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Abstract. This paper studies the dynamics of a non-smooth vibrating
system of the Filippov type. The main focus is on investigating the

stability and bifurcation of a simple harmonic oscillator subjected to a

non-smooth velocity-dependent damping force. In this way, we can ana-
lyze the effects of damping on the system’s vibrations. For this purpose,

we will find a parametric region for the existence of generalized Hopf bi-

furcation, in order to compute a branch of periodic orbits for the system.
The tool for our purpose is the theoretical results about generalized Hopf

bifurcation for planar Filippov systems. Some numerical simulations as
examples are given to illustrate our theoretical results. Our theoretical

and numerical findings indicate that the harmonic oscillator can experi-

ence different kinds of vibrations, in the presence of a non-smooth damp-
ing.
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1. Introduction

Harmonic oscillators have been studying by many researchers due to their
widespread applications in different research areas, see [1–3, 5, 9, 10, 12, 14, 19,
25, 26, 33, 43] and the references therein. Most of these studies demonstrate
the importance of damping as an inevitable perturbation for an oscillator. It
is observed that the existence of a non-smooth nonlinearity (such as damping)
may result in dramatic changes in the systems’ dynamics. We note that non-
smooth dynamical systems is almost a young research area, and the theory
of such systems has not been completely studied yet. Moreover, using non-
smooth dynamical systems is essential for the modelling of many phenomena
as it allows them to be modelized in a more precise and realistic way [32–36].
Especially, considering such systems is very advantageous for many engineering
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models like mechanical systems that are dealing with frictions. One important
type of non-smooth systems is Flippov systems. Vector field of these systems is
discontinuous but the trajectories of these systems are continuous with respect
to the time t. Filippov in [24] showed that many results in the classical theory
of differential equation are also valid for non-smooth differential equations with
discontinuous right hand sides.

In some cases, a non-smooth substitute for assumed smooth damping enables
us to obtain more comprehensive results [32, 33, 36]. In particular, some oscil-
lators may vibrate in different environments and enter from one environment
to another one, during their motion. In such situations, the oscillatory systems
encounter to different velocity dependent dampings in each area. This gives
rise to a non-smooth damping for these systems. For example let us consider
an airfoil system, as the cross section of a body such as an aircraft wing, that
is located in an airstream. The motion of a two-dimensional airfoil is described
by two positions, plunge (bending) and pitch (torsion). The plunge, is the
position along the y-axis measured positive down. In fact, the plunge motion
is a harmonic oscillation and a linear spring is used to simulate this motion;
for more details see [21, 33]. When an airfoil is moving up through the air, it
may enter from the air to the clouds. Hence, a non-smooth damping imposes
on the plunge oscillations of the airfoil.

There are papers concerning the effect of smooth damping on the harmonic
oscillators, see [3, 4, 31, 42]. But, here we are interested in investigating the
effects of a non-smooth damping on pendulum. It is supposed that the non-
smooth damping force is a function depending upon velocity. A natural conse-
quence of using a non-smooth model for damping is to consider a more suitable
and real model, for damping, than the smooth one.

As mentioned above, non-smooth dynamical systems are observed in many
phenomena such as turbine blade and friction oscillators. The friction contact
between some surfaces widely are seen in mechanical models. The study on
this problem started with the work of Den Hartog [20] in 1930 on the forced
vibrations with Coulomb and viscous damping. A spring mass system with
combined Coulomb and viscous damping is investigated by Levitan [26] in
1960. Four years later, Filippov stated concepts on non-smooth differential
equations, [15]. After twenty years, in 1988, he presented the summary for
such systems. In 1996, Oestreich et al. [37] presented their work on the dy-
namical behavior of a non-smooth friction oscillator. After one year, Kunze et
al. used KAM theory to non-smooth systems for analyzing the periodic motion
of a forced oscillator. Küpper et al. [25] and Zuo et al. [45], in 2001 and 2006,
surveyed generalized Hopf bifurcation in planar non-smooth systems. Addi-
tionally, Cid and Sanchez [7] investigated a system with non-smooth restoring
forced in 2003. Furthermore, periodic solutions of friction oscillators have been
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studied by many researchers, see [1, 2, 8, 27, 29–31, 38–40, 43]. Besides, for the
sake of the significant role of sliding bifurcations, analysing Filippov systems
has become a hot topic for many researchers, [5, 16,18,22,23,33,35].

