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Abstract. In this paper, we first study the non-positive decreasing and

inverse co-radiant functions defined on a real locally convex topological

vector space X. Next, we characterize non-positive increasing, co-radiant
and quasi-concave functions over X. In fact, we examine abstract con-

cavity, upper support set and superdifferential of this class of functions
by applying a type of duality. Finally, we present abstract concavity of

extended real valued increasing, co-radiant and quasi-concave functions.
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1. Introduction

Increasing and co-radiant (ICR) functions are among the main objects in
monotonic analysis [12]. Monotonic analysis is one of the advanced topics in
so-called abstract convex analysis which is a natural generalization of classical
convex analysis. In convex analysis one of the main results asserts that every
lower semi-continuous convex function can be expressed as a point-wise supre-
mum of a family of affine functions majorized by it. Many results in convex
analysis can easily follow this fact. It is well known that similar results hold in
quasi-convex analysis: each lower semi-continuous quasi-convex function can
be represented as the upper envelope of a set of quasi-affine functions [6]. Ab-
stract convexity has found many applications in mathematical analysis and
optimization problems (see [7,12]). Functions which can be represented as up-
per envelopes of subsets of a set H of sufficiently simple (elementary) functions,
are studied in this theory (for more details see [11,12,14]).

It is well-known that some classes of increasing functions are abstract convex.
For example, the class of increasing and positively homogeneous (IPH) func-
tions (see [3, 4, 9]) and the class of increasing and convex-along-rays (ICAR)
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functions are abstract convex (see [10, 13]). The class of increasing and co-
radiant (ICR) functions is another class of increasing functions which is ab-
stract convex. Abstract convexity of ICR functions has been investigated
in [1, 2, 5]. Also, abstract concavity of non-negative increasing, co-radiant and
quasi-concave functions defined on Rn+ has been characterized in [7]. Abstract
concavity of non-negative increasing, co-radiant and quasi-concave functions
are defined on a real locally convex topological vector space which has been
investigated in [8]. In this paper, we are going to extend the results obtained
in [8] for extended real valued increasing, co-radiant and quasi-concave func-
tions defined on a real locally convex topological vector space. In fact, we find
an infimal generator for this class of functions.

The structure of the paper is as follows: In Section 2, we collect some pre-
liminaries and definitions. In Section 3, we first discuss abstract convexity and
abstract concavity of non-positive decreasing and inverse co-radiant functions
which are defined on X. Next, we define a type of duality for non-positive
function. Moreover, we characterize non-positive increasing, co-radiant and
quasi-concave functions over X by applying this duality. Characterizations of
the extended real valued increasing, co-radiant and quasi-concave functions and
abstract concavity of this class of functions are illustrated in Section 4. Finally,
the conclusion is stated in Section 5.

2. Preliminaries

Let X be a real locally convex topological vector space with the dual space
X∗. We assume that X is equipped with a closed convex pointed cone S (the
latter means that S ∩ (−S) = {0}). We say x ≤ y or y ≥ x if and only if
y − x ∈ S. In addition, we consider an order relation on X∗ by x∗1 ≤ x∗2 if and
only if 〈x, x∗1〉 ≤ 〈x, x∗2〉 for all x ∈ X. Also, suppose that X∗ is equipped with
the weak-star topology and let S∗ := {x∗ ∈ X∗ : 〈x, x∗〉 ≥ 0, for all x ∈ S}.

The following definitions are well-known (see [12]).

(1) A function f : X −→ [−∞,+∞] is called co-radiant if f(λx) ≥ λf(x)
for all x ∈ X and all λ ∈ (0, 1]. It is easy to see that f is co-radiant if
f(λx) ≤ λf(x) for all x ∈ X and all λ ≥ 1.

(2) The function f is called increasing if x ≥ y =⇒ f(x) ≥ f(y).
(3) A function f : X −→ [−∞,+∞] is called inverse co-radiant if f(λx) ≤

1
λf(x) for all x ∈ X and all λ ∈ (0, 1]. It is easy to see that f is inverse

co-radiant if f(λx) ≥ 1
λf(x) for all x ∈ X and all λ ≥ 1.

Remark 2.1. Let f : X −→ [−∞, 0] be an ICR (increasing and co-radiant)
function. Then it is clear that f(x) = 0 for all x ∈ S.

Definition 2.2. ( [12]) Let X be a non-empty set, L be a non-empty set of
functions l : X −→ [−∞,+∞] and f : X −→ [−∞,+∞] be a function.

(1) The upper support set of f with respect to L is defined by

suppu(f, L) := {l ∈ L : l(x) ≥ f(x), ∀ x ∈ X}.
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(2) The function f is called abstract concave with respect to L (or L-
concave) if there exists a subset 4 of L such that

f(x) = inf
l∈4

l(x), ∀ x ∈ X.

(3) Let x0 ∈ X be such that −∞ < f(x0) < +∞. The superdifferential of
the function f at x0 with respect to L (or L-superdifferential of f) is
defined by

∂+
L f(x0) := {l ∈ L : l(x0) ∈ R, l(x)− l(x0) ≥ f(x)− f(x0), ∀ x ∈ X}.
The set L in Definition 2.2 is called the set of elementary functions.

Definition 2.3. ( [8], Definition 4.1) Let α ∈ R+ be arbitrary and consider a
function f : X −→ [0,+∞]. Then the α-dual function f∗α : X∗ −→ [0,+∞] of
f is defined on X∗ by

f∗α(x∗) := sup{f(x) : x ∈ X, 〈x, x∗〉+ α ≤ 1},
(we use the conventions sup ∅ = 0 and f∗ := f∗0 ).

