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Abstract. Lifetime performance index is widely used as process capa-

bility index to evaluate the performance and potential of a process. In

manufacturing industries, the lifetime of a product is considered to be
conforming if it exceeds a given lower threshold value, so nonconform-

ing products are those that fail to exceed this value. Nonconformities

are so important that affect the safe or effective use of the products.
This article deals with the processes that the products’ lifetime is related

to a two-component system, distributed as Farlie-Gumbel-Morgenstern
(FGM) copula-based bivariate exponential and presents the probability

of non-conforming products. Also, bootstrap upper confidence bounds are

constructed and their performance are investigated in simulation study.
In addition, Monte Carlo scheme is applied to do hypothesis testing on it.

Finally, two example sets are presented to demonstrate the application of

the proposed index.

Keywords: Lifetime performance index, Farlie-Gumbel-Morgenstern cop-

ula, Non-conforming rate, Bootstrap upper confidence bound, Monte
Carlo procedure.
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1. Introduction

Process capability indices (PCIs) are numerical tools that show how much
the process products meet the needs of the construction engineers or customers
satisfies. Montgomery [26] introduced a process capability index CL as lifetime
performance index to measure the larger-the-better quality characteristic, as
the following;

(1) CL =
µ− L
σ

,

where µ and σ are the process mean and standard deviation, respectively and
L is the lower specification limit for the lifetime of products.
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If the lifetime of a product, X, exceeds L, it is considered as conforming.
Otherwise, it is non-conforming. Furthermore, a larger lifetime yields a better
quality. The probability of non-conforming (NC) products (non-conforming
rate) is defined by

PL = P (X < L) =

∫ L

0

f(x)dx.(2)

Statistical inference of CL for some well-known lifetime distributions has
been considered in the literature. In real world, the experimenter may not
always be in a position to observe the life times of all the products or items
put on test. This may be because of time limitation or other restrictions such
as money, material resources, mechanical or experimental difficulties on data
collection. Therefore, the need for censoring has thus arisen and the censored
samples are obtained [32]. In other words, censoring sample is a circumstance in
which the values of observations are only partially known. In the literature, the
index CL has been applied to evaluate the lifetime of product on the censored
sample and record values.

Tong et al. [33] constructed the uniformly minimum variance unbiased esti-
mator (UMVUE) of CL and proposed a hypothesis testing procedure based on a
sample from one-parameter exponential distribution. Lee et al. [23] constructed
a maximum likelihood estimator (MLE) of CL based on the progressively type
II right censored sample under the assumption of exponential distribution and
then, utilized it to develop the hypothesis testing procedure.

Ahmadi et al. [1] presented statistical inference for CL based on general-
ized order statistics, which contains several ordered data models such as usual
order statistics, progressively Type-II censored data and records. Also, they
obtained various point and interval estimators for the parameter CL and pro-
posed optimal critical regions for the hypothesis testing problems concerning
CL.

Soliman et al. [32] constructed the maximum likelihood and the Bayesian
estimators of CL for the exponential Frechet (EF) model with progressive first-
failure-censoring scheme and then, applied these estimators to obtain confi-
dence interval for CL. For more information in some other research in this
field, see [2, 3, 22,23,25,37].

Although much research has been done on the lifetime performance index
in univariate exponential distribution, so far there has been no study for the
circumstances in which the products lifetime depends on two variables.

In actuarial science, when two lives are subject to failure, such as under a
joint life insurance or annuity policy, it is concerned with joint distribution of
lifetimes. The present paper studies the non-conforming rate of the processes in
which the lifetime of the products counts on two related characteristics, follow-
ing bivariate exponential distribution that their joint distribution is modelled
by Farlie-Gumbel-Morgenstern (FGM) copula.
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Here is the paper’s structure. Following section reviews some preliminary
of non-conforming rate as well as copula. In section 3, non-conforming rate is
obtained and its graphical form is presented. Section 4 presents the MLE of
PL. In section 5, upper confidence bound of PL is obtained according to four
bootstrap methods and comparison among them is discussed . Furthermore,
hypothesis testing procedure along with the Monte Carlo simulation scheme is
investigated in section 6. Section 7 presents numerical example to demonstrate
the applicability of the proposed index and finally, conclusions are given in
section 8.

2. Preliminary

Exponential distribution is commonly used in reliability theory and survival
analysis as well as in process capability analysis. Suppose the lifetime of the
products, X, follows exponential distribution by parameter λ. Then, the prob-
ability density and cumulative distribution functions are as:

(3) fX(x, λ) =
1

λ
e−x/λ, x > 0, λ > 0,

and

(4) FX(x, λ) = 1− e−x/λ, x > 0, λ > 0.

Therefore, it is denoted by X ∼ E(λ). See Lehmann and Casella [24], and
Ross [30]; for more information. Since µ = σ = λ, then the index CL, presented
in equation 1, rewritten as follows;

(5) CL =
λ− L
λ

= 1− L

λ
.

The probability of non-conforming products is calculated as:

PL = P (X < L) =

∫ L

0

f(x)dx(6)

=

∫ L

0

1

λ
e−x/λdx = 1− e−L/λ.

The non-linear relation between CL and PL is obtained by simple calcula-
tions as the following;

(7) CL = 1 + ln(1− PL).

Intuitively, the relationship between the lifetime performance index and the
non-conforming rate is strictly increasing. Therefore, the lifetime performance
index can be an applicable and flexible tool to evaluate product performance
and achieve the non-conforming rate. From the equation (5), it is concluded
that −∞ < CL < 1, but for a process to be considered as capable it is needed
that the amount of CL be positive, so based on the equation (7), 0 < 1+ln(1−
PL) < 1 and this is of course equivalent to 0 < PL < 0.632.
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Due to the fact that the proportion of non-conforming products and process
capability analysis are two parallel concepts of judging process performance,
here just the probability of non-conforming products is mentioned. Since the
index Cpk has been widely used in the manufacturing industry, here the thresh-
old value analogous to this index is suggested to make a decision on the process
performance.

Pearn and Shu [29] provided a measure of process yield as 2Φ(3Cpk) − 1 ≤
yield ≤ Φ(3Cpk), where Φ(.) is the cumulative function for the standard normal
distribution. In addition, they said that a manufacturing process is said to be
“Inadequate” if Cpk < 1, “Capable” if 1.00 ≤ Cpk < 1.33, “Excellent” if 1.33 ≤
Cpk < 1.67, “Excellent” if 1.67 ≤ Cpk < 2.00, and “Super” if 2.00 ≤ Cpk.

SinceNC = 1−yield, it is concluded that 1−Φ(3Cpk) ≤ NC ≤ 2−2Φ(3Cpk).
According to the relationship between the index Cpk and non-conforming rate,
here some criteria for evaluating the process non-conformities are recommended
as presented inTable 1. These threshold values can be used for bivariate case,
too.

Table 1. Process non-conformities and process condition

condition process non-conformities

Inadequate PL ≥ 0.0027
Capable 0.00007 ≤ PL < 0.0027
Satisfactory 0.0000068 ≤ PL < 0.00007
Excellent 0.00007 ≤ PL < 0.000000002
Super PL ≤ 0.000000002

2.1. Copula. Copulas are used to combine marginal distributions to create
bivariate/multivariate distributions. They contain information from the joint
distribution that is not contained in the marginal distributions. The concept
of copula was introduced by Sklar [31], and has for a long time been recognized
as a powerful tool for modelling dependence between random variables.