A key point of this paper is that a velocity-dependent damping is considered
to model a non-smooth harmonic oscillator. To the best of our knowledge,
damping is a challenge in science and engineering and it exists in many models
with different scales; for example, in a protein motor with nanometers scale or in
earthquakes with kilometers scale. Furthermore, damped oscillators have been
more popular in recent years as a research topic; see [6, 13, 14, 17, 28, 44]. The
current study aims to examine the effects of a non-smooth velocity-dependent
damping on a harmonic oscillator. First, we present our mathematical model.
Afterwards, the generalized Hopf bifurcation theorem, in non-smooth systems,
is applied to obtain a parametric region for existence of periodic oscillations for
the oscillator. Finally, some analytical results and numerical simulations are
given to better comprehend the complicated dynamics of the model.

2. Preliminaries

In this section, we briefly explain some definitions and theorems of non-
smooth dynamical systems which are going to be used in the next section. For
more details see [33,45].

2.1. Non-smooth dynamical systems. Let U ⊆ R2 be an open subset cen-
tered about the origin and M be an open interval in R containing 0. Moreover,
suppose that

(H1) f+ : U ×M −→ R2, f− : U ×M −→ R2 are Ck (k ≥ 2) functions.

Furthermore, consider the smooth function H : U −→ R, with H(x, y) =
x, where (x, y)T ∈ U . The scaler function H has nonvanishing gradient
∇H(x, y) = (1, 0)T . We define

S+ = {(x, y)T ∈ U ⊆ R2; H(x, y) > 0},(1)

S− = {(x, y)T ∈ U ⊆ R2; H(x, y) < 0},(2)

and the discontinuity boundary Σ separating the two regions S+ and S− as

Σ = {(x, y)T ∈ U ⊆ R2; H(x, y) = 0}.(3)

Now consider the following non-smooth system(
ẋ

ẏ

)
=

{
f+(x, y, µ); (x, y)T ∈ S+,

f−(x, y, µ); (x, y)T ∈ S−,
(4)

such that f±(x, y, µ) = (f±1 (x, y, µ), f±2 (x, y, µ)) and

(H2) f±(0, 0, µ) ≡ (0, 0) for all µ ∈ M , i.e., the (0, 0) is a stationary point for
the system (4) for every µ ∈M .
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Let us define the set-valued extension of (4) to a differential inclusion(
ẋ

ẏ

)
∈ F (x, y, µ),(5)

where

F (x, y, µ) =


f+(x, y, µ); (x, y)T ∈ S+

{(1− λ)f−(x, y, µ) + λf+(x, y, µ),∀λ ∈ [0, 1]}; (x, y)T ∈ Σ

f−(x, y, µ); (x, y)T ∈ S−

.

(6)

By Filippov Theorem, differential equations (4) and (6) have a solution in the
sense of Filippov definition of the solution; see [24].

Since f± satisfies conditions (H1) and (H2), it has the following Taylor expan-
sion at (0, 0)

f±(x, y, µ) = A±(µ)(x, y)T + g±(x, y, µ),(7)

where g±(x, y, µ) = (g±1 (x, y, µ), g±2 (x, y, µ)) is Ck and |g±(x, y, µ)| = O(x2 +
y2) as (x, y) −→ (0, 0). Therefore, the piecewise linearization of the system (4)
at the origin is

(
ẋ

ẏ

)
=

{
A+(µ)(x, y)T ; (x, y)T ∈ S+

A−(µ)(x, y)T ; (x, y)T ∈ S−
.(8)

In order to study the nonlinear system (4), it is necessary to first investigate
the piecewise linear system (8). Now, consider the linearized system (8) and
assume that

(H3) the matrix A± has a pair of complex eigenvalues α±(µ) ± iβ±(µ) with
β±(µ) > 0.