Now, consider the function h : X×S∗×{0, 2}×R++ −→ [0,+∞] is defined
by:

h(x, y∗, α, β) := inf{q(y∗,β)(x
∗) : x∗ ∈ S∗, 〈x, x∗〉+ α ≤ 1},

where q(y∗,β)(x
∗) := inf{λ : λ ≥ β, λx∗ ≥ y∗}, (we use the convention inf ∅ =

+∞). This function was introduced and examined in [8].
Let y∗ ∈ S∗, α ∈ {0, 2} and β ∈ R++ be arbitrary. Define the function
h(y∗,α,β) : X −→ [0,+∞] by h(y∗,α,β)(x) := h(x, y∗, α, β) for all x ∈ X. Also,
let H := {h(y∗,α,β) : y∗ ∈ S∗, α ∈ {0, 2}, β ∈ R++} be the set of elementary
functions.

Consider the set U+
iq of all non-negative increasing, co-radiant and quasi-

concave functions defined on a real locally convex topological vector space X.
We recall the following results from [8].

Proposition 2.4. ( [8], Proposition 5.1) Let (y∗, α, β) ∈ S∗×{0, 2}×R++ be
arbitrary. Then the function h(y∗,α,β) : X −→ [0,+∞] is in U+

iq .

Remark 2.5. ( [8], Remark 5.1) The function h(y∗,α,β) has a simpler form. Let
x ∈ X, y∗ ∈ S∗, α ∈ {0, 2} and β ∈ R++ be arbitrary. If α = 0, then
h(y∗,0,β)(x) = max{〈x, y∗〉, β}, and if α = 2, then

h(y∗,2,β)(x) =

{
β, 〈x, y

∗

β 〉 ≤ −1,

+∞, 〈x, y
∗

β 〉 > −1.

Theorem 2.6. ( [8], Theorem 5.1) Let f : X −→ [0,+∞] be an upper semi-
continuous function. Then, f is a function in U+

iq if and only if there exists a

non-empty set A ⊆ S∗ × {0, 2} × R++ such that

f(x) = inf
(y∗,α,β)∈A

h(y∗,α,β)(x), (x ∈ X).
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In this case, one can take A := {(y∗, α, β) ∈ S∗ × {0, 2} × R++ : f∗α(y
∗

β ) ≤ β}.
Hence, f ∈ U+

iq if and only if f is H-concave.

Proposition 2.7. ( [8], Proposition 5.2) Let f : X −→ [0,+∞] be a co-radiant
function. Then

supp u(f,H) = {h(y∗,α,β) ∈ H : f∗α(
y∗

β
) ≤ β}.

3. Abstract Concavity of Non-positive Increasing Co-radiant
and Quasi-concave Functions

Some definitions related to the abstract convexity have been introduced
in [12]. Consider the set U−iq of all non-positive increasing, co-radiant and quasi-
concave functions defined on a real locally convex topological vector space X.
In this section, we first discuss abstract convexity and abstract concavity of
non-positive decreasing and inverse co-radiant functions. Next, we define a
type of duality for non-positive functions. Finally, we characterize functions in
U−iq by applying this duality.

Consider the function u : X ×X × R−− −→ [−∞, 0] is defined by

u(x, y, α) := sup{λ : α ≤ λ ≤ 0, −λx ≤ y},

for all x, y ∈ X and all α < 0 (we use the convention sup ∅ = −∞).
Assume that y ∈ X and α ∈ R−− are arbitrary. Consider the function u(y,α) :
X −→ [−∞, 0] is defined by u(y,α)(x) = u(x, y, α) for all x ∈ X. Also, let
U := {u(y,α) : y ∈ X, α ∈ R−−} be the set of elementary functions.

We can also introduce the function v : X ×X ×R−− −→ [−∞, 0] is defined
by

v(x, y, β) := inf{λ : λ ≤ β, −λx ≥ y},
for all x, y ∈ X and all β < 0 (with the convention inf ∅ = 0).
Let y ∈ X and β ∈ R−− be arbitrary. Consider the function v(y,β) : X −→
[−∞, 0] is defined by v(y,β)(x) = v(x, y, β) for all x ∈ X. Also, let V := {v(y,β) :
y ∈ X, β ∈ R−−} be the set of elementary functions.

Remark 3.1. It is easy to see that the functions u(y,α) and v(y,β) are non-
positive decreasing and inverse co-radiant for all y ∈ X and all α, β ∈ R−−.
And also, the functions u(y,α) and v(y,β) have a relation as p and q in Remark
3.2 in [8].

The proofs of the following theorems are similar to the ones from Theorems
3.2 and 3.3 in [8].

Theorem 3.2. Let g : X −→ [−∞, 0] be a function. Then the following
assertions are equivalent:

(1) g is decreasing and inverse co-radiant.
(2) −λg(y) ≤ g(x) for all x, y ∈ X and all λ ∈ [−1, 0) such that −λx ≤ y.
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(3) αg(x) ≤ u(y,α)(x)g(−yα ) for all x, y ∈ X and all α ∈ R−−, with the
convention 0× (−∞) = +∞.

(4) u(x, 1α )(y)g(x) ≥ 1
αg(−yα ) for all x, y ∈ X and all α ∈ R−−, with the

convention 0× (−∞) = +∞.
(5) v(y,α)(x)g(−yα ) ≤ αg(x) for all x, y ∈ X and all α ∈ R−−, with −∞ <

v(x, y, β) < 0.

Theorem 3.3. Let g : X −→ [−∞, 0] be a function. Then

(1) g is decreasing and inverse co-radiant if and only if it is V -concave.
(2) g is decreasing and inverse co-radiant if and only if it is U -convex.

Remark 3.4. Note that, if we consider functions u(y∗,α) and v(y∗,β) on X∗. Let
U := {u(y∗,α) : y∗ ∈ X∗, α ∈ R−−} and V := {v(y∗,β) : y∗ ∈ X∗, β ∈ R−−}.
Then we get the of all obtained results in the above theorems for each decreasing
and inverse co-radiant function defined on X∗. Also, it is worth noting that we
can easily see v(y∗,β)(x

∗) > −∞ for all x∗, y∗ ∈ X∗ and all β < 0.

