q′′)),a, (P ′, P ′′))

= (δ̃l1 × δ̃l2)(((Q′, Q′′), µt(Q′, Q′′)), a, (P ′, P ′′))

= (δ̃l1((Q′, µt(Q′)), a, P ′), δ̃l2((Q′′, µt(Q′′)), a, P ′′)),

for every Q′, P ′ ∈ Q̄1, Q
′′, P ′′ ∈ Q̄2 and a ∈ X.
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Figure 4. The BL-general fuzzy automaton F̃l2 of Example 3.7

Example 3.7. Let BL-general fuzzy automaton F̃l1 as in Example 3.2. Also,
consider BL-general fuzzy automaton F̃l2 as in Figure 4, where Q̄2 = {{q0}, {q1},
{q0, q1}, ∅}, R̃2 = ({q0}, 1), Z̄ = {{z1}, {z2}, {z1, z2}, ∅},

δl2({q0}, a, {q0}) = 0.5,

δl2({q0}, a, {q1}) = 0.7,

δl2({q0}, a, {q0, q1}) = 0.7,

δl2({q1}, a, {q0}) = 0.3,

δl2({q1}, a, {q0, q1}) = 0.3,

δl2({q0, q1}, a, {q0}) = 0.5,

δl2({q0, q1}, a, {q1}) = 0.7,

δl2({q0, q1}, a, {q0, q1}) = 0.7,

δl2({q0}, b, {q1}) = 0.3,

δl2({q0}, b, {q0, q1}) = 0.3,

δl2({q1}, b, {q1}) = 0.7,

δl2({q1}, b, {q0, q1}) = 0.7,

δl2({q0, q1}, b, {q1}) = 0.7,

δl2({q0, q1}, b, {q0, q1}) = 0.7,

ωl2({q0}) = ωl2({q1}) = ωl2({q0, q1}) = {z2}. It is clear that F̃li, i = 1, 2

are complete. Then by considering Definition 3.6, F̃l1 ∪ F̃l2 is as follows:
Q̄1 × Q̄2 = {({p0}, {q0}), ({p0}, {q1}), ({p0}, {q0, q1}), ({p1}, {q0}),
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({p1}, {q1}), ({p1}, {q0, q1}), ({p0, p1}, {q0}), ({p0, p1}, {q1}), ({p0, p1}, {q0, q1})},
δl(({p0}, {q0}), a, ({p0}, {q0})) = (0.3, 0.5),

δl(({p0}, {q0}), a, ({p0}, {q1})) = (0.3, 0.7),

δl(({p0}, {q0}), a, ({p1}, {q0})) = (0.4, 0.5),

δl(({p0}, {q0}), a, ({p1}, {q1})) = (0.4, 0.7),

δl(({p0}, {q0}), a, ({p1}, {q0, q1})) = (0.4, 0.7),

δl(({p0}, {q0}), a, ({p0, p1}, {q0})) = (0.4, 0.5),

δl(({p0}, {q0}), a, ({p0, p1}, {q1})) = (0.4, 0.7),

δl(({p0}, {q0}), a, ({p0, p1}, {q0, q1})) = (0.4, 0.7),

δl(({p0}, {q0}), b, ({p0}, {q1})) = (0.7, 0.3),

δl(({p0}, {q0}), b, ({p0}, {q0, q1})) = (0.7, 0.3),

δl(({p0}, {q0}), b, ({p0, p1}, {q1})) = (0.7, 0.3),

δl(({p0}, {q0}), b, ({p0, p1}, {q0, q1})) = (0.7, 0.3).

In the similar way, we can calculate the other of transitions of δl, also

ωl∪(({p0}, {q0})) = {z1, z2},
ωl∪(({p0}, {q1})) = {z1, z2},
ωl∪(({p0}, {q0, q1})) = {z1, z2},
ωl∪(({p1}, {q0})) = {z2},
ωl∪(({p1}, {q1})) = {z2},
ωl∪(({p1}, {q0, q1})) = {z2},
ωl∪(({p0, p1}, {q0})) = {z1, z2},
ωl∪(({p0, p1}, {q1})) = {z1, z2},
ωl∪(({p0, p1}, {q0, q1})) = {z1, z2},

Theorem 3.8. Let

F̃li = (Q̄i, X, R̃i = ({q0i}, µt0({q0i})), Z̄, ωli, δli, fli, δ̃li, F1, F2), i = 1, 2,

be two complete BL-GLFAs. Then βF̃l1∪F̃l2
= βF̃l1

∪ βF̃l2
.