Definition 2.1. A function C of D variables on the unit D-cube [0, 1]D is a
copula if and only if the following properties hold:
• For every u, v ∈ [0, 1], C(u, 0) = C(0, v) = 0, C(u, 1) = u and C(1, v) = v.
• For every u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

The following theorem is known as Sklar’s theorem. It is perhaps the most
important result regarding copulas, and is used in essentially all applications
of copulas.
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Theorem 2.2. Sklar’s Therorem. [27] Let H be a joint distribution function
with margins F and G. Then, there exists a copula C such that for all x, y in
R̄,

(8) H(x, y) = C(F (x), G(y)).

If F and G are continuous, then C is unique; otherwise, C is uniquely de-
termined on RanF × RanG. Conversely, if C is a copula and F and G are
distribution functions, then the function H defined by (8) is a joint distribution
function with margins F and G.

The information in H that is not in the marginal distributions is all of the
dependence information. Thus, C contains all of the information on the depen-
dence between X and Y , but no information on the univariate characteristics
X or Y .

Theorem 2.3. Sklar’s Therorem in n-dimensions. [27] Let H be an n-
dimensional distribution function with margins F1, F2, ..., Fn. Then, there ex-
ists an n-copula C such that for all x in R̄n,

(9) H(x1, x2, ..., xn) = C
(
F1(x1), F2(x2), ..., Fn(xn)

)
.

If F1, F2, ..., Fn are all continuous, then C is unique; otherwise, C is uniquely
determined on RanF1×RanF2× ...×RanFn. Conversely, If C is an n-copula
and F1, F2, ..., Fn are distribution functions, then the function H defined by (9)
is an n-dimensional distribution function with margins F1, F2, ..., Fn.

It is noted that Sklar’s theorem shows that an n-dimensional joint distri-
bution function may be decomposed into its n marginal distributions and a
copula, which completely describes the dependence between the n variables.
Decomposing the multivariate distribution into the marginal distributions and
the copulas allows the researcher to construct better models of the individual
variables than would be possible; whereas he constrains himself to look only at
existing multivariate distributions.

One of the most popular parametric families of copula is the FGM family
defined as:

(10) C(u, v) = uv
[
1 + θ(1− u)(1− v)

]
,

where, u and v are margins which are distributed as U(0, 1), and the scalar θ is
dependence parameter, ranges from -1 to 1. It is noted that the independence
structure is reached when θ = 0. The FGM copula density is provided by

(11) c(u, v) =
[
1 + θ(2u− 1)(2v − 1)

]
.

A well-known limitation to this family is that it does not allow the mod-
eling of large dependences since the correlation range ρ between the marginal
distributions is limited to ρ ∈ [− 1

3 ,
1
3 ].

For more a related discussion, see [14,19,20,27,31,35,36,38–40].
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2.2. Association Measure. Statistical inference concerning with dependence
structures should always be based on ranks [19]. One of the most popular scale-
invariant measures of association is Kendall’s tau, which is a non-parametric
rank correlation coefficient that evaluates the degree of similarly between two
sets of ranks. Suppose (X,Y ) is a vector of random variables with joint distri-
bution function H. Let (X1, Y1) and (X2, Y2) be independent and identically
distributed random vectors with joint distribution function H. Kendall’s tau
is defined as:

(12) τX,Y = P
(
(X1 −X2)(Y1 − Y2) > 0

)
− P

(
(X1 −X2)(Y1 − Y2) < 0

)
.

According to copula C, it will be in the form:

(13) τX,Y = τC = 4

∫ ∫
I2
C(u, v)dC(u, v)− 1.

Definition 2.4. Two pair distinct observations (xi, yi) and (xj , yj) from a
vector (X,Y ) of continuous random variables are said to be concordant if (xi−
xj)(yi − yj) > 0 and discordant if (xi − xj)(yi − yj) < 0.

Suppose a sample of size n is gathered from the population and e is the num-
ber of concordant pairs and d the number of discordant pairs. Then, Kendall’s
tau is obtained from the following equation;

(14) τ =
e− d
e+ d

.

For FGM copula family, the relation between Kendall’s tau and the de-
pendence parameter θ is τX,Y = 2θ/9. Accordingly, the range of admissible
Kendall’s tau for FGM copula family is [−2/9, 2/9]. In consequence of this, θ

is estimated from Kendall’s tau for the sample as θ̂ = 9τ/2.

2.3. Generating FGM distribution data. Johnson [21] presented the fol-
lowing algorithm generates random variates (u, v) from an FGM distribution
with parameter θ:
• Generate two independent uniform (0, 1) variates u, and t;

• Set a = 1 + θ(1− 2u), and b =
√
a2 − 4(a− 1)t;

• Set v = 2t/(b+ a);
• The desired pair is (u, v).

2.4. Graphical Tools for Detecting Dependence. To investigate the de-
pendence structure, one step is to compare a scatter plot of the pairs (Ri/(n+
1), Si/(n + 1)), where Ri and Si are the ranks of the sample data, with an
artificial data set of a large sample from the considered copula. Furthermore,
Chi-plot and Kendall plot are proposed to detect the dependence structure,
which are presented here.

The Chi-plot introduced by Fisher and Switzer [12, 13] is a graphical rep-
resentation of the measures of local dependence, inspired from control charts
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and based on the chi square statistic for independence in a two-way table. The
Chi-plot depends on the data only through the values of their ranks.

Suppose (X1, Y1), (X2, Y2), ..., (Xn, Yn) is a random sample from (X,Y ) with
joint distribution function H. For each point (Xi, Yi), set

Hi =
1

n− 1
]{j 6= i : Xj ≤ Xi, Yj ≤ Yi},(15)

Fi =
1

n− 1
]{j 6= i : Xj ≤ Xi},(16)

Gi =
1

n− 1
]{j 6= i : Yj ≤ Yi},(17)

Si = sign
(
(Fi −

1

2
)(Gi −

1

2
)
)
,(18)

where, the symbol ] indicates the number and

(19) sign =


−1; x < 0,

0; x = 0,

1; x > 0.

Then,

λi = 4Si max{(Fi −
1

2
)2, (Gi −

1

2
)2},

χi =
Hi − FiGi√

Fi(1− Fi)Gi(1−Gi)
.(20)

The Chi-plot is a scatter plot of the pairs (λi, χi). The theoretical chi-value
is zero if P (X ≤ u, Y ≤ v) = P (X ≤ u)P (Y ≤ v). Fisher and Switzer [12, 13]
suggested the limit lines ±cp/

√
n for Chi-plot, where cp is the value in which

approximately 100p% of the points (λi, χi) lie between the lines, and is equal
to 1.54, 1.78 and 2.18 corresponds to p = 0.9, 0.95 and 0.99, respectively.

It is noted that to avoid spurious observations, only pairs for which | λi |<
4(1/(n− 1)− 1/2)2 should be plotted.