In this paper, we investigate orbits that transversally cross the discontinuity
boundary Σ. If

A±(µ) =

(
a±11(µ) a±12(µ)

a±21(µ) a±22(µ)

)
,(9)

then the condition

(H4) a±12(µ0) > 0 (or a±12(µ0) < 0) for some µ0 ∈M ,

implies that the flow of system (4) crosses Σ transversally and clockwise (or
counter-clockwise), see [45].

Finally, we assume that
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(H5)

α−(µ0)

β−(µ0)
+
α+(µ0)

β+(µ0)
= 0,(10)

and

∂

∂µ

(
α−(µ)

β−(µ)
+
α+(µ)

β+(µ)

)
|µ=µ0

6= 0.(11)

Now we state the following theorem which there is in [45], to investigate the
generalized Hopf bifurcation of non-smooth system (4).

Theorem 2.1. Consider the non-smooth system (4) and assume (H1)-(H5)
holds for that. Then, generalized Hopf bifurcation occurs as the parameter µ
passes through µ0. In this case, at µ = µ0 there bifurcates a continuous branch
of periodic orbits from the stationary point (0, 0); i.e., there exists a constant
δ0 > 0 and a uniquely determined continuous function µ∗ : (−δ0, δ0) −→ R
satisfying µ∗(0) = µ0, such that for each y ∈ (−δ0, δ0) there is a periodic
orbit of system (4) crosses (0, y) at the parameter µ = µ∗(y) with the period

T̃ (y, µ∗(y)). The function T̃ is continuous and satisfies

T̃ (0, µ0) =
π

β−(µ0)
+

π

β+(µ0)
.(12)

Moreover, there is no other periodic orbit of system (4) locally near (0, 0) at
µ = µ0.

Proof. see [45]. �

Theorem 2.2. Suppose that,

B(µ) = exp

[
π

(
α−(µ)

β−(µ)
+
α+(µ)

β+(µ)

)]
.(13)

Then, bifurcating periodic orbit through (0, y, µ) is asymptotically stable from
the interior if |B(µ)| < 1 and unstable if |B(µ)| > 1.

Proof. see [45]. �

3. Generalized Hopf bifurcation of a harmonic oscillator with
a non-smooth velocity-dependent damping

Any real harmonic oscillator deals with different kinds of frictions and ex-
ternal forces, as it interacts with its environment. These frictions and external
forces impose positive and negative damping on the system. Hence in this
section, we study the dynamical behavior of a non-smooth harmonic oscillator
which is subjected to a damping force. For this purpose, consider a system
of damped harmonic oscillator and without loss of generality suppose that the
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system has the mass m = 1. Due to the Newton’s 2nd Law, the equation of
the motion of this system can be stated by the following mathematical model

ẍ+ ω2x+ εfdamping = 0,(14)

where ε± is a small parameter and ω is the natural frequency of harmonic
oscillator. Moreover, let the damping force fdamping depend on the relative
velocity vrel = ẋ − v0, i.e., fdamping = f(vrel). Then, system (14) can be
written as {

ẋ = y,

ẏ = −ω2x− εf(vrel).
(15)

It should be mentioned that, for a nonlinear damping force f(vrel) proportional
to the relative velocity and for v0 = 0, we have

f(vrel) =

{
anẋ

n, if n is odd,

an|ẋn−1|ẋ, if n is even,
(16)

for more details see [12]. Now, we assume that the velocity dependent damp-
ing force f±(vrel), in system (15), is an analytic function in U± ⊆ R2 which
contains 0. Furthermore f±(0) = 0, as with no motion there is no damping.
Also for v0 = 0, it has the following Taylor expansions about 0:

f(vrel) = a1y + a3y
3 + a5y

5 +O(y7).(17)

In general, damping is positive and the energy of the system is always absorbed
by dampers. However, if the system receives energy from some source, the am-
plitude of its vibrations will increase by the time. In this case, the system will
lead to an unstable state and we say that it is negatively damped; for more
information see [41]. For instance, suspension bridges under the action of uni-
form wind flow at critical speeds are negatively damped systems, [41].
Note that, in equation (17) if ai > 0, then f(vrel) incurs a positive damping
on the system (15). Whereas for ai < 0, the system (15) exhibits a negative
damping.