Proof. Let ρ1, ρ2, ρ be the run relations of F̃l1, F̃l2 and F̃l1 ∪ F̃l2, respectively.
Then we have

βF̃l1∪F̃l2
(x) = ωl∪ ◦ ρ(x) = ωl∪(ρ1(x), ρ2(x))

= ωl1(ρ1(x)) ∪ ωl2(ρ2(x)) = βF̃l1
(x) ∪ βF̃l2

(x),

for every x ∈ X∗. �

Definition 3.9. Let

F̃li = (Q̄i, X, R̃i = ({q0i}, µt0({q0i})), Z̄, ωli, δli, fli, δ̃li, F1, F2), i = 1, 2,
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be two BL-GLFAs. Then

F̃l1∩F̃l2 = (Q̄1×Q̄2, X, (({q01}, {q02}), µt0(({q01}, {q02})), Z̄, ωl∩, δl, fl, δ̃l, F1, F2),

where µt0(({q01}, {q02})) = (µt0({q01}), µt0({q02})) and ωl∩(Q′, Q′′) = ωl1(Q′)∩
ωl2(Q′′), for every Q′ ∈ Q̄1, Q

′′ ∈ Q̄2. Also, δl, fl and δ̃l are similar to Definition
3.6.

Example 3.10. Let BL-general fuzzy automata F̃li, i = 1, 2 as in Examples 3.2
and 3.7. Then by considering Definitions 3.6 and 3.9, F̃l1 ∩ F̃l2 is as follows:
Q̄1×Q̄2 = {({p0}, {q0}), ({p0}, {q1}), ({p0}, {q0, q1}), ({p1}, {q0}), ({p1}, {q1}),
({p1}, {q0, q1}), ({p0, p1}, {q0}), ({p0, p1}, {q1}), ({p0, p1}, {q0, q1})},

δl(({p0}, {q0}), a, ({p0}, {q0})) = (0.3, 0.5),

δl(({p0}, {q0}), a, ({p0}, {q1})) = (0.3, 0.7),

δl(({p0}, {q0}), a, ({p1}, {q0})) = (0.4, 0.5),

δl(({p0}, {q0}), a, ({p1}, {q1})) = (0.4, 0.7),

δl(({p0}, {q0}), a, ({p1}, {q0, q1})) = (0.4, 0.7),

δl(({p0}, {q0}), a, ({p0, p1}, {q0})) = (0.4, 0.5),

δl(({p0}, {q0}), a, ({p0, p1}, {q1})) = (0.4, 0.7),

δl(({p0}, {q0}), a, ({p0, p1}, {q0, q1})) = (0.4, 0.7),

δl(({p0}, {q0}), b, ({p0}, {q1})) = (0.7, 0.3),

δl(({p0}, {q0}), b, ({p0}, {q0, q1})) = (0.7, 0.3),

δl(({p0}, {q0}), b, ({p0, p1}, {q1})) = (0.7, 0.3),

δl(({p0}, {q0}), b, ({p0, p1}, {q0, q1})) = (0.7, 0.3).

In the similar way, we can calculate the other of transitions of δl, also

ωl∩(({p0}, {q0})) = ωl∩(({p0}, {q1})) = ωl∩(({p0}, {q0, q1})) = ∅,
ωl∩(({p1}, {q0})) = ωl∩(({p1}, {q1})) = ωl∩(({p1}, {q0, q1})) = {z2},
ωl∩(({p0, p1}, {q0})) = ωl∩(({p0, p1}, {q1})) = ωl∩(({p0, p1}, {q0, q1})) = {z2}.

Theorem 3.11. Let

F̃li = (Q̄i, X, R̃i = ({q0i}, µt0({q0i})), Z̄, ωli, δli, fli, δ̃li, F1, F2), i = 1, 2

be two complete BL-GLFAs. Then βF̃l1∩F̃l2
= βF̃l1

∩ βF̃l2
.