The Kendall plot, which is known as K-plot, introduced by Genest and
Boies [16], adapts the concept of probability plot to detect the dependence
structure. K-plot is a scatter plot of pairs (Wi:n, H(i)), where H(i)’s are the
order statistics regarding for the quantities Hi’s defined in Chi-plot and Wi:n is
the expected value of the ith statistic from a random sample of the copula family
W = H(X,Y ) under the null hypothesis of independence, and is calculated as
the following;

(21) Wi:n = n

(
n− 1

i− 1

)∫ 1

0

wk0(w)
(
K0(w)

)i−1(
1−K0(w)

)n−i
dw,

and

(22) K0(w) = w − wlog(w).
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The interpretation of K-plot is the same as QQ-plot. If its points lie approx-
imately on the main diagonal, then X and Y are approximately independent.
Any deviation from the main diagonal line represents dependence. In the case
of positive dependence, the points of the plot are located above the main diag-
onal line and vice versa for negative dependence. Furthermore, the larger the
deviation from the main diagonal line, the stronger the dependence. See [16],
For more information.

2.5. Goodness of Fit Test. Goodness of fit test detects whether the structure
of a set of observations is approximately modelled by a statistical model or
not. In fact, it measures the discrepancy between observed values and the
values expected under the considered model. In statistics, the Cramér-von
Mises criterion is used to detect if the dependence structure of a multivariate
distribution is well-represented by a specific copula family, i.e., for testing the
null hypothesis H0 : C ∈ C0, which C is the true underlying copula.

Cramér-von Mises statistic is as:

(23) Snξ = n

∫ 1

ξ

(
Cn(w)− Cθn(w)

)2
dw,

where Cn is the empirical copula computed from the random sample (X1, Y1),
(X2, Y2), ..., (Xn, Yn) and Cθn is an estimation of C obtained under the null
hypothesis and ξ ∈ (0, 1) is an arbitrary cutoff point.

In the literature, there are many researches about Cramér-von Mises test.
For detailed discussion on this topic, see [15,17,18,34].

3. Non-Conforming Rate, PL

Suppose the lifetime of the manufacturing products counts on two life-
time variables X1 and X2 with cumulative distribution functions FX1

(x1) and
FX2(x2), and the joint distribution based on FGM copula model as the follow-
ing;

(24) FX1,X2
(x1, x2) = FX1

(x1)FX2
(x2)

[
1 + θ(1− FX1

(x1))(1− FX2
(x2))

]
.

The probability of non-conforming (NC) products is obtained as follows;

PL = P (X1 < L1 or X2 < L2 or both of them)

= 1− P (X1 > L1, X2 > L2)

= 1− S(L1, L2)

= 1−
[
1− FX1(L1)− FX2(L2) + FX1,X2(L1, L2)

]
= FX1

(L1) + FX2
(L2)− FX1,X2

(L1, L2).(25)

Let X1 and X2 be distributed exponentially by parameters λ1 and λ2, re-
spectively, that is X1 ∼ E(λ1), and X2 ∼ E(λ2). Hence, the probability of
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non-conforming products is presented by:
(26)

PL = 1−e−L1/λ1 +1−e−L2/λ2−(1−e−L1/λ1)(1−e−L2/λ2)

[
1+θe−L1/λ1−L2/λ2

]
.

Based on the equation (5), PL can be calculated as:
(27)

PL = 1− eCL1
−1 + 1−eCL2

−1− (1−eCL1
−1)(1−eCL2

−1)

[
1 +θeCL1

−1+CL2
−1

]
.

Set eCL1−1 = x1 and eCL2−1 = x2, so the equation (27) is simplified as the
following;

(28) PL = 2− x1 − x2 − (1− x1)(1− x2)− θx1x2(1− x1)(1− x2).

Setting θ and threshold value for PL, the probability of non-conforming
products counter curve could be plotted. For instance, figures 1a and 1b depict
the counter curves for θ = 0.3 and some various threshold values of PL, based
on the equations (27) and (28), respectively. We call this plot as “probability
of non-conforming plot”. If the coordinate (CL1

, CL2
) and equivalently (x1, x2)

falls in the right side of the curve, then the process will be considered as capable.
Tables 8-10 at the end of this paper, list various CL1 and CL2 values and

the corresponding probability of non-conforming rate by setting θ = 0.3. Since
PL depends in the same way on CL1

and CL2
, we remove the same values.

4. MLE of PL

To obtain MLE of PL, MLEs of two parameters λ1 and λ2 must first be
obtained. The joint probability density function is derived from the equation
24, as:

(29) fX1,X2
(x1, x2) = fX1

(x1)fX2
(x2)

[
1 + θ(1− 2FX1(x1))(1− 2FX2(x2))

]
.

Since X1 and X2 follow exponential distribution, the joint probability den-
sity function can be written as follows;
(30)

fX1,X2(x1, x2, λ1, λ2) =
1

λ1λ2
e−x1/λ1−x2/λ2

[
1 + θ(2e−x1/λ1 − 1)(2e−x2/λ2 − 1)

]
.

Consequently, the likelihood function is given by:

(31) L(λ1, λ2, x1, x2) =
1

λ1λ2
e−x1/λ1−x2/λ2

[
1+θ(2e−x1/λ1−1)(2e−x2/λ2−1)

]
.

Therefore, the log-likelihood fuction is presented by:
(32)

l(λ1, λ2, x1, x2) = − lnλ1−lnλ2−
x1
λ1
−x2
λ2

+ln
[
1+θ(2e−x1/λ1−1)(2e−x2/λ2−1)

]
.
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(a) NC rate based on the equation (27)

(b) NC rate based on the equation (28)

Figure 1. Probability of NC products counter curves for θ =
0.3 and various threshold values of PL as 0.632, 0.60, 0.55,
0.50,0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15, and 0.10, from left
to right

MLEs of λ1 and λ2 can be obtained by solving the following system of
nonlinear equations;

x1
λ21
− 1

λ1
+

2θx1e
−x1/λ1(2e−x2/λ2 − 1)

λ21
[
1 + θ(2e−x1/λ1 − 1)(2e−x2/λ2 − 1)

] = 0,

x2
λ22
− 1

λ2
+

2θx2e
−x2/λ2(2e−x1/λ1 − 1)

λ22
[
1 + θ(2e−x1/λ1 − 1)(2e−x2/λ2 − 1)

] = 0.(33)

Based on a random sample gathered of size n, as (x11, x21), (x12, x22), ...,
(x1n, x2n), the sample joint probabilty density function is as what follows;

f(X1,X2)
(x1, x2, λ1, λ2) =

1

λn1λ
n
2

e−
∑n
i=1

x1i
λ1

−
∑n
i=1

x2i
λ2

n∏
i=1

[
1 + θ(2e−

x1i
λ1 − 1)

× (2e−
x2i
λ2 − 1)

]
.(34)

Let

X =

(
X1

X2

)
=

(
X11 X12 . . . X1n

X21 X22 . . . X2n

)
,
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and likely, the sample

x =

(
x1
x2

)
=

(
x11 x12 . . . x1n
x21 x22 . . . x2n

)
.