In the following, we define a type of duality for non-positive functions over
X.

Definition 3.5. f : X −→ [−∞, 0] be a function. Then dual function f ] :
X∗ −→ [−∞, 0] of f is defined on X∗ by

f ](x∗) := sup{f(x) : x ∈ X, 〈x, x∗〉 ≥ 1}, ∀ x∗ ∈ X∗,(1)

(we use the convention sup ∅ = −∞).

Remark 3.6. It follows directly from (1) that f ] : X∗ −→ [−∞, 0] is a decreasing
and quasi-convex function for an arbitrary function f : X −→ [−∞, 0].

Theorem 3.7. Let f : X −→ [−∞, 0] be a co-radiant function. Then f ] is an
inverse co-radiant.

Proof. Let λ ∈ (0, 1] and x∗ ∈ X∗ be arbitrary, then

f ](λx∗) = sup{f(x) : x ∈ X, 〈x, λx∗〉 ≥ 1}
= sup{f(x) : x ∈ X, 〈λx, x∗〉 ≥ 1}

≤ sup{f(λx)

λ
: x ∈ X, 〈λx, x∗〉 ≥ 1}

=
1

λ
sup{f(y) : y ∈ X, 〈y, x∗〉 ≥ 1}

=
1

λ
f ](x∗).

So, f ] is inverse co-radiant. �

In the end of this section, we discuss on abstract concavity with respect to
a certain class of functions f ∈ U−iq . We also, present a description of upper
support set and superdifferential of a non-positive co-radiant function.
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Consider the function k : X × (−S∗)× R−− −→ [−∞, 0] is defined by:

k(x, y∗, β) := inf{v(y∗,β)(x
∗) : x∗ ∈ (−S∗), 〈x, x∗〉 ≥ 1},

for all x ∈ X, all y∗ ∈ (−S∗) and all β < 0, (we use the convention inf ∅ = 0).
Let y∗ ∈ −S∗, β ∈ R−− be arbitrary. Define the function k(y∗,β) : X −→
[−∞, 0] by k(y∗,β)(x) := k(x, y∗, β) for all x ∈ X.

Proposition 3.8. Let (y∗, β) ∈ (−S∗) × R−− be arbitrary. Then, k(y∗,β) :

X −→ [−∞, 0] is in U−iq .

Proof. Let x1, x2 ∈ X be such that x1 ≤ x2. Then, if x∗ ∈ −S∗, we have
{x∗ ∈ −S∗, 〈x2, x

∗〉 ≥ 1} ⊆ {x∗ ∈ −S∗, 〈x1, x
∗〉 ≥ 1}. So,

k(y∗,β)(x1) = inf{v(y∗,β)(x
∗) : x∗ ∈ −S∗, 〈x1, x

∗〉 ≥ 1}
≤ inf{v(y∗,β)(x

∗) : x∗ ∈ −S∗, 〈x2, x
∗〉 ≥ 1}

= k(y∗,β)(x2).

By taking recourse to similar argument shown in Proposition 5.1 in [8], we
observe that k(y∗,β) is a co-radiant and quasi-concave function. �

Remark 3.9. In fact, the function k(y∗,β) has a simpler form. Let x ∈ X,
y∗ ∈ −S∗ and β ∈ R−− be arbitrary. Then

k(y∗,β)(x) =

{
〈x,−y∗〉, −〈x, y∗〉 ≤ β,
0, 〈x,−y∗〉 ≥ β.

Because, if 〈x,−y∗〉 ≤ β, then 〈x,−y∗〉 < 0. By putting x∗0 := −y∗
〈x,−y∗〉 ∈ −S

∗

and λ0 := 〈x,−y∗〉 ≤ β, we get that 〈x, x∗0〉 ≥ 1 and −λ0x
∗
0 ≥ y∗. Hence, by

(1) one has

k(y∗,β)(x) ≤ λ0 = 〈x,−y∗〉.(2)

On the other hand, if there exists x∗ ∈ −S∗ and λ ≤ β such that 〈x, x∗〉 ≥ 1 and
−λx∗ ≥ y∗. Then, 〈x, y∗〉 ≥ −λ〈x, x∗〉 and −λ〈x, x∗〉 ≥ −λ. So, 〈x, y∗〉 ≥ −λ.
Therefore, 〈x,−y∗〉 ≤ λ, this together with (1) implies that

〈x,−y∗〉 ≤ k(y∗,β)(x).(3)

Thus by (2) and (3) we have k(y∗,β)(x) = 〈x,−y∗〉. Now, suppose that 〈x,−y∗〉 >
β. Let Ax := {x∗ ∈ −S∗ : 〈x, x∗〉 ≥ 1} and Ax

∗

y∗,β := {λ : λ ≤ β, −λx∗ ≥ y∗}.
Then, we obtain that Ax = ∅ or Ax

∗

y∗,β = ∅ for each x∗ ∈ Ax. Hence,

k(y∗,β)(x) = 0.

Example 3.10. Let X := R2 and S := R2
+. Let x ∈ R2 be arbitrary and put

y∗ = (0,−1) and β = −2. Then by Remark 3.9, we have

k(y∗,β)(x) =

{
x2, x2 ≤ −2,
0, x2 > −2,

for each x = (x1, x2) ∈ R2.
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Example 3.11. Let X := C([0, 1]) be the Banach space of all real valued
continuous functions defined on [0, 1] and S := {f ∈ X : f(x) ≥ 0, ∀ x ∈
[0, 1]}. Then, S is a closed convex pointed cone in X. For each t0 ∈ [0, 1],
consider the function Lt0 : X −→ R is defined by Lt0(f) := f(t0) for all f ∈ X,
Clearly Lt0 ∈ S∗. Now, let y∗ := −Lt0 , β := −1. Then by Remark 3.9, one
has

k(y∗,β)(f) =

{
f(t0), f(t0) ≤ −1,
0, f(t0) > −1,

for each f ∈ X.