Now, suppose that the mentioned damped oscillator vibrates in two different
environments and enters from one environment to another. In this case, it
experiences different kinds of frictions and external forces, and so different
kinds of damping forces, in each environment. Thus, the equation of motion of
this system can be stated as{

ẋ = y,

ẏ = −ω2x− ε±f±(vrel),
for ± x > 0,(18)
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where

f±(vrel) =
[
a±1 y + a±3 y

3 + a±5 y
5 +O(y7)

]
.(19)

Furthermore due to relations (1)-(3) in section 2, the sets S+, S− and Σ for
system (18) are defined by the following relations :

S− = {(x, y)T ∈ R2; H(x, y) = x < 0},(20)

Σ = {(x, y)T ∈ R2; H(x, y) = x = 0},(21)

S+ = {(x, y)T ∈ R2; H(x, y) = x > 0}.(22)

Now by means of theorem 2.1, we will present a detailed mathematical analysis
for the system (18).

Theorem 3.1. Consider the system (18) and let for ε± 6= 0, the following
assumptions are given[

ε−a−1
] [
ε+a+1

]
< 0,

∣∣∣ε−a−1 ∣∣∣ 6= ∣∣∣ε+a+1 ∣∣∣(23)

Then at ω = 0, the generalized Hopf bifurcation occurs for system (18). In this
case, at ω = 0 there bifurcates a continuous branch of periodic orbits from the
origin; i.e., there is a constant δ0 > 0 and an uniquely determined continuous
function ω∗ : (−δ0, δ0) −→ R with ω∗(0) = 0, such that for each y ∈ (−δ0, δ0)
there is a periodic orbit of system (18) crosses (0, y) at the parameter ω = ω∗(y)

with the period T̃ (y, ω∗(y)). Moreover, T̃ is continuous and satisfies

T̃ (0, 0) =
2π

ε−a−1
+

2π

ε+a+1
.(24)

Moreover, for ω = 0, there does not exist any other periodic orbit of system
(18) locally near the origin.

Proof. It suffices to check the conditions of theorem 2.1 for system (18).

Obviously, condition (H1) is true for (18). Moreover, for ε± 6= 0 the Jaconian
matrices of the perturbed system (18) in S+ and S− are:

J±(ω) =

 0 1

−ω2 −ε± ∂f
±(y)

∂y

 .(25)

Due to the assumption f±(0) = 0, the point (0, 0, ω) is a stationary point of
system (18) for all ω ∈M , that is (H2) holds too.

Furthermore, for ε± 6= 0, the Jacobian matrix J±(ω) at (0, 0, ω) has a pair of
complex conjugate eigenvalues

α± ± iβ±(ω) = −1

2
ε±a±1 ±

i

2

√
(ε±a±1 )2 − 4ω2,(26)



152 Z. Monfared et al.

such that (ε±a±1 )2 − 4ω2 > 0; thus condition (H3) is satisfied for (18).
In addition, for J±(ω), the element a±12(ω) = 1 > 0, for every ω ∈ M . So
(H4) holds for every ω ∈ M . Therefore the flow of system (18) crosses the
discontinuity boundary Σ transversally and clockwise.

Now the first part of (H5) is true for ω = ω0, if and only if

ε−a−1
ε+a+1

= −

√
(ε−a−1 )2 − 4ω2

0

(ε+a+1 )2 − 4ω2
0

.(27)

Also

∂

∂ω

(
α−

β−(ω)
+

α+

β+(ω)

)∣∣∣∣
ω=ω0

= 2

[
ε−a−1√(

(ε−a−1 )2 − 4ω2
0

)3 +
ε+a+1√(

(ε+a+1 )2 − 4ω2
0

)3
]
,

(28)

which implies the second part of (H5) is satisfied for ω = ω0 provided that

ε−a−1
ε+a+1

6= −

[√
(ε−a−1 )2 − 4ω2

0

(ε+a+1 )2 − 4ω2
0

]3
.(29)