Proof. Let ρ1, ρ2, ρ be the run relations of F̃l1, F̃l2 and F̃l1 ∩ F̃l2, respectively.
Then we have

βF̃l1∩F̃l2
(x) = ωl∩ ◦ ρ(x) = ωl∩(ρ1(x), ρ2(x))

= ωl1(ρ1(x)) ∩ ωl2(ρ2(x)) = βF̃l1
(x) ∩ βF̃l2

(x)

for every x ∈ X∗. �
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Definition 3.12. By considering Definition 2.5, we have β : X∗ → Z̄, i.e.,
β(x) = Zl ∈ Z̄, for every x ∈ X∗. Define β̄ : X∗ → Z̄ by β̄(x) = Z ′l if and only
if β(x) = Zl, where Z ′l = Z − Zl and Z is universal set.

Example 3.13. Let F̃l1 be the BL-GLFA as in Example 3.10. Then β = βF̃l1

is a finite realization. Now, let

F̃ ′l1 = (Q̄1, X, R̃1 = ({p0}, µt0({p0})), Z̄, ω′l1, δl1, fl1, δ̃l1, F1, F2),

where ω′l({p0}) = {z2}, ω′l({p1}) = {z1}, ω′l({p0, p1}) = ∅. Then we have

β(a) = {z1, z2}, βF̃ ′l1
(a) = ω′1({p0, p1}) = ∅ = β̄(a),

β(b) = {z1}, βF̃ ′l1
(b) = ω′1({p0}) = {z2} = β̄(a),

β(ba) = {z1, z2}, βF̃ ′l1
(ba) = ω′1({p0, p1}) = ∅ = β̄(a).

Theorem 3.14. Let the behavior β : X∗ → Z̄ be a finite realization. Then β̄
is a finite realization.

Proof. Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2) be a BL-

GLFA, where βF̃l
= β. Now, define BL-GLFA F̃ ′l as following: F̃ ′l = (Q̄,X, R̃ =

({q0}, µt0({q0})), Z̄, ω′l, δl, fl, δ̃l, F1, F2). Define ω′l : Q̄ → Z̄ by ω′l(Q
′) = Z ′l if

and only if ωl(Q
′) = Z ′′l , where Z ′l = Z − Z ′′l . Let ρ be the run relations of

F̃l. Then βF̃ ′l
(x) = ω′l ◦ ρ(x) = ω′l(ρ(x)) = Z −Z ′l , where ωl(ρ(x)) = Z ′l . Hence

β(F̃ ′l ) = β̄. �

Lemma 3.15. (Pumping Lemma) Let β be a finite realization. Then, there
exists a positive integer N , such that every word x ∈ X∗ of lengths exceeding
that N can be divided into three pieces x = uvw, satisfying the conditions:
(1) |v| > 1, (2) |uv| < N , (3) ∀m > 0, β(uvw) = β(uvmw).

Proof. Let F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2) be a BL-
GLFA, where βF̃l

= β and |N | = 2|Q|, |Q| is the cardinality of the state

set Q. Now, suppose that x = a1a2...ak ∈ X∗, where |x| = k > N . Let

β(x) = ωl(ρ(x)), where ρ is the run map of F̃l and ρ(a1) = Q1, ρ(a1a2) =
Q2, ..., ρ(a1a2...aN ) = QN , ρ(a1a2...aNaN+1) = QN+1, ...,
ρ(a1a2...ak) = Qk. Then there must be at least one repetition among the
N + 1 states {q0}, Q1, Q2, ..., QN . Let Qi (with i ≥ 0) be the first state in
the sequence {{q0}, Q1, ..., QN} that repeats and let Qi+r = Qj(r > 0) be its
repetition. Then we have x = uvw, where

u = a1a2...ai, v = ai+1ai+2...aj , w = aj+1aj+2...ak.

Therefore ρ(x) = ρ(uvw) = ρ(a1...aiai+1...ajaj+1...ak) = ρ(fl(Qi, ai+1...ak)) =
ρ(fl(Qj , aj+1...ak)) = ρ(a1...aiaj+1...ak). In a similar way ρ(uvmw) = ρ(uvw),
for every m > 0. Hence β(uvw) = β(uvmw), for every m > 0. �
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Example 3.16. Let F̃l1 be as defined in Example 3.10. Clearly, β = βF̃l1

is a finite realization. Consider an ∈ X∗ such that n > |Q̄1|. Obviously,
ρ(a) = {p0, p1} and ρ(a2) = {p0, p1}. Therefore, we have an = apaqar, where
p = 1, q = 1, r = n−2. Hence, it is clear that β(an) = β(am), where m ≥ n−1.