Let K := {k(y∗,β) : y∗ ∈ (−S∗), β ∈ R−−} be the set of elementary func-
tions. We now show that the set K is an infimal generator for the set of all
functions f ∈ U−iq .

Theorem 3.12. Let f : X −→ [−∞, 0] be an upper semi-continuous function.
Then, f ∈ U−iq if and only if there exists a non-empty set B ⊆ (−S∗) × R−−
such that

f(x) = inf
(y∗,β)∈B

k(y∗,β)(x), (x ∈ X).(4)

In this case, one can take B := {(y∗, β) ∈ (−S∗)×R−− : f ](−y
∗

β ) ≤ β}. Hence,

f ∈ U−iq if and only if f is K-concave.

Proof. First, suppose that f has a representation of the form (4). Then, f
is the point-wise infimum of a family of functions {k(y∗,β)}(y∗,β)∈B , which by
Proposition 3.8 they are non-positive increasing, co-radiant and quasi-concave.
Therefore, f ∈ U−iq .
To prove the converse, since f is co-radiant, then by Remark 3.6 and Theorem
3.7, we have f ] is a non-positive decreasing and inverse co-radiant function.
Thus by Remark 3.4 and Theorem 3.2(5), we obtain that

v(y∗,β)(x
∗)f ](

−y∗

β
) ≤ βf ](x∗)

for all x∗, y∗ ∈ X∗ and all β ∈ R−−, with v(y∗,β)(x
∗) < 0. Let x ∈ X be

arbitrary. So, by definition of k(y∗,β) and (1) one has

k(y∗,β)(x)f ](
−y∗

β
) = inf{v(y∗,β)(x

∗) : x∗ ∈ −S∗, 〈x, x∗〉 ≥ 1}f ](−y
∗

β
)

≤ β inf{f ](x∗) : x∗ ∈ −S∗, 〈x, x∗〉 ≥ 1}
= β inf{sup{f(t) : t ∈ X, 〈t, x∗〉 ≥ 1} : x∗ ∈ −S∗,

〈x, x∗〉 ≥ 1}
≤ βf(x).

Now, let (y∗, β) ∈ B be arbitrary. Hence, it follows from the above inequality,
k(y∗,β)(x) ≥ f(x) (note that if, for some x∗ ∈ −S∗ with 〈x, x∗〉 ≥ 1, one has
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v(y∗,β)(x
∗) = 0, then it is easy to see that the value of the infimum in the above

inequality does not change). Therefore

(5) k(y∗,β)(x) ≥ f(x), ∀ (y∗, β) ∈ B.
We now consider two possible cases for x :
Case (i). Let −∞ ≤ f(x) < 0. Since f is an ICR function, then by Remark
2.1 we have f(0) = 0. This implies that f(x) < f(0) = 0. Now, let m ∈ R−−
be arbitrary such that f(x) < m ≤ f(0). Therefore, one has f−1([m, 0]) is a
non-empty subset of X which does not contain x. Since f is quasi-concave and
upper semi-continuous, so this set is convex, closed and does not contain x.
Thus by Hahn-Banach Theorem there exist 0 6= x∗ ∈ X∗ and 0 6= γ ∈ R such
that

〈x, x∗〉 > γ > 〈y, x∗〉, ∀ y ∈ f−1([m, 0]).(6)

From f−1([m, 0]) is a non-empty subset of X and the fact that f is increas-
ing, one can derive, using a standard argument, that x∗ ∈ −S∗. Since 0 ∈
f−1([m, 0]), then (6) implies that γ > 0 and

〈x, 1

γ
x∗〉 > 1 > 〈y, 1

γ
x∗〉, ∀ y ∈ f−1([m, 0]).(7)

Now, putting y∗0 := −m
γ x∗ ∈ −S∗ and β0 = m. Thus by (7) one has

f ](
−y∗0
β0

) = sup{f(t) : 〈t, −1

β0
y∗0〉 ≥ 1}

= sup{f(t) : 〈t, 1

γ
x∗〉 ≥ 1}

≤ sup{f(t) : t /∈ f−1([m, 0])}
≤ m

= β0,

and hence (y∗0 , β0) ∈ B. Also, with regard to Remark 3.9 and (7) we have
k(y∗0 ,β0)(x) = −〈x, y∗0〉 = 〈x, mγ x

∗〉 ≤ m = β0. Then by (5) one has

f(x) = inf
m>f(x)

m ≥ inf
(y∗0 ,β0)

k(y∗0 ,β0)(x)

≥ inf
(y∗,β)∈B

k(y∗,β)(x)

≥ f(x).

So,

f(x) = inf
(y∗,β)∈B

k(y∗,β)(x).

Case (ii). Let f(x) = 0. So, by (5) we get

f(x) = 0 = inf
(y∗,β)∈B

k(y∗,β)(x),

which completes the proof. �
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In the sequel, we characterize the upper support set and K-superdifferential
of a non-positive co-radiant function. The proof of the following theorem is
similar to the one from Theorem 5.2 in [8].

Proposition 3.13. Let f : X −→ [−∞, 0] be a co-radiant function. Then

suppu(f,K) = {k(y∗,β) ∈ K : f ](
−y∗

β
) ≤ β}.

Theorem 3.14. Let f : X −→ [−∞, 0] be a co-radiant function and x0 ∈ X
be such that f(x0) 6= 0,−∞. Then

{k(y∗,β) ∈ K : f ](
−y∗

β
) ≤ β, k(y∗,β)(x0) = f(x0)} ⊆ ∂+

Kf(x0).