In consequence of this, maximum likelihood estimations of λ1 and λ2 are ob-
tained by solving the following system of nonlinear equations;

n∑
i=1

x1i
λ21
− n

λ1
+ 2θ

n∑
i=1

x1ie
−x1i/λ1(2e−x2i/λ2 − 1)

λ21
[
1 + θ(2e−x1i/λ1 − 1)(2e−x2i/λ2 − 1)

] = 0,

n∑
i=1

x2i
λ21
− n

λ1
+ 2θ

n∑
i=1

x2ie
−x2i/λ1(2e−x1i/λ2 − 1)

λ21
[
1 + θ(2e−x1i/λ1 − 1)(2e−x2i/λ2 − 1)

] = 0.(35)

In this paper, Newton’s iterative method is used to solve the system of

nonlinear equations (33) and (35) and get λ̂1 and λ̂2. Resulting from equation

(26), P̂L is gain
(36)

P̂L = 2− e−L1/λ̂1 − e−L2/λ̂2 − (1− e−L1/λ̂1)(1− e−L2/λ̂2)

[
1 + θe−L1/λ̂1−L2/λ̂2

]
,

Based on equation (27) and ĈL1
= 1−L1/λ̂1 and ĈL2

= 1−L2/λ̂2, P̂L can
be presented by

(37) P̂L = 2−eĈL1
−1−eĈL2

−1− (1−eĈL1
−1)(1−eĈL2

−1)

[
1+θeĈL1

+ĈL2
−2

]
.

To detect whether the process is capable or not, plot the coordinate (ĈL1
, ĈL2

)
in the probability of non-conforming products’ counter curve. If it falls on the
right side of the counter plot of PL, the process will be considered as capable
and otherwise, it will be non-capable.

5. Bootstrap Upper Confidence Bound of PL

When the theoretical distribution of a statistic of interest is complicated,
bootstrap procedure is recommended. This method is a straightforward way,
but computer-based method to derive estimates of standard errors and con-
fidence intervals for complex estimators of complex parameters of the distri-
bution. For more information, one can see Efron [6–9, 11], Efron and Tibshi-
rani [10].

Bootstrap method is described as follows [4, 5, 28]. Suppose n data points
x1, x2, ..., xn drawn from a distribution F , are available. An empirical bootstrap
sample is a resample of the sample size n as x∗1, x

∗
2, ..., x

∗
n. It should be thought

so the latter as a sample of size n drawn from the empirical distribution F ∗. For
any statistic u computed from the original sample data, a statistic u∗ can be
defined by the same formula but computed instead using the resampled data.
In other words, the bootstrap step is as the following;
• x1, x2, ..., xn is a data sample drawn from a distribution F .
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• u is a statistic computed from the sample.
• F ∗ is the empirical distribution of the data (the resampling distribution).
• x1, x2, ..., xn is a resample of the data.
• u∗ is the statistic computed from the resample.
Then, the bootstrap principle says that:
1. F ∗ is approximately equal to F .
2. The statistic u is well approximated by u∗.
3. The variation of u is well approximated by the variation of u∗.
This section provides upper confidence bounds (UCBs) of PL based on four

bootstrap methods. In addition, a simulation study is engaged to investigate
and compared these upper bounds in terms of the criterion “relative coverage”,
which is defined as the ratio of coverage percentage to average length.

Let (x11, x21), (x12, x22), ..., (x1n, x2n) be a sample of size n taken from the

process. MLE of the non-conforming rate is denoted by P̂L. A bootstrap
sample (x∗11, x

∗
21), (x∗12, x

∗
22), ..., (x∗1n, x

∗
2n), is a sample of size n drawn from

the original sample with replacement. Based on the procedure explained in the
previous section, the MLE of the non-conforming rate of this bootstrap sample,

denoted by P̂ ∗
L, is calculated. Suppose this resampling process is repeated B

times. Then, B bootatrsp estimates P̂ ∗
L1
, P̂ ∗

L2
, ..., P̂ ∗

LB
is obtained from the

bootstrap resamples. We call P̂ ∗
L1
, P̂ ∗

L2
, ..., P̂ ∗

LB
the bootstrap distibution of

P̂L. These estimates could be ordered from the smallest to the largest, denoted

by P̂ ∗
L(1)

, P̂ ∗
L(2)

, ..., P̂ ∗
L(B)

. Here are the bootstrap UCBs.

5.1. Standard Bootstrap (SB) Upper Confidence Bound of PL. From

the B bootstrap samples P̂ ∗
Li

, for i = 1, 2, ..., B, the sample average P̄ ∗
L is

obtained as the following;

(38) P̄ ∗
L =

∑B
i=1 P̂

∗
Li

B
.

Furtheremore, the sample standard deviation is calculated as:

(39) S∗
PL =

[∑B
i=1(P̂ ∗

Li
− P̄ ∗

L)2

B − 1

]1/2
.

Set T ∗
i = (P̂ ∗

Li
− P̄ ∗

L)/S∗
PL

for each bootstrap sample and order them from
the smallest to the largest, as T ∗

(1), T
∗
(2), ..., T

∗
(B). Consequently, 100(1 − α)%

SB upper confidence bound of PL is as what follows;

(40) USB = P̂L + T ∗
(B[1−α])S

∗
PL ,

where, T ∗
(B[1−α]) is the (B[1− α])th ordered T ∗

i s.

5.2. Percentile Bootstrap (PB) Upper Confidence Bound of PL. From

the ordered collection of P̂ ∗
L(i)

, for i = 1, 2, ..., B, the 100(1 − α)% PB upper

confidence bound of PL is as;
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(41) UPB = P̂ ∗
L(B[1−α])

.

In fact, this upper bound is the (B[1−α])th quantile value of the B bootstrap
P ∗
L estimates.

5.3. Biased Corrected Percentile Bootstrap (BCPB) Upper Confi-
dence Bound of PL. One approach for improvement of percentile method
is to correct for bias of the bootstrap parameter estimators, by the factor z0
as the proportion of the bootstrap estimates less than the original parameter.
Efron [8] used the standard normal distribution function in this method.

The bootstrap distibution P̂ ∗
L1
, P̂ ∗

L2
, ..., P̂ ∗

LB
may be shifted higher or lower

than would be expected. Thus, a third method is designed to correct this

potential bias. First, calculate p0 =
∑B
i=1 I

(
P̂ ∗
Li

< P̂L
)
/B to estimate the

probability P0 = Pr(P
∗
L < PL), where

I(y) =

{
1

0

y > 0,

y ≤ 0.

Then, define z0 = Φ−1(p0) for estimating Z0 = Φ−1(P0), where Φ(.) is the
cumulative distribution function of standard normal and Φ−1(.) is its inverse.
Let pu = Φ(2z0 + zα), where zα is the upper α quantile of standard normal

distribution. Therefore, from the ordered collection of P̂ ∗
L(i)

, for i = 1, 2, ..., B,

the 100(1− α)% BCPB upper confidence bound of PL can be obtained by

(42) UBCPB = P̂ ∗
L(Bpu)

,

P̂ ∗
L(Bpu)

is the (Bpu)th quantile value of the B bootstrap P̂ ∗
L estimates.

5.4. Bootstrap Pivotal (BP) Upper Confidence Bound of PL. The BP
method for interval estimation could be developed by combining the order sta-
tistics of the bootstrap distribution and the pivotal interval estimation tech-

nique. Set the pivot W = P̂L − PL, and let H be the cumulative distribution
function of W , that is

(43) H(w) = Pr(W ≤ w).