Definition 3.17. A language L ⊆ X∗ is recognizable if there exists a finite BL-
general L-fuzzy automaton with the output alphabet Z̄ = {∅, {0}, {1}, {0, 1}},
in which its behavior is a function β : X∗ → {0, 1} and 1 ∈ β(x)⇐⇒ x ∈ L.

Theorem 3.18. A behavior β : X∗ → Z̄ is a finite realization if and only if

(i) the language β−1(Y ) is recognizable, for each Y ∈ Z̄,
(ii) the set β(X∗) ⊆ Z̄ is finite.

Proof. ⇒) Let β be a finite realization, say F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄,
ωl, δl, fl, δ̃l, F1, F2).

(i) For every Y ∈ Z̄, define an acceptor F̃Y = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄Y
= {0, 1}, ω−1lY , δl, fl, δ̃l, F1, F2). We prove that β−1(Y ) is the language recog-

nized by F̃Y . Denote by ρ : X∗ → Q̄ the run map of F̃l, then β = ωl ◦ ρ.
Moreover, ρ is the run map of F̃Y as well, its output map ωlY : Q̄ → {0, 1}
is defined by 1 ∈ ωlY (Q′) if and only if ωl(Q

′) = Y . Then the behavior of

F̃Y , βY = ωlY ◦ ρ, for every x ∈ X∗

1 ∈ βY (x)⇐⇒ 1 ∈ ωlY ◦ ρ(x)

⇐⇒ ωl(ρ(x)) = Y

⇐⇒ β(x) = Y.

Therefore LF̃Y
= β−1(Y ). This proves that β−1(Y ) is recognizable.

(ii) β(X∗) = ωl(ρ(X∗)) = ωl(Q̄) is finite, since Q is finite.
⇐) Let β has properties (i) and (ii) and β(X∗) = {Y1, Y2, ..., Yn}. By hypoth-
esis, for every i = 1, 2, ..., n the language Li = β−1(Yi) is a finite realization,
say

F̃li = (Q̄i, X, R̃i = ({q0i}, µt0({q0i})), {0, 1}, ωli, δli, fli, δ̃li, F1, F2), i = 1, 2, ..., n.

Define a finite BL-GLFA F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δl, fl, δ̃l, F1, F2)

as follows: Q̄ = Q1×...×Qn, R̃ = (({q01}, ..., {q0n}), µt0({q01}, ..., {q0n}), where

µt0({q01}, {q02}, ..., {q0n}) = (µt0({q01}), µt0({q02}), ..., µt0({q0n})),
also

δl((Q
′
1, Q

′
2, ..., Q

′
n),a, (P ′1, P

′
2, ..., P

′
n))

= (δl1(Q′1, a, P
′
1), δl2(Q′2, a, P

′
2), ..., δln(Q′n, a, P

′
n)),

δ̃l(((Q
′
1, Q

′
2, ..., Q

′
n),µt((Q′1, Q

′
2, ..., Q

′
n))), a, (P ′1, P

′
2, ..., P

′
n))

= (δ̃l1((Q′1, µ
t(Q′1)), a, P ′1), δ̃l2((Q′2,

µt(Q′2)), a, P ′2), ..., δ̃ln((Q′n, µ
t(Q′n)), a, P ′n)),
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fl((Q
′
1, ..., Q

′
n), a) = (fl1(Q′1, a), ..., fln(Q′n, a)) also, ωl((Q

′
1, Q

′
2, ..., Q

′
n)) = ωli(Q

′
i)

if 1 ∈ ωli(Q′i) and ωlj(Q
′
j) = {0}, for every j 6= i. Now, let ρi : X∗ → Q̄i be

the run relations of F̃li, i = 1, ..., n. Then we define a run map of F̃l as follow:
ρ : X∗ → Q̄, where ρ(x) = (ρ1(x), ρ2(x), ..., ρn(x)). We have

ρ(xa) = (ρ1(xa), ρ2(xa), ..., ρn(xa))

= (fl1(ρ1(x), a), fl2(ρ2(x), a), ..., fln(ρn(x), a))

= f((ρ1(x), ρ2(x), ..., ρn(x)), a)

= f(ρ(x), a).