Proof. This is an immediate consequence of Proposition 3.13. �

Example 3.15. Let X := R and S := R+. Consider the function f : X −→
(−∞, 0] is defined by

f(x) =

{
x3, x < 0,
0, x ≥ 0,

for all x ∈ R. Clearly, f is a co-radiant function. It is easy to see that

supp u(f,K) = {k(y∗,β) ∈ K : f ](
−y∗

β
) ≤ β}

= {k(y∗,β) ∈ K : y∗ = 0, β < 0}

∪ {k(y∗,β) ∈ K : 0 > y∗ ≥ −β 2
3 }.

Now, let x0 ∈ R be such that f(x0) 6= 0, i.e. x0 < 0. Put

Ox0 := {k(y∗,β) ∈ K : f ](
−y∗

β
) ≤ β, k(y∗,β)(x0) = f(x0)}.

In view of Theorem 3.14, one has Ox0
⊆ ∂+

Kf(x0). Indeed, it is not difficult to
see that

Ox0
= {k(y∗,β) ∈ K : x2

0 = −y∗, 0 > y∗ ≥ −β 2
3 }, ∀ x0 < 0.

4. Abstract Concavity of Extended Real Valued Increasing
Co-radiant and Quasi-concave Functions

Consider the set Uiq of all extended real valued increasing, co-radiant and
quasi-concave functions defined on a real locally convex topological vector space
X. In this section, we are going to extend the results obtained in section 3,
for a function f : X −→ [−∞,+∞], where f is in Uiq. Also, in this section we
assume that f(0) = 0.

Let f : X −→ [−∞,+∞] be a function. We recall the positive and negative
part of function f as follows f+(x) := max{f(x), 0} and f−(x) := min{f(x), 0}
for all x ∈ X. It is clear that f+(x) + f−(x) = f(x) for all x ∈ X.
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Remark 4.1. It is easy to see that f is an increasing, co-radiant and quasi-
concave function if and only if f+ and f− are increasing, co-radiant and quasi-
concave functions.

Now, consider the function T : X × S∗ × (−S∗)× {0, 2} × R++ × R−− −→
[−∞,+∞] defined by

(8) T (x, y∗, z∗, α, β, β′) :=

{
h(y∗,α,β)(x), x ∈ S
k(z∗,β′)(x), x /∈ S,

for all x ∈ X, all y∗,−z∗ ∈ S∗, all α ∈ {0, 2}, all β ∈ R++and all β′ ∈ R−−.
We are going to introduce a class of elementary functions such that the

extended real valued increasing, co-radiant and quasi-concave functions are
infimally generated. Let (y∗, z∗, α, β, β′) ∈ S∗ × (−S∗) × {0, 2} × R++ ×
R−− be arbitrary. Define the function T(y∗,z∗,α,β,β′) : X −→ [−∞,+∞] by
T(y∗,z∗,α,β,β′)(x) := T (x, y∗, z∗, α, β, β′) for all x ∈ X.

Proposition 4.2. Let (y∗, z∗, α, β, β′) ∈ S∗ × (−S∗)×{0, 2}×R++ ×R−− be
arbitrary. Then, the function T(y∗,z∗,α,β,β′) : X −→ [−∞,+∞] is in Uiq.

Proof. Let x1, x2 ∈ X be such that x1 ≤ x2. If x1 ∈ S, then, since S is a
convex cone, it follows that x2 ∈ S. So, by (8) and Proposition 2.4, we have
T(y∗,z∗,α,β,β′)(x1) = h(y∗,α,β)(x1) ≤ h(y∗,α,β)(x2) = T(y∗,z∗,α,β,β′)(x2). Suppose
that x1 /∈ S. If x2 /∈ S, thus by (8) and Proposition 1 we get T(y∗,z∗,α,β,β′)(x1) =
k(z∗,β′)(x1) ≤ k(z∗,β′)(x2) = T(y∗,z∗,α,β,β′)(x2). If x2 ∈ S, then one has

T(y∗,z∗,α,β,β′)(x2) = h(y∗,α,β)(x2) ≥ 0 ≥ k(z∗,β′)(x1) = T(y∗,z∗,α,β,β′)(x1).

Therefore, the function T(y∗,z∗,α,β,β′) is increasing.
Now, let γ ∈ (0, 1] and x ∈ X be arbitrary. Since S is a cone, we conclude

that γx ∈ S whenever x ∈ S. If x /∈ S, then γx /∈ S. So, by (8) and Propo-
sitions 2.4 and 1, we get T(y∗,z∗,α,β,β′)(γx) ≥ γT(y∗,z∗,α,β,β′)(x). Therefore,
T(y∗,z∗,α,β,β′) is a co-radiant function.

Finally, we prove that T(y∗,z∗,α,β,β′) is quasi-concave. Let λ ∈ [0, 1] and
x, y ∈ X be arbitrary. We consider four possible cases.
Case (i). If x, y ∈ S, then, since S is a convex cone, it follows that λx+(1−λ)y ∈
S. So, by (8) and Proposition 2.4, we get

T(y∗,z∗,α,β,β′)(λx+ (1− λ)y) = h(y∗,α,β)(λx+ (1− λ)y)

≥ min{h(y∗,α,β)(x), h(y∗,α,β)(y)}
= min{T(y∗,z∗,α,β,β′)(x), T(y∗,z∗,α,β,β′)(y)}.

Case (ii). Suppose that x, y /∈ S. If λx + (1 − λ)y /∈ S, then by (8) and
Proposition 3.8, we have

T(y∗,z∗,α,β,β′)(λx+ (1− λ)y) = k(z∗,β′)(λx+ (1− λ)y)

≥ min{k(z∗,β′)(x), k(z∗,β′)(y)}
= min{T(y∗,z∗,α,β,β′)(x), T(y∗,z∗,α,β,β′)(y)}.
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If λx+ (1− λ)y ∈ S, hence by (8) we conclude that

T(y∗,z∗,α,β,β′)(λx+ (1− λ)y) = h(y∗,α,β)(λx+ (1− λ)y)

≥ 0

≥ min{k(z∗,β′)(x), k(z∗,β′)(y)}
= min{T(y∗,z∗,α,β,β′)(x), T(y∗,z∗,α,β,β′)(y)}.