Furthereore, H−1 is the inverse of H. Therefore,

Pr
(
P̂L − PL > H−1(α)

)
= 1− Pr

(
P̂L − PL ≤ H−1(α)

)
= 1− Pr

(
W ≤ H−1(α)

)
= 1−H

(
H−1(α)

)
= 1− α.(44)

Hence,

(45) Pr
(
PL < P̂L −H−1(α)

)
= 1− α.
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Then, P̂L −H−1(α) is the 100(1− α)% BP upper confidence bound of PL.
Obviously, this bound depends on an unknown cumulative distribution func-
tion, H, that should be estimated, so the bootstrap estimation of H can be
obtained by

(46) Ĥ(w) =

∑B
i=1 I(Wi ≤ w)

B
,

where Wi = P̂ ∗
Li
− P̂L, for i = 1, 2, ..., B.

Therefore, H−1(α) is estimated as Ĥ−1(α) = P̂ ∗
L

(Bα)
− P̂L. In consequence,

P̂L −H−1(α) = 2P̂L − P̂ ∗
L(Bα)

. Hence, the 100(1 − α)% BP upper confidence

bound of PL is as the folowing;

(47) UBP = 2P̂L − P̂ ∗
L(Bα)

,

P̂ ∗
L(Bα)

is the (Bα)th quantile value of the B bootstrap P̂ ∗
L estimates.

It should be noted that a rough minimum of 1000 bootstrap samples are
usually sufficient to compute accurate confidence interval estimates [10].

5.5. Simulation Study. In order to investigate the performance of the four
bootstrap UCBs, a series of simulations are undertaken. Four levels of PL
and six levels of sample size are considered in simulation procedure. Suppose
the lifetime of a process products relates to two characteristics by L1 = 2.5
and L2 = 1, which are distributed as bivariate exponential by dependence
structure based on FGM copula model with θ = 0.3. Based on the PL and
the corresponding sample size n, a random sample is simulated. Then, 1000
parametric bootstrap resamples of size n are taken and the 95% UCBs of PL
is constructed based on these four methods.

A computer program in Mathematica is coded to run the simulation. To
compare the performance of the four UCBs, The criterion “relative coverage”is
employed which is defined as the ratio of coverage percentage to average length
of confidence bound. To compute these criteria, the single bootstrap simulation
procedure is replicated for 100 times. Results are presented in tables 2 and 3.

The simulations show that for small sample sizes, BP method reaches the
best confidence upper bound of PL and for middle sample sizes, both SB and
BP methods are good. In addition, for large sample sizes, SB method gives the
best confidence upper bound.

6. Hypothesis Testing for PL

One of the main problem in statistical inference concerns to test the hypothe-
ses about population parameters. To obtain an appropriate rule, a hypothesis
test with the null hypothesis H0 : PL ≥ p0 is considered versus the alterna-
tive one H1 : PL < p0. The null hypothesis is equivalent to “the process is
non-capable”and the alternative one is equivalent to “the process is capable”.
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Table 2. Coverage percentages (CP), average lengths (AL)
and relative coverages (RC) for 95% UCBs of PL

Sample size UCB PL = 0.001 PL = 0.002
CP AL RC CP AL RC

5 SB 1.00 0.00266 376.260 1.00 0.00542 184.565
PB 0.96 0.00322 298.382 0.95 0.00700 135.679

BCPB 0.72 0.00182 395.872 0.85 0.00494 172.145
BP 0.68 0.00109 622.578 0.58 0.00194 299.253

10 SB 1.00 0.00182 547.802 1.00 0.00357 280.227
PB 1.00 0.00197 508.539 1.00 0.00440 227.166

BCPB 1.00 0.00168 595.161 0.5 0.00224 222.866
BP 1.00 0.00134 743.360 0.5 0.00201 248.620

20 SB 1.00 0.00141 709.246 1.00 0.00282 353.868
PB 0.96 0.00147 651.993 0.99 0.00311 318.653

BCPB 0.9 0.00137 655.997 0.84 0.00256 328.109
BP 0.88 0.00123 714.680 0.81 0.00230 351.554

30 SB 1.00 0.00125 798.974 1.00 0.00251 398.365
PB 1.00 0.00140 712.770 0.96 0.00276 347.261

BCPB 0.65 0.00110 589.096 0.73 0.00226 323.295
BP 0.58 0.00102 568.639 0.68 0.00211 322.033

40 SB 1.00 0.00125 798.730 1.00 0.00238 420.088
PB 0.97 0.00133 730.029 0.97 0.00260 372.427

BCPB 0.81 0.00116 695.747 0.69 0.00217 318.328
BP 0.80 0.00112 713.543 0.64 0.00205 311.381

50 SB 1.00 0.00120 832.44 1.00 0.00246 406.796
PB 0.92 0.00126 727.297 0.92 0.00255 360.280

BCPB 0.81 0.00112 723.285 0.89 0.00234 380.599
BP 0.79 0.00109 722.967 0.87 0.00228 381.913

The significance level is the probability to reject the null hypothesis when
it is true, equivalently, the probability to deem the process capable when it is
not. p − value is the probability of obtaining an effect at least as extreme as
the one in sample data, assuming the truth of the null hypothesis. There is a
threshold value α, that p − value is measured against it. A small p − value,
typically less than α, indicates strong evidence against the null hypothesis, so
the null hypothesis is rejected.

It has become commonplace in the statistical analysis to use Monte Carlo
procedure for calculating empirical p− value. The reasons for this include the
following: (1) many test statistics do not have a standard asymptotic distri-
bution; (2) even if a standard asymptotic distribution does exist, it may not
be reliable in realistic sample sizes; and (3) calculation of the exact sampling
distribution through exhaustive enumeration of all possible samples may be
too computationally intensive to be feasible. In contrast, Monte Carlo method
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Table 3. Coverage percentages (CP), average lengths (AL)
and relative coverages (RC) for 95% UCBs of PL

Sample size UCB PL = 0.003 PL = 0.004
CP AL RC CP AL RC

5 SB 1.00 0.00762 131.297 1.00 0.00988 101.195
PB 0.99 0.00974 101.665 0.98 0.00121 81.164

BCPB 0.75 0.00966 77.621 0.81 0.00886 91.384
BP 0.59 0.00308 191.756 0.68 0.00440 154.381

10 SB 1.00 0.00514 194.704 1.00 0.00662 150.979
PB 0.99 0.00582 170.081 0.99 0.00762 129.864

BCPB 0.89 0.00445 200.164 0.81 0.00578 140.133
BP 0.87 0.00360 241.598 0.76 0.00451 168.404

20 SB 1.00 0.00428 233.375 1.00 0.00552 181.082
PB 0.96 0.00456 210.384 0.95 0.00609 156.076

BCPB 0.94 0.00416 225.868 0.82 0.00502 163.338
BP 0.92 0.00364 253.016 0.78 0.00449 173.691

30 SB 1.00 0.00394 253.768 1.00 0.00523 191.013
PB 0.97 0.00420 231.203 0.97 0.00545 177.898

BCPB 0.88 0.00366 240.693 0.91 0.00503 180.728
BP 0.87 0.00346 251.498 0.91 0.00474 192.156

40 SB 1.00 0.00356 281.133 1.00 0.00493 202.994
PB 0.94 0.00398 236.049 0.97 0.00522 185.846

BCPB 0.55 0.00313 175.871 0.83 0.00462 179.530
BP 0.51 0.00296 172.145 0.81 0.00443 182.825

50 SB 1.00 0.00356 280.753 1.00 0.00490 203.989
PB 0.98 0.00384 255.356 0.97 0.00510 190.121

BCPB 0.81 0.00328 246.563 0.88 0.00472 186.276
BP 0.79 0.00316 249.967 0.86 0.00453 189.679

could be used to obtain an empirical p − value that approximates the exact
p − value without relying on asymptotic distributional theory or exhaustive
enumeration.