Then, condition (H5) of theorem 2.1 holds for (18) at all stationary points
(0, 0, ω), ω ∈ M , if both relations (27) and (29) hold; or equivalently relation

(27) holds and
ε−a−1
ε+a+1

6= −1, 0. The last assertion satisfies if and only if ω = 0,∣∣∣ε−a−1 ∣∣∣ 6= ∣∣∣ε+a+1 ∣∣∣, and 
ε−a−1 > 0, ε+a+1 < 0,

or

ε−a−1 < 0, ε+a+1 > 0,

(30)

which means condition (23) satisfies. In this case by theorem 2.1 and relation
(26), it is easy to see that

T̃ (0, 0) =
π

β−(0)
+

π

β+(0)
=

2π

ε−a−1
+

2π

ε+a+1
.(31)

According to theorem 2.1, this completes the proof. �

By the aid of theorem 3.1 we can obtain a parametric region for the existence
of generalized Hopf bifurcations for (18). Indeed in this parametric region, pe-
riodic oscillations can occur for the damped harmonic oscillator (18).
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Proposition 3.2. Suppose that the perturbed system (18) satisfies in the con-
ditions of theorem 3.1, and further[

ε−a−1√
(ε−a−1 )2 − 4ω2

+
ε+a+1√

(ε+a+1 )2 − 4ω2

]
< 0.(32)

Then, the bifurcating periodic orbit through (0, y, ω) is asymptotically stable
from the interior; and if[

ε−a−1√
(ε−a−1 )2 − 4ω2

+
ε+a+1√

(ε+a+1 )2 − 4ω2

]
> 0,(33)

it is unstable.

Proof. It can be shown that

π

(
α−(ω)

β−(ω)
+
α+(ω)

β+(ω)

)
= π

[
ε−a−1√

(ε−a−1 )2 − 4ω2

+
ε+a+1√

(ε+a+1 )2 − 4ω2

]
.(34)

So, by theorem 2.2, the proof is clear. �

4. Numerical simulations

Here, some numerical simulations are performed to investigate the effects
of a non-smooth velocity-dependent damping on the vibrations of system (18).
These numerical simulations are in good agreement with our theoretical results.
Moreover, our theoretical and numerical findings reveal that the non-smooth
damped harmonic oscillator (18) can observe different kinds of vibrations.

Example 4.1. Consider a model which is simulated by a mass m that is con-
nected to springs at both ends. Assume that these two springs have the same
stiffness, and the mass is oscillating on a surface horizontally under the action
of two springs; see figure 1. Suppose further that x represents the displacement

Figure 1. A mass m which is controlled by two springs

of the mass, such that x = 0 corresponds to the position that both springs are
unloaded. For x > 0, only the spring on the right acts on the mass such that
the friction between the mass and the surface causes a linear damping force
f+(vrel) = a+1 y, a+1 > 0. And for x < 0, just the spring on the left takes
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action on the mass. Also let the left surface be smooth enough in the sense that
the friction between the mass and the surface can be ignored. Furthermore,
suppose that in the left side there is an external force field exciting the mass
with an extra force f−(vrel) = a−1 y, a

−
1 < 0. In this case, the oscillations of

the mass are influenced by a positive damping on the right side and a negative
damping on the left. In addition, for m = 1, the equation of the motions of the
mentioned system is {

ẋ = y,

ẏ = −ω2x− εf(vrel),
(35)

in which f±(vrel) = a±1 y, where a+1 > 0 and a−1 < 0.

Now consider system (35) and let a−1 = −2, a+1 = 1.5, ε− = 0.1, and ε+ = 0.13.
These values of parameters satisfies in the conditions of theorem 3.1. So by the-
orem 3.1, at ω = 0, the generalized Hopf bifurcation happens for system (35).
Especially, at ω = 0 there bifurcates a continuous branch of periodic orbits
from the origin. Using the software Matlab, we have shown that for ω = 1 and
y1 = −2.35 the system has a period-one orbit Oy1 crossing (0, y1) = (0,−2.35).
This means in the presence of a non-smooth linear damping, there is
a periodic vibration for the harmonic oscillator with the frequency
ω = 1. The corresponding periodic orbit in the displacement-velocity coordi-
nates is plotted in figure 2, (a).