Case (iii). If x ∈ S and y /∈ S. Suppose that λx+ (1− λ)y ∈ S. So by (8) one
has

T(y∗,z∗,α,β,β′)(λx+ (1− λ)y) = h(y∗,α,β)(λx+ (1− λ)y)

≥ 0

≥ k(z∗,β′)(y)

= min{h(y∗,α,β)(x), k(z∗,β′)(y)}
= min{T(y∗,z∗,α,β,β′)(x), T(y∗,z∗,α,β,β′)(y)}.

If λx+ (1− λ)y /∈ S, then by (8), Proposition 3.8 and Remark 2.1 we get

T(y∗,z∗,α,β,β′)(λx+ (1− λ)y) = k(z∗,β′)(λx+ (1− λ)y)

≥ min{k(z∗,β′)(x), k(z∗,β′)(y)}
= min{0, k(z∗,β′)(y)}
= k(z∗,β′)(y)

= min{k(z∗,β′)(y), h(y∗,α,β)(x)}
= min{T(y∗,z∗,α,β,β′)(x), T(y∗,z∗,α,β,β′)(y)}.

Case (iv). If x /∈ S and y ∈ S. The proof of this case is similar to the case (iii),
and therefore we omit it. Hence the proof is complete. �

In the sequel, define the set ∆ by

(9) ∆ := {T(y∗,z∗,α,β,β′) : y∗,−z∗ ∈ S∗, α ∈ {0, 2}, β ∈ R++, β
′ ∈ R−−}.

The set ∆ is called a set of elementary functions defined by (8). In view of
Proposition 4.2, we have each element of ∆ is an increasing, co-radiant and
quasi-concave function.

In the following, we characterize the upper support set of an extended real
valued co-radiant function.

Theorem 4.3. Let f : X −→ [−∞,+∞] be a co-radiant function such that
f(x) ≤ 0 for all x ∈ X \ S. Then

supp u(f,∆) = Ω,

where Ω defined as follows

Ω := {T(y∗,z∗,α,β,β′) ∈ ∆ : (f+)∗α(
y∗

β
) ≤ β, (f−)](

−z∗

β′
) ≤ β′}.

Notice that the set ∆ is defined by (9).



174 S. Mirzadeh and S. Bahrami

Proof. Let T(y∗,z∗,α,β,β′) ∈ Ω be arbitrary. So, (f+)∗α(y
∗

β ) ≤ β and (f−)](−z
∗

β′ ) ≤
β′. Since f+ and f− are co-radiant functions, hence by Proposition 2.7 and
Proposition 3.13, we have

(10) h(y∗,α,β)(x) ≥ f+(x), ∀x ∈ X

and

(11) k(z∗,β′)(x) ≥ f−(x), ∀x ∈ X.

Now, if x ∈ S, then (8) and (10) implies that T(y∗,z∗,α,β,β′)(x) = h(y∗,α,β)(x) ≥
f+(x) ≥ f(x). If x /∈ S, so by hypothesis f(x) ≤ 0. Hence f−(x) = f(x). It
follows from (8) and (11) that T(y∗,z∗,α,β,β′)(x) = k(z∗,β′)(x) ≥ f−(x) = f(x).
Therefore

T(y∗,z∗,α,β,β′)(x) ≥ f(x), ∀x ∈ X.

So, T(y∗,z∗,α,β,β′) ∈ supp u(f,∆). For the converse, let
T(y∗,z∗,α,β,β′) ∈ supp u(f,∆) be arbitrary. Thus,

(12) T(y∗,z∗,α,β,β′)(x) ≥ f(x), ∀x ∈ X.

If (f+)∗α(y
∗

β ) = 0, then it is clear that (f+)∗α(y
∗

β ) ≤ β. Suppose that (f+)∗α(y
∗

β ) >

0. Hence by (8), (12) and Remark 2.5, one has

(f+)∗α(
y∗

β
) = sup{f+(t) : 〈t, 1

β
y∗〉+ α ≤ 1}

= sup{f(t) : 〈t, 1

β
y∗〉+ α ≤ 1}

≤ sup{T(y∗,z∗,α,β,β′)(t) : 〈t, 1

β
y∗〉+ α ≤ 1}

≤ sup{h(y∗,α,β)(t) : 〈t, 1

β
y∗〉+ α ≤ 1}

= β.

Also, since f− ≤ f , it follows from (8), (12) and Remark 3.9 that
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(f−)](
−z∗

β′
) = sup{f−(t) : 〈t, −1

β′
z∗〉 ≥ 1}

≤ sup{f(t) : 〈t, −1

β′
z∗〉 ≥ 1}

≤ sup{T(y∗,z∗,α,β,β′)(t) : 〈t, −1

β′
z∗〉 ≥ 1}

≤ sup{T(y∗,z∗,α,β,β′)(t) : t /∈ S, 〈t, −1

β′
z∗〉 ≥ 1}

= sup{k(z∗,β′)(t) : 〈t, −1

β′
z∗〉 ≥ 1}

= sup{〈t,−z∗〉 : 〈t,−z∗〉 ≤ β′}
≤ β′.

Therefore T(y∗,z∗,α,β,β′) ∈ Ω. This completes the proof. �

In the following, we show that each function in Uiq is a ∆-concave function.
Note that, if f is an upper semi-continuous function, then f+ and f− are upper
semi-continuous functions.

Theorem 4.4. Let f : X −→ [−∞,+∞] be an upper semi-continuous function
such that f(x) ≤ 0 for all x ∈ X \ S. Then, f is a function in Uiq if and only
if there exists a non-empty set Ω ⊆ ∆ such that

(13) f(x) = inf
Ω
T(y∗,z∗,α,β,β′)(x), ∀x ∈ X.