Let β̄ = ωl ◦ ρ. Then for every x ∈ X∗, we have β(x) = Yi, i.e., x ∈ L(F̃i) and

x /∈ L(F̃j) for j 6= i. Therefore

ωl(ρ(x)) = ωl(ρ1(x), ρ2(x), ..., ρn(x)) = Yi.

Then β(x) = Yi implies that β̄(x) = ωl(ρ(x)) = Yi. Hence β = β̄. �

Definition 3.19. (Connection) Let

F̃li = (Q̄i, X, R̃i = ({q0i}, µt0({q0i})), {0, 1}, ωli, δli, fli, δ̃li, F1, F2), i = 1, 2,

be two BL-GLFAs, where Q1 ∩Q2 = ∅. Define F̃l1 ∗ F̃l2 as follows:

F̃l1∗F̃l2 = (P (Q1∪{q02})∪Q̄2, X, R̃1 = ({q01}, µt0({q01})), {0, 1}, ω′l, δ̄l, f̄l, ˜̄δl, F1, F2),

where

f̄l(Qi, a) =

{
fl1(Qi, a) if Qi ∈ Q̄1, ωl1(Qi) = {0}
fl1(Qi, a) ∪ {q02} if Qi ∈ Q̄1, 1 ∈ ωl1(Qi)

,

f̄l(Qi, a) = fl2(Qi, a), for every Qi ∈ Q̄2,

δ̄l(Qi, a,Qj) =


δl1(Qi, a,Qj) if Qi, Qj ∈ Q̄1

δl2(Qi, a,Qj) if Qi, Qj ∈ Q̄2

δl2({q02}, a,Qj) if {q02} ∈ Qi, Qi − {q02} ∈ Q̄1, Qj ∈ Q̄2

δl1(Qi − {q02}, a,Qj) if {q02} ∈ Qi, Qi − {q02} ∈ Q̄1, Qj ∈ Q̄1

,

and

¯̃
δl((Qi, µ

t(Qi)), a,Qj) =
δ̃l1((Qi, µ

t(Qi)), a,Qj) if Qi, Qj ∈ Q̄1

δ̃l2((Qi, µ
t(Qi)), a,Qj) if Qi, Qj ∈ Q̄2

δ̃l2(({q02}, µt({q02})), a,Qj) if {q02} ∈ Qi, Qi − {q02} ∈ Q̄1, Qj ∈ Q̄2

δ̃l1((Qi − {q02}, µt(Qi − {q02})), a,Qj) if {q02} ∈ Qi, Qi − {q02} ∈ Q̄1, Qj ∈ Q̄1

.

Also, we define ω′l(Q
′) = ωl2(Q′′), where Q′ = Q′′∪Q′′′, Q′ ∈ Q̄1∪Q̄2, Q

′′ ∈ Q̄2

and Q′′′ ∈ Q̄1.
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Let ∆1 and ∆2 be the set of all transitions of BL-GLFAs F̃l1 and F̃l2, re-
spectively. Then we have the set of all transitions of BL-GLFA F̃l1 ∗ F̃l2 as
follow: ∆ = ∆1 ∪∆2 ∪ {δl1(qi, a, q02)

∣∣qi ∈ Qi, 1 ∈ ωl1(Qi)}.
Also, the language recognized by F̃l1 ∗ F̃l2 is a subset of X∗ defined by:

L(F̃l1 ∗ F̃l2) = {x ∈ X∗
∣∣1 ∈ βF̃l1∗F̃l2

(x)} = {x = uv
∣∣1 ∈ βF̃1

(u), 1 ∈ βF̃2
(v)}.

Theorem 3.20. Let F̃li = (Q̄i, X, R̃i = ({q0i}, µt0({q0i})), {0, 1}, ωli, δli, fli, δ̃li,
F1, F2), i = 1, 2 be two BL-GLFAs, where Q1 ∩ Q2 = ∅. Then L(F̃l1 ∗ F̃l2) =

L(F̃l1).L(F̃l2).

Proof. Let ρ and ρ′ be the run relations of F̃l1 and F̃l2, respectively. The run
relation ρ̄ of F̃l1 ∗ F̃l2 is defined as follow:

ρ̄(a1...an) = ρ1(a1...an) ∪
⋃

1∈βF̃l1
(a1...ai)

ρ2(ai+1...an).