In this paper, empirical p− value is obtained based on Monte Carlo simula-
tion method because of complexity of obtaining cumulative distribution func-
tion. The procedure is as what follows;

First, take a sample of size n from the process products and calculate

θ̂ = 9τ/2. Then, calculate λ̂1 and λ̂2 based on the system of non-linear equa-

tions (35) and then P̂L according to the equations (36) or (37), name it P̂L0
.

Therefore, to make a decision, follow the following steps;
• Step 1: Detect the threshold value α of significance level for the test.
• Step 2: Specify λ1 and λ2 according to PL = p0.
• Step 3: Generate a sample of size n from bivariate exponential distribution

based on FGM copula model according to λ1, λ2, and θ̂.
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• Step 4: Calculate λ̂1 and λ̂2 and then, P̂L.
• Step 5: Replicate steps 1 to 4 for m times.

• Step 6: Count the number of replications that produce a test statistic P̂L
less than P̂L0

and denote it by r.
• Step 7: The estimated p−value is obtained as p̂ = r/n. If p̂ is less than α,

then the null hypothesis is rejected and concluded that the process is capable,
otherwise the process is supposed to be non-capable.

It should be noted that, there are several choices of the null hypothesis for
λ1 and λ2 equivalent to the null hypothesis for PL, and the choice depends on
economical reasons or etc.

7. Numerical Examples

In this section, some data are generated to demonstrate the effectiveness and
performance of the proposed method. Suppose the lifetime of a manufacturing
products counts on two characteristics in which are distributed as bivariate
exponential distribution based on FGM copula model. A product is supposed
to be conformed if its first characteristic value is greater than 2.5 and the second
one is greater than 1. Here, two different datasets of this process are presented
in two examples.

Example 7.1. Table 4 presents a sample of size 50 from the process. To show
how one can detect bivariate distribution of this type, the procedure is explained
here. First, to detect the marginal distribution of each variable, histograms were
plotted and it was seemed that two variables data follow exponential distribution.
Then, goodness of fit tests were done based on the one-sample Kolmogorov-
Smirnov test, for each variable data. It was concluded that the two marginal
variables are distributed as exponential.

Now, it is needed to find bivariate distribution. First, we draw the scatter plot
of two variables data, depicted in Figure 2a. Kendall tau correlation coefficient
is obtained as τ = 0.104 and then, the dependence parameter is calculated as

θ̂ = 0.47. Therefore, based on the system of non-linear equations (35), MLEs

of the parameters are obtained as λ̂1 = 10.08, and λ̂2 = 6.62.
Applying Johnson’s algorithm presented in subsection 2.3, we generate 500

data of FGM distribution of this estimated θ. Inversing the distribution data as
x1 = −λ1 log(1−u), and x2 = −λ2 log(1−v) provides 500 bivariate data (x1, x2)
from bivariate exponential distribution based on FGM copula model. Now we
depict the scatter plot of the empirical distribution values of the original data
along with the data generated based on the algorithm in Figure 2b. It shows
that the empirical distribution is similar to bivariate exponential distribution
based on FGM copula model distribution.

For detecting dependence, two graphical tools Chi-plot and K-plot, discussed
in subsection 2.4, are drawn and presented in figures 2c and 2d. Both plots
show weak and positive correlation between two variables. So far, the above
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tools confirm that the data dependence follows FGM copula model, to some
extent.

Now, goodness of fit test, explained in subsection 2.5, is used to detect
whether the structure of the data is approximately modelled by a bivariate ex-
ponential distribution based on FGM copula model or not. Cramér-von Mises
statistic is calculated as 0.024, with p − value = 0.721. Therefore, there is no
reason to reject the null hypothesis, so it is concluded that the data are followed
bivariate exponential distribution based on FGM copula model.

Two lifetime indices are obtained as ĈL1
= 0.75, and ĈL2

= 0.85. Therefore,

non-conforming rate is calculated P̂L = 0.32.

Figures 3a and 3b represent the location of the coordinate (ĈL1
, ĈL2

) along
with the counter plots of PL for two values 0.40, and 0.20, respectively. The
figures show that for the threshold value 0.40 the process is capable, and for the
threshold value 0.20 the process is non-capable.

Table 4. Sample data for Example 7.1

case sample data case sample data case sample data

1 (1.8374, 15.3584) 18 (0.1915, 2.3195) 35 (22.2368, 2.4895)
2 (4.9148, 16.990) 19 (35.9157, 7.8147) 36 (3.5985, 10.1795)
3 (3.6148, 3.9442) 20 (5.7512, 0.7842) 37 (26.8663, 4.4837)
4 (11.0975, 5.9302) 21 (9.4647, 6.2112) 38 (8.2414, 1.7860)
5 (5.0959, 10.7524) 22 (12.5995, 0.4629) 39 (9.9552, 5.6460)
6 (33.8794, 0.1679) 23 (24.8616, 2.2780) 40 (9.3107, 6.7939)
7 (18.4876, 13.3761) 24 (1.5364, 2.0296) 41 (10.4176, 7.0716)
8 (17.8537, 13.8099) 25 (11.8459, 10.2839) 42 (3.0580, 1.0076)
9 (0.8279, 5.8745) 26 (8.5884, 4.3206) 43 (20.8672, 5.6898)
10 (1.9393, 4.4589) 27 (1.8354, 1.0490) 44 (2.9477, 0.2033)
11 (3.1438, 8.9403) 28 (3.1676, 7.7788) 45 (4.5724, 6.1725)
12 (12.8232, 2.6902) 29 (4.5049, 5.2956) 46 (2.3578, 6.9221)
13 (4.0707, 17.2908) 30 (17.3604, 1.0282) 47 (3.2912, 0.0206)
14 (14.3766, 0.5396) 31 (15.2105, 7.6248) 48 (0.7223, 1.4676)
15 (13.9071, 9.0327) 32 (12.2828, 10.7518) 49 (4.4124, 7.5971)
16 (15.9079, 5.1558) 33 (1.3453, 1.7771) 50 (11.8578, 7.3057)
17 (30.6060, 46.0686) 34 (14.2680, 6.7872)

Now, the null hypothesis H0 : PL ≥ 0.30 versus the alternative one H1 :
PL < 0.30 is tested. Table 5 shows some pairs (λ1, λ2) as well as (CL1

, CL2
)

concerned with PL = 0.30. As mentioned in section 6, for each pair (λ1, λ2),
1000 samples of size 50 is generated and calculated the simulated p − values,
presented in Table 5. In order to limit the size of the table, all numbers are
approximated to two decimal places.