In this case, one can take

Ω := {T(y∗,z∗,α,β,β′) ∈ ∆ : (f+)∗α(
y∗

β
) ≤ β, (f−)](

−z∗

β′
) ≤ β′}.

Proof. We only show that every extended real valued function in Uiq is ∆-
concave. Let T(y∗,z∗,α,β,β′) ∈ Ω be arbitrary. Then, in view of Theorem 4.3 we
conclude that supp u(f,∆) = Ω. So, T(y∗,z∗,α,β,β′) ≥ f on X. Therefore

(14) inf
Ω
T(y∗,z∗,α,β,β′)(x) ≥ f(x), (x ∈ X).

Now, let x ∈ X be fixed. We consider five possible cases.
Case (i). 0 < f(x) < +∞ and the point x is a global maximum of f+. Let
y∗0 := 0, α0 := 0, β0 := f(x), z∗0 := 0 and β′0 := −1 . Thus,

(f+)∗α0
(
y∗0
β0

) = sup{f+(t) : t ∈ X, 〈t, y
∗
0

β0
〉+ α0 ≤ 1}

= sup{f+(t) : t ∈ X} = f+(x) = f(x) = β0

and

(f−)](
−z∗0
β′0

) = sup{f−(t) : 〈t, −1

β′0
z∗0〉 ≥ 1} = sup ∅ = −∞ < −1 = β′0.
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So, T(y∗0 ,z
∗
0 ,α0,β0,β′0) ∈ Ω. Since 0 < f(x) < +∞, hence x ∈ S. Then by

(8) and Remark 2.5, we conclude that T(y∗0 ,z
∗
0 ,α0,β0,β′0)(x) = h(y∗0 ,α0,β0)(x) =

max(0, β0) = β0 = f(x). This together with (14) implies (13).
Case (ii). f(x) = 0 and the point x is a global maximum of f+. Let y∗1 := 0,
α1 := 0, z∗1 := 0, β′1 := −1 and β1 > 0 be arbitrary. Therefore,

(f+)∗α1
(
y∗1
β1

) = sup{f+(t) : t ∈ X, 〈t, y
∗
1

β1
〉+ α1 ≤ 1}

= sup{f+(t) : t ∈ X} = f+(x) = f(x) = 0 < β1

and

(f−)](
−z∗1
β′1

) = sup{f−(t) : 〈t, −1

β′1
z∗1〉 ≥ 1} = sup ∅ = −∞ < −1 = β′1.

So, T(y∗1 ,z
∗
1 ,α1,β1,β′1) ∈ Ω for all β1 > 0. Now, if x /∈ S, then by (8) and Re-

mark 3.9, we get T(y∗1 ,z
∗
1 ,α1,β1,β′1)(x) = k(z∗1 ,β

′
1)(x) = 0 = f(x). This together

with (14) implies (13). If x ∈ S. In view of (8) and Remark 2.5, one has
T(y∗1 ,z

∗
1 ,α1,β1,β′1)(x) = h(y∗1 ,α1,β1)(x) = max(0, β1) = β1. Thus by (14) we con-

clude that

f(x) = 0 = inf
β1>0

β1 = inf
(y∗1 ,,z

∗
1 ,α1,β1,β′1)

T(y∗1 ,z
∗
1 ,α1,β1,β′1)(x)

≥ inf
Ω
T(y∗,z∗,α,β,β′)(x) ≥ f(x).

Hence (13) holds.
Case (iii). 0 ≤ f(x) < +∞ and the point x is not a global maximum of f+.
So, 0 ≤ f+(x) < +∞. Then in view of the proof of Theorem 5.1(case (iii))
in [8], we conclude that there exists y∗2 ∈ S∗, α2 ∈ {0, 2} and β2 ∈ R++ such
that

(15) (f+)∗α2
(
y∗2
β2

) ≤ β2

and

(16) f(x) = f+(x) = inf
(y∗2 ,α2,β2)

h(y∗2 ,α2,β2)(x).

Now, putting z∗2 := 0 and β′2 = −1. Thus, one has (f−)](
−z∗2
β′2

) = sup ∅ =

−∞ < −1 = β′2. This together with (15) implies T(y∗2 ,z
∗
2 ,α2,β2,β′2) ∈ Ω. If x ∈ S,

then by (8), (14) and (16) we get

f(x) = inf
(y∗2 ,α2,β2)

h(y∗2 ,α2,β2)(x) = inf
(y∗2 ,z

∗
2 ,α2,β2,β′2)

T(y∗2 ,z
∗
2 ,α2,β2,β′2)(x)

≥ inf
Ω
T(y∗,z∗,α,β,β′)(x) ≥ f(x).

So, (13) holds. If x /∈ S, then by (8), (14) and Remark 3.9 we have

T(y∗2 ,z
∗
2 ,α2,β2,β′2)(x) = k(z∗2 ,β

′
2)(x) = 0 ≤ f(x) ≤ inf

Ω
T(y∗,z∗,α,β,β′)(x).

Hence (13) holds.
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Case (iv). Let −∞ ≤ f(x) < 0. Then f−(x) = f(x). So, in view of the proof
of Theorem 3.12(case (i)), there exist z∗3 ∈ −S∗ and β′3 ∈ R−− such that

(17) (f−)](
−z∗3
β′3

) ≤ β′3

and

(18) f(x) = f−(x) ≥ inf
(z∗3 ,β

′
3)
k(z∗3 ,β

′
3)(x).

Set y∗3 := 0, α3 := 2, and β3 := 1. Thus, we obtain

(f+)∗α3
(
y∗3
β3

) = sup{f+(t) : t ∈ X, 〈t, y
∗
3

β3
〉 ≤ −1} = sup ∅ = 0 < 1 = β3.