Moreover, the conditions of theorem 3.1 imply that for the damping forces
f±(vrel), just the coefficients of linear terms, i.e. a±1 , are responsible
for existence of periodic orbits. To show this, suppose that a cubic damper
is added to the right side of figure 1. Therefore, the damping force in the space
S+ changes into f+(vrel) = a+1 y + a+3 y

3, a3 > 0. Then as shown in figure 2,
(b), by adding a cubic term to the damping force (in the space S+),
the periodic orbit Oy1 will change to a stable fused focus. In this
case, the amplitude of the vibration vanishes by the time. Namely
the amplitude of the oscillations is reduced when cubic damping is
added to the system. Also if we add another cubic damper to the left side
of figure 1, then the amplitude of the vibrations will vanish faster; see figure 2,
(c).

Example 4.2. Assume that for system (35), f±(vrel) = a±1 y and a−1 =
−1, a+1 = 0.91, ε± = 0.1. Then based on theorem 3.1, the generalized Hopf
bifurcation will occur for the system at ω = 0. Figure 3, (a) indicates that
for ω = 2 and y = −4.25 there exists a period-one orbit Oy2 passing through
(0, y2) = (0,−4.25). This implies the existence of a periodic motion
for the damped harmonic oscillator, with the frequency ω = 2; see
figure 3.
Now, suppose that two cubic dampers are added to both left and right sides
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(a) (b)

(c)

Figure 2. Example of a period-one orbit and stable fused focuses

of system (35) in the phase space x− ẋ with the initial point X0 =

(0,−2.35). The values of parameters are: a−1 = −2, a+1 = 1.5, ε− =

0.1, ε+ = 0.13, ω = 1 and (a): a±3 = 0 ; (b): a−3 = 0, a+3 = 1; (c):

a−3 = 1, a+3 = 1

of figure 1. As one can see in figure 3, by adding a cubic term to the
damping forces f±(vrel), the periodic orbit Oy2 becomes a stable fused
focus. That means the amplitude of the vibration tends to zero by
passing the time; see figure 3.

Example 4.3. Consider the model of a mass m controlled by two springs
which was mentioned in example 4.1. Let in both cases x < 0 and x > 0, there
exist a friction between the mass and the surface which causes a positive linear
damping in each case. Hence, the damping forces in S± are f±(vrel) = a±1 y,
a±1 > 0. Assume further that the friction coefficient in S− is bigger than in S+,
i.e., a−1 > a+1 ; see figure 4. If m = 1, and we choose the values of parameters
of the system (35) as: ω = 2, a−1 = 2, a+1 = 1, ε± = 0.1, then numerical findings
demonstrate that:

There is a stable fused focus for system (35), in the presence of a
non-smooth linear damping which is positive in both spaces S±; see
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(a) (b)

(c) (d)

Figure 3. Example of a period-one orbit and stable fused focuses

of system (35) in the phase space x− ẋ with the initial point X0 =

(0,−4.25). The values of parameters are: a−1 = −1, a+1 = 0.91, ε± =

0.1, ω = 2 and (a): a±3 = 0 ; (b): a±3 = 1; (c): a±3 = 2; (d): a±3 = 3.

Figure 4. A mass m which is controlled by two springs.

figure 3. This means there exists a stable behavior in the vibrations
of system (35) (with the frequency ω = 2). In this situation, the
amplitude of the oscillations will vanish under the mentioned non-
smooth damping. Also adding two cubic dampers in both left and
right sides of the mass, i.e. considering cubic damping terms in
f±(vrel), incurs higher damping in the system. Hence, the vibrations
of the system decay more quickly; see figure 5, (b).
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(a) (b)

Figure 5. A stable fused focus of system (35), in the phase space

x− ẋ, corresponding to a stable vibration of the system. The initial

point is X0 = (0,−4) and the values of the parameters are ω =

2, a−1 = 2, a+1 = 1, ε± = 0.1 and (a): a±3 = 0; (b): a−3 = 2, a+3 = 1.