Table 5 shows that the simulated p − values for all considered cases are
greater than the significance level 0.05, so there is no reason to reject the null
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(a) Scatter plot of the data

(b) Empirical distribution plot of the data along with the simulated data

(c) Chiplot of the data

(d) Kplot of the data

Figure 2. Plots assosiated with the data in Example 7.1



20 Z. Abbasi Ganji et al.

(a) PL = 0.40

(b) PL = 0.20

Figure 3. Coordinate (ĈL1 , ĈL2) of Example 7.1 corresponds
to the counter curve of PL

hypothesis. Therefore, the process is supposed to be non-capable. Furthermore,
95% SB upper confidence bound for PL is obtained as 0.363.

Example 7.2. Table 6 presents a sample of size 10 from the process. Kendall
tau correlation coefficient is obtained as τ = 0.2, so the dependence parameter

is calculated as θ̂ = 0.9. Therefore, based on the system of non-linear equations

(35), MLEs of the parameters are gained as λ̂1 = 1139.51, and λ̂2 = 850.32.
Such as the previous example, all plots for detecting the dependence structure
are drawn and goodness of fit test is done, which is not presented here due to lack
of space. Results show that the data follow bivariate exponential distribution
based on FGM copula model. Moreover, two lifetime capability indices are

calculated as ĈL1
= 0.9978, and ĈL2

= 0.9988. Hence, P̂L = 0.00336.

Figures 4a and 4b show the location of the coordinate (ĈL1
, ĈL2

) along with
the counter plots of PL for two values 0.00001, and 0.05, respectively. It is seen
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Table 5. Simulated p−values for various values of (CL1 , CL2)
as well as (λ1, λ2) for Example 7.1

case (CL1
, CL2

) (λ1, λ2) Simulated p− value
1 (0.66, 0.98) (7.35, 50.00) 0.662
2 (0.68, 0.96) (7.81, 25.00) 0.744
3 (0.70, 0.94) (8.33, 16.67) 0.736
4 (0.72, 0.92) (8.93, 11.11) 0.683
5 (0.74, 0.89) (9.61, 9.09) 0.720
6 (0.76, 0.87) (10.42, 7.69) 0.736
7 (0.78, 0.85) (11.36, 6.67) 0.712
8 (0.80, 0.83) (12.50, 5.88) 0.742
9 (0.82, 0.81) (13.89, 5.26) 0.721
10 (0.84, 0.79) (15.62, 4.76) 0.766
11 (0.86, 0.77) (17.86, 4.35) 0.720
12 (0.88, 0.75) (20.83, 4.00) 0.724
13 (0.90, 0.73) (25.00, 3.70) 0.716
14 (0.92, 0.71) (31.25, 3.45) 0.716
15 (0.94, 0.69) (41.67, 3.33) 0.753
16 (0.96, 0.68) (62.50, 3.12) 0.720
17 (0.98, 0.66) (125.00, 2.94) 0.696

that for the threshold value 0.00001, the process is supposed to be non-capable,
and for 0.05, it is supposed to be capable.

Table 6. Sample data for Example 7.2

case sample data case sample data

1 (1296.6400, 258.3560) 6 (1655.8600, 1073.9100)
2 (2334.3900, 99.5846) 7 (1179.4200, 2520.5300)
3 (8.2788, 90.4069) 8 (772.0810,1305.8100 )
4 (1965.7300, 2176.5700) 9 (488.8650, 120.1110)
5 (724.0110, 1038.5800) 10 (1191.7300, 623.7290)

Now, it is desirable to test the null hypothesis H0 : PL ≥ 0.005 versus the
alternative one H1 : PL < 0.005. Table 7 shows some pairs of (λ1, λ2) as well
as (CL1 , CL2) in accordance with PL = 0.005. For each pair of (λ1, λ2), 1000
samples of size 10 are simulated and the p− values are obtained, as presented
in Table 7.

It is seen that for all considered cases, the simulated p − values are less
than the significance level, 0.05, so the null hypothesis is rejected. Therefore,
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(a) PL = 0.00001

(b) PL = 0.05

Figure 4. Coordinate (ĈL1
, ĈL2

) of Example 7.2 corresponds
to the counter curve of PL

the process is capable. In addition, 95% BP upper confidence bound for PL is
obtained as 0.00461.

8. Concluding Remarks

The present paper is concerned with the processes that the products’ life-
time follows bivariate exponential distribution based on FGM copula model.
Since reduction of non-conforming products is an original key for maintaining
competitiveness in industries, the probability of non-conforming products, PL,
was studied.

Furthermore, four bootstrap methods SB, PB, BCPB and BP were engaged
to present upper confidence bound for PL. Simulation study was applied to
evaluate the performance of these bounds in terms of relative coverage. Re-
sults showed that for small sample sizes, BP method performs the best, for
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Table 7. Simulated p−values for various values of (CL1 , CL2)
as well as (λ1, λ2) for Example 7.2

case (CL1
, CL2

) (λ1, λ2) Simulated p− value
1 (0.9958, 0.9991) (600, 1177) 0.036
2 (0.9959, 0.9991) (610, 1089) 0.029
3 (0.9961, 0.9988) (650, 854) 0.033
4 (0.9963, 0.9987) (680, 745) 0.027
5 (0.9964, 0.9985) (700, 692) 0.025
6 (0.9968, 0.9982) (780, 551) 0.025
7 (0.9969, 0.9981) (800, 528) 0.017
8 (0.9971, 0.9979) (850, 481) 0.033
9 (0.9972, 0.9977) (900, 446) 0.029
10 (0.9973, 0.9977) (930, 429) 0.013

middle sample sizes, both SB and BP methods perform better than the other
competitors and,for large sample sizes, SB has the best performance.

On the other hand, some managers tend to determine whether the non-
conforming products adhere to the required level or not. For this purpose,
Monte Carlo simulation scheme was applied to do hypothesis testing on PL.

In this paper, the new index was derived under the assumption that the
amount of all parameters and variables were presented as crisp values. In
real world, in most processes, data and information possess non-statistical un-
certainties, so fuzzy set theory should be employed. We will investigate this
subject in the future inquiries.
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Table 8. Values of CL1 and CL2 along with the corresponding
probability of NC products