This together with (17) implies T(y∗3 ,z
∗
3 ,α3,β3,β′3) ∈ Ω. Since −∞ ≤ f(x) < 0,

hence x /∈ S. Then by (8), (14) and (18) we conclude that

f(x) ≥ inf
(z∗3 ,β

′
3)
k(z∗3 ,β

′
3)(x) = inf

(y∗3 ,z
∗
3 ,α3,β3,β′3)

T(y∗3 ,z
∗
3 ,α3,β3,β′3)(x)

≥ inf
Ω
T(y∗,z∗,α,β,β′)(x) ≥ f(x).

Therefore (13) holds.
Case (v). Finally, assume that f(x) = +∞. So, by (14) we get

f(x) = +∞ = inf
Ω
T(y∗,z∗,α,β,β′)(x).

This completes the proof. �

In the final part of this section, we present a characterization for the ∆-
superdifferential of an extended real valued co-radiant function.

Theorem 4.5. Let f : X −→ [−∞,+∞] be a co-radiant function such that
f(x) ≤ 0 for all x ∈ X \S and x0 ∈ X be such that f(x0) 6= −∞, 0,+∞. Then

Ox0 := {T(y∗,z∗,α,β,β′) ∈ ∆ : (f+)∗α(
y∗

β
) ≤ β, (f−)](

−z∗

β′
) ≤ β′,

T(y∗,z∗,α,β,β′)(x0) = f(x0)} ⊆ ∂+
∆f(x0).

Proof. Let T(y∗,z∗,α,β,β′) ∈ Ox0 be arbitrary. So, Theorem 4.3 implies that
T(y∗,z∗,α,β,β′) ∈ supp u(f,∆). Thus T(y∗,z∗,α,β,β′)(x) ≥ f(x) for all x ∈ X.

Since T(y∗,z∗,α,β,β′)(x0) = f(x0). Therefore T(y∗,z∗,α,β,β′) ∈ ∂+
∆f(x0), which

completes the proof. �

Corollary 4.6. Let f : X −→ [−∞,+∞] be a co-radiant function such that
f(x) ≤ 0 for all x ∈ X \ S and x0 ∈ X be such that f(x0) 6= 0,+∞. Suppose
that f has a global maximum at x0. Then, ∂+

∆f(x0) 6= ∅.

Proof. Since f(0) = 0, f(x0) 6= 0,+∞ and f has a global maximum at x0.
So, 0 < f(x0) < +∞ and the point x0 is a global maximum of f+. Then
by the proof of Theorem 4.4(case (i)), there exist (y∗0 , z

∗
0 , α0, β0, β

′
0) ∈ S∗ ×

(−S∗)×{0, 2}×R++×R−− such that (f+)∗α0
(
y∗0
β0

) ≤ β0, (f−)](
−z∗0
β′0

) ≤ β′0 and
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T(y∗0 ,z
∗
0 ,α0,β0,β′0)(x0) = f(x0). Hence, according to Theorem 4.5, we conclude

that T(y∗0 ,z
∗
0 ,α0,β0,β′0) ∈ ∂+

∆f(x0). �

Example 4.7. Let X := R and S := R+. Consider the function f : X −→ R
is defined by

f(x) =

{ √
x, x ≥ 0,

x3, x < 0,

for all x ∈ R. It is clear that f is a co-radiant function. It is not difficult to
check that

supp u(f,∆) = {T(y∗,z∗,α,β,β′) ∈ ∆ : (f+)∗α(
y∗

β
) ≤ β, (f−)](

−z∗

β′
) ≤ β′}

= {T(y∗,z∗,α,β,β′) ∈ ∆ : α = 0, y∗ ≥ 1

β
, −(β′)

2
3 ≤ z∗ < 0}

∪ {T(y∗,z∗,α,β,β′) ∈ ∆ : α = 0, y∗ ≥ 1

β
, β′ < 0, z∗ = 0}

∪ {T(y∗,z∗,α,β,β′) ∈ ∆ : α = 2, y∗ ∈ S∗,

β > 0, −(β′)
2
3 ≤ z∗ < 0}

∪ {T(y∗,z∗,α,β,β′) ∈ ∆ : α = 2, y∗ ∈ S∗,
β > 0, β′ < 0, z∗ = 0}.

Now, let x0 ∈ R be such that f(x0) 6= 0, i.e. x0 6= 0. Put

Ox0 := {T(y∗,z∗,α,β,β′) ∈ ∆ : (f+)∗α(
y∗

β
) ≤ β, (f−)](

−z∗

β′
) ≤ β′,

T(y∗,z∗,α,β,β′)(x0) = f(x0)}.

In view of Theorem 4.5, one has Ox0
⊆ ∂+

∆f(x0). Indeed, it is not difficult to
see that

Ox0
= {T(y∗,z∗,α,β,β′) ∈ ∆ : α = 0, β =

√
x0, y

∗ ≥ 1

β
, −(β′)

2
3 ≤ z∗ < 0}

∪ {T(y∗,z∗,α,β,β′) ∈ ∆ : α = 0, β =
√
x0, y

∗ ≥ 1

β
, β′ < 0, z∗ = 0},

for all x0 > 0, and

Ox0 = {T(y∗,z∗,α,β,β′) ∈ ∆ : α = 0, y∗ ≥ 1

β
, x2

0 = −z∗, −(β′)
2
3 ≤ z∗ < 0}

∪ {T(y∗,z∗,α,β,β′) ∈ ∆ : α = 2, y∗ ∈ S∗, β > 0,

x2
0 = −z∗, −(β′)

2
3 ≤ z∗ < 0},

for all x0 < 0.
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5. Conclusion

In this paper, we found an infimal generator for the set Uiq of all extended
real valued increasing, co-radiant and quasi-concave functions defined on a real
locally convex topological vector space X. We also obtained the upper support
set of this class of functions. As an application of our results (will appear in
the future research) we characterize the minimal elements of the upper support
set of this class of functions, and by using these characterizations, we give the
necessary and sufficient conditions for the global minimum of the difference
of two extended real valued increasing, co-radiant and quasi-concave functions
defined on a real locally convex topological vector space.
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