Example 4.4. Consider the oscillatory model described in example 4.1, but
suppose that the positions of the left and right surfaces are swapped (figure
6). Then, the vibrations of this model can be stated by system (35) where

Figure 6. A mass m which is controlled by two springs

f±(vrel) = a±1 y, but a+1 < 0, and a−1 > 0. If ω = 2, a−1 = 0.5, a+1 = −3, ε± =
0.1, numerical results display that:

There is an unstable fused focus for system (35) with f±(vrel) = a±1 y,
a+1 < 0 and a−1 > 0; see figure 7. This implies that there is an unstable
vibration (with the frequency ω = 2) such that its amplitude gradually
increases by passing the time. In this case, the system may lead to
an oscillation with high amplitude which can be dangerous for the
structure. Also, adding cubic terms to the damping forces f±(vrel)
causes the growth of the vibrations’ amplitude to occur more slowly
(figure 7, (b)).

At last, we point out the results of this section as follows:
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(a) (b)

Figure 7. An unstable fused focus of the described system in
example 4.4, with ω = 2, a− = 0.5, a+ = −3, ε± = 0.1, and the
initial point X0 = (0,−0.1) for (a): c± = 0; (b): c± = 2.

Results (i) For ω = 1 and y1 = −2.35 the system (35) has a period-one
orbit Oy1 crossing (0,−2.35). That is in the presence of a non-
smooth linear damping, there is a periodic vibration for the har-
monic oscillator (35) with the frequency ω = 1. Moreover, by
adding a cubic term to the damping force (in the space S+), the
periodic orbit Oy1 will change into a stable fused focus. In such
a case, the amplitude of the vibration vanishes by the time. Also
if we add cubic damping terms to both f−(vrel) and f+(vrel),
then the amplitude of the vibrations will vanish faster.

(ii) For ω = 2 and y = −4.25 there exists a period-one orbit Oy2 for
the system (35), passing through (0,−4.25). This implies the
existence of a periodic motion for the damped harmonic oscil-
lator (35), with the frequency ω = 2. Furthermore, by adding
a cubic term to the damping forces f±(vrel), the periodic orbit
Oy2 becomes a stable fused focus. Namely the amplitude of the
vibration tends to zero by passing the time.

(iii) There is a stable fused focus for system (35), in the presence
of a non-smooth linear damping which is positive in both spaces
S±. That is there exists a stable behavior in the vibrations of
system (35) (with the frequency ω = 2). In this situation, the
amplitude of the oscillations will vanish under the mentioned
non-smooth damping. Also, considering cubic damping terms
in f±(vrel) incurs higher damping in the system. And so the
vibrations of the system decay more quickly.
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(iv) There is an unstable fused focus for system (35) with f±(vrel) =
a±1 y, a+1 < 0 and a−1 > 0. This indicates there is an unstable
vibration (with the frequency ω = 2) such that its amplitude
gradually increases by passing the time. In this case, the sys-
tem may lead to an oscillation with high amplitude which can
be dangerous for the structure. Also, adding cubic terms to the
damping forces f±(vrel) causes the growth of the vibrations’ am-
plitude to occur more slowly

5. Conclusion

In this paper, we analyzed the dynamical behavior a of the har-
monic oscillator subjected to a non-smooth damping. In fact using
the theory of Filippov systems, we could obtain a parametric region
for the existence of generalized Hopf bifurcation for the system (18).
Moreover, it has been shown that in this parametric region there are
periodic oscillations for (18). To the best of our knowledge, it is
the first time to find such a region for the existence of generalized
Hopf bifurcation and so the existence of periodic oscillations for the
nonlinear damped oscillator (18). Furthermore, some numerical sim-
ulations have been performed which are in good agreement with our
theoretical results. These numerical investigations explored that sys-
tem (18) can undergo different kinds of vibrations, in the presence of
the non-smooth damping. Here our theoretical and numerical find-
ings can provide useful information for analysing the vibrations of the
harmonic oscillators dealing with a non-smooth damping.
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