Now, we have

a1a2...an ∈ L(F̃l1.F̃l2)⇐⇒ 1 ∈ ω′l ◦ ρ̄(a1a2...an)

⇐⇒ 1 ∈ ωl2(Q′′),

where ρ̄(a1a2...an) = Q′ ∪ Q′′, Q′ ∈ Q̄1, Q
′′ ∈ Q̄2. The run in F̃l1 ∗ F̃l2 from

{q01} to ωl2(Q′′) can enter 1 if and only if 1 ∈ β(u1) for some left factor u1 of
x. Therefore 1 ∈ ωl2(Q′′), where ρ̄(a1a2...an) = Q′ ∪ Q′′, Q′ ∈ Q̄1, Q

′′ ∈ Q̄1,

if and only if there are a1a2...ai ∈ L(F̃l1) and ai+1ai+2...an ∈ L(F̃l2). Thus

a1a2...an ∈ L(F̃l1 ∗ F̃l2). �

Example 3.21. Let F̃li, i = 1, 2 be as defined in Example 3.10, where ωli, i =
1, 2 is changed as follows: ωl1({p0}) = {0}, ωl1({p1}) = {1}, ωl1({p0, p1}) =

{0, 1} and ωl2({q0}) = ωl2({q1}) = ωl2({q0, q1}) = {1}. Then we have F̃l1.F̃l2
as in Figure 5, where

P (Q1 ∪ {q0}) ∪Q2

= {{q0}, {q1}, {q0, q1}, {p0}, {p1}, {p0, p1}, {q0, p0}, {q0, p1}, {q0, p0, p1}}.
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Figure 5. The BL general fuzzy automaton F̃l1 ∗ F̃l2 of Ex-
ample 3.21

f̄l({p0}, a) = {p0, p1},
f̄l({p0}, b) = {p0},
f̄l({p1}, a) = {p1, q0},
f̄l({p1}, b) = {p1, q0},
f̄l({p0, p1}, a) = {p0, p1, q0},
f̄l({p0, p1}, b) = {p0, p1, q0},
f̄l({q0}, a) = {q0, q1},
f̄l({q0}, b) = {q1},
f̄l({q1}, a) = {q0},
f̄l({q1}, b) = {q1},
f̄l({q0, q1}, a) = {q0, q1},
f̄l({q0, q1}, b) = {q1}.

Also,

δ̄l(Qi, a,Qj) =

{
δl1(Qi, a,Qj) if Qi, Qj ∈ Q̄1

δl2(Qi, a,Qj) if Qi, Qj ∈ Q̄2

,
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δ̄l({q0, p0}, a, {q0}) = δ̄l({q0, p1}, a, {q0}) = δ̄l({q0, p0, p1}, a, {q0}) = 0.5,

δ̄l({q0, p0}, a, {q1}) = δ̄l({q0, p1}, a, {q1}) = δ̄l({q0, p0, p1}, a, {q1}) = 0.7,

δ̄l({q0, p0}, a, {q0, q1}) = δ̄l({q0, p1}, a, {q0, q1}) = δ̄l({q0, p0, p1}, a, {q0, q1}) = 0.7,

δ̄l({q0, p0}, b, {q1}) = δ̄l({q0, p1}, b, {q1}) = δ̄l({q0, p0, p1}, b, {q1}) = 0.3,

δ̄l({q0, p0}, b, {q0, q1}) = δ̄l({q0, p1}, b, {q0, q1}) = δ̄l({q0, p0, p1}, b, {q0, q1}) = 0.3,

δ̄l({q0, p0}, a, {p0}) = 0.3, δ̄l({q0, p0}, b, {p0}) = 0.7,

δ̄l({q0, p0}, a, {p1}) = 0.4, δ̄l({q0, p0}, b, {p0, p1}) = 0.7,

δ̄l({q0, p0}, a, {p0, p1}) = 0.4, δ̄l({q0, p1}, b, {p1}) = 0.3,

δ̄l({q0, p1}, a, {p1}) = 0.5, δ̄l({q0, p1}, b, {p0, p1}) = 0.3,

δ̄l({q0, p1}, a, {p0, p1}) = 0.5, δ̄l({q0, p0, p1}, b, {p0}) = 0.7,

δ̄l({q0, p0, p1}, a, {p0}) = 0.3, δ̄l({q0, p0, p1}, b, {p1}) = 0.3,

δ̄l({q0, p0, p1}, a, {p1}) = 0.5, δ̄l({q0, p0, p1}, b, {p0, p1}) = 0.7,

δ̄l({q0, p0, p1}, a, {p0, p1}) = 0.5,

and ω′l({q0}) = ω′l({q0, p0}) = ω′l({q0, p1}) = ω′l({q0, p0, p1}) = ω′l({q1}) =
ω′l({q0, q1}) = 1.

Definition 3.22. (Serial Connection) Let

F̃l = (Q̄,X, R̃ = ({q0}, µt0({q0})), {0, 1}, ωl, δl, fl, δ̃l, F1, F2),

be a BL-GLFA. Define BL-GLFA F̃+
l as follows:

F̃+
l = (Q̄,X, R̃ = ({q0}, µt0({q0})), Z̄, ωl, δ+l , f

+
l , δ̃

+
l , F1, F2),

where

f̄+l (Qi, a) =

{
fl(Qi, a) ∪ {q0} if 1 ∈ ωl(fl(Qi, a))

fl(Qi, a) if ωl(fl(Qi, a)) = {0}
,

δ+l (Qi, a,Qj) = δl(Qi, a,Qj) and δ̃+l ((Qi, µ
t(Qi)), a,Qj) = F1(µt(Qi), δ̃

+
l (Qi, a,

Qj)). Let ∆1 be the set of all transitions of BL-GLFAs F̃l. Then the set of all

transitions of BL-GLFA F̃+
l is equal to ∆ = ∆1 ∪ {δl1(qi, a, q0)

∣∣qi ∈ Qi, 1 ∈
ωl(Qi)}.

Theorem 3.23. Let F̃+
l be the above BL-GLFA. Then L(F̃+

l ) = L+(F̃l).

Proof. Let ρ be the run relation of F̃l. Then the run relation ρ+ of F̃+
l is

defined as follow:

ρ+l (Λ) = {q0}, ρ+l (a1...an) =

Jk⋃
i=J1

ρl(ai...an),
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where J1 = 1, Jk ≤ n, (K = 0, 1, 2, ...) and 1 ∈ β(aJl ...aJl+1
), for every a1...an ∈

X∗ and 1 ≤ l ≤ k. Now, let a1...an ∈ L(F̃+
l ). Since 1 ∈ ωl(ρ+l (a1...an)). Then

a1...an ∈ L+(F̃l).

Now, let a1...an ∈ L+(F̃l). Then there exist i1, i2, ..., ik, (k = n), such that

1 ∈ β(a1...ai1), 1 ∈ β(ai1+1...ai2), ..., 1 ∈ β(aik−1+1...aik).

Therefore ρ+l (a1...an) =
⋃k−1
ij=0 ρl(aij+1...an). So, 1 ∈ β+

l (a1...an) and L(F̃+
l ).

Hence, the claim holds. �

Definition 3.24. Given a language L ⊆ X∗, the language L∗ = ∅ ∪ L+ is
called its iteration.

Definition 3.25. Let L be a subset of X∗. Then L is called rational if it can
be obtained from finite subsets of X∗ by finitely many applications of union,
connection and iteration.

Theorem 3.26. (Kleen’s Theorem) Let L be a subset of X∗. Then L is a
recognizable set if and only if L is rational.

Proof. Let L be a rational set. Then it can be obtained from finite subsets of
X∗ by finitely many applications of union, connection and iteration. So, by
considering Theorems 3.8, 3.20, and 3.23, L is a recognizable set. The converse
is not difficult. �

4. Conclusion

In 2012, Kh. Abolpour and M. M. Zahedi [1] extended the notion of general
fuzzy automata and gave the notion of BL-general fuzzy automata. An inter-
esting problem in this context is the realization problem, which says that given
a behavior, we can design a machine that realizes it. This study presents the re-
sults about closer operators for the class of BL-general fuzzy automata based on
lattice valued. Also, the authors give the Pumping Lemma for the BL-general
L-fuzzy automaton. Here we prove that union, intersection and complement
are third closed for this class of languages. Moreover, we show that the Pump-
ing lemma is established for BL-general L-fuzzy automata. Also, it is proven
that L is a recognizable set if and only if L is rational. This paper shows that
there is a connection between the behavior of a finite realization and a recog-
nizable language of a BL-general L-fuzzy automaton. Finally, it is concluded
that Kleen’s Theorem is valid for the BL-general L-fuzzy automaton. These
results extended the previous results presented in [22,25].
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