CL1
CL2

PL CL1
CL2

PL CL1
CL2

PL CL1
CL2

PL

-3.00 -3.00 0.9996 -2.50 0.40 0.9813 -1.50 0.00 0.9645 -1.00 0.85 0.8793
-3.00 -2.50 0.9993 -2.50 0.45 0.9804 -1.50 0.05 0.9629 -1.00 0.90 0.8745
-3.00 -2.00 0.9988 -2.50 0.50 0.9796 -1.50 0.10 0.9612 -1.00 0.95 0.8696
-3.00 -1.50 0.9981 -2.50 0.55 0.9787 -1.50 0.15 0.9594 -1.00 1.00 0.8647
-3.00 -1.00 0.9969 -2.50 0.60 0.9778 -1.50 0.20 0.9575 -0.50 -0.50 0.9412
-3.00 -0.50 0.9950 -2.50 0.65 0.9769 -1.50 0.25 0.9556 -0.50 0.00 0.9058
-3.00 0.00 0.9920 -2.50 0.70 0.9759 -1.50 0.30 0.9536 -0.50 0.05 0.9014
-3.00 0.05 0.9916 -2.50 0.75 0.9750 -1.50 0.35 0.9515 -0.50 0.10 0.8967
-3.00 0.10 0.9913 -2.50 0.80 0.9740 -1.50 0.40 0.9494 -0.50 0.15 0.8919
-3.00 0.15 0.9909 -2.50 0.85 0.9730 -1.50 0.45 0.9471 -0.50 0.20 0.8869
-3.00 0.20 0.9904 -2.50 0.90 0.9719 -1.50 0.50 0.9448 -0.50 0.25 0.8816
-3.00 0.25 0.9900 -2.50 1.00 0.9698 -1.50 0.55 0.9424 -0.50 0.30 0.8762
-3.00 0.30 0.9896 -2.00 -2.00 0.9968 -1.50 0.60 0.9400 -0.50 0.35 0.8705
-3.00 0.35 0.9891 -2.00 -1.50 0.9948 -1.50 0.65 0.9375 -0.50 0.40 0.8647
-3.00 0.40 0.9886 -2.00 -1.00 0.9916 -1.50 0.70 0.9348 -0.50 0.45 0.8586
-3.00 0.45 0.9881 -2.00 -0.50 0.9864 -1.50 0.75 0.9322 -0.50 0.50 0.8523
-3.00 0.50 0.9876 -2.00 0.00 0.9784 -1.50 0.80 0.9294 -0.50 0.55 0.8457
-3.00 0.55 0.9871 -2.00 0.05 0.9774 -1.50 0.85 0.9266 -0.50 0.60 0.8389
-3.00 0.60 0.9865 -2.00 0.10 0.9763 -1.50 0.90 0.9238 -0.50 0.65 0.8319
-3.00 0.65 0.9860 -2.00 0.15 0.9752 -1.50 0.95 0.9209 -0.50 0.70 0.8247
-3.00 0.70 0.9854 -2.00 0.20 0.9741 -1.50 1.00 0.9179 -0.50 0.75 0.8173
-3.00 0.75 0.9848 -2.00 0.25 0.9729 -1.00 -1.00 0.9776 -0.50 0.80 0.8096
-3.00 0.80 0.9842 -2.00 0.30 0.9717 -1.00 -0.50 0.9637 -0.50 0.85 0.8017
-3.00 0.85 0.9836 -2.00 0.35 0.9705 -1.00 0.00 0.9420 -0.50 0.90 0.7936
-3.00 0.90 0.9830 -2.00 0.40 0.9692 -1.00 0.05 0.9393 -0.50 0.95 0.7853
-3.00 0.95 0.9823 -2.00 0.45 0.9678 -1.00 0.10 0.9365 -0.50 1.00 0.7769
-3.00 1.00 0.9817 -2.00 0.50 0.9664 -1.00 0.15 0.9336 0.00 0.00 0.8484
-2.50 -2.50 0.9988 -2.00 0.55 0.9650 -1.00 0.20 0.9305 0.00 0.05 0.8412
-2.50 -2.00 0.9981 -2.00 0.60 0.9635 -1.00 0.25 0.9273 0.00 0.10 0.8336
-2.50 -1.50 0.9969 -2.00 0.65 0.9620 -1.00 0.30 0.9240 0.00 0.15 0.8257
-2.50 -1.00 0.9949 -2.00 0.70 0.9604 -1.00 0.35 0.9206 0.00 0.20 0.8174
-2.50 -0.50 0.9917 -2.00 0.75 0.9588 -1.00 0.40 0.9170 0.00 0.25 0.8088
-2.50 0.00 0.9868 -2.00 0.80 0.9571 -1.00 0.45 0.9133 0.00 0.30 0.7999
-2.50 0.05 0.9862 -2.00 0.85 0.9554 -1.00 0.50 0.9095 0.00 0.35 0.7905
-2.50 0.10 0.9856 -2.00 0.90 0.9537 -1.00 0.55 0.9056 0.00 0.40 0.7808
-2.50 0.15 0.9849 -2.00 0.95 0.9520 -1.00 0.60 0.9015 0.00 0.45 0.7707
-2.50 0.20 0.9843 -2.00 1.00 0.9502 -1.00 0.65 0.8973 0.00 0.50 0.7602
-2.50 0.25 0.9835 -1.50 -1.50 0.9916 -1.00 0.70 0.8930 0.00 0.55 0.7493
-2.50 0.30 0.9828 -1.50 -1.00 0.9862 -1.00 0.75 0.8886 0.00 0.60 0.7380
-2.50 0.35 0.9820 -1.50 -0.50 0.9778 -1.00 0.80 0.8840 0.00 0.65 0.7262
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Table 9. Values of CL1 and CL2 along with the corresponding
probability of NC products

CL1
CL2

PL CL1
CL2

PL CL1
CL2

PL CL1
CL2

PL

0.00 0.70 0.7141 0.10 0.70 0.6849 0.20 0.90 0.5870 0.35 0.60 0.6335
0.00 0.75 0.7015 0.10 0.75 0.6709 0.20 0.95 0.5691 0.35 0.65 0.6165
0.00 0.80 0.6885 0.10 0.80 0.6564 0.20 1.00 0.5507 0.35 0.70 0.5989
0.00 0.85 0.6750 0.10 0.85 0.6414 0.25 0.25 0.7582 0.35 0.75 0.5805
0.00 0.90 0.6611 0.10 0.90 0.6259 0.25 0.30 0.7467 0.35 0.80 0.5615
0.00 0.95 0.6468 0.10 0.95 0.6099 0.25 0.35 0.7347 0.35 0.85 0.5417
0.00 1.00 0.6321 0.10 1.00 0.5934 0.25 0.40 0.7222 0.35 0.90 0.5212
0.05 0.05 0.8336 0.15 0.15 0.7993 0.25 0.45 0.7092 0.35 0.95 0.4999
0.05 0.10 0.8256 0.15 0.20 0.7898 0.25 0.50 0.6957 0.35 1.00 0.4780
0.05 0.15 0.8173 0.15 0.25 0.7798 0.25 0.55 0.6815 0.40 0.40 0.6804
0.05 0.20 0.8086 0.15 0.30 0.7694 0.25 0.60 0.6668 0.40 0.45 0.6652
0.05 0.25 0.7996 0.15 0.35 0.7586 0.25 0.65 0.6515 0.40 0.50 0.6494
0.05 0.30 0.7902 0.15 0.40 0.7472 0.25 0.70 0.6357 0.40 0.55 0.6329
0.05 0.35 0.7804 0.15 0.45 0.7355 0.25 0.75 0.6192 0.40 0.60 0.6157
0.05 0.40 0.7701 0.15 0.50 0.7232 0.25 0.80 0.6022 0.40 0.65 0.5978
0.05 0.45 0.7595 0.15 0.55 0.7105 0.25 0.85 0.5845 0.40 0.70 0.5792
0.05 0.50 0.7484 0.15 0.60 0.6973 0.25 0.90 0.5661 0.40 0.75 0.5598
0.05 0.55 0.7370 0.15 0.65 0.6835 0.25 0.95 0.5472 0.40 0.80 0.5396
0.05 0.60 0.7250 0.15 0.70 0.6693 0.25 1.00 0.5276 0.40 0.85 0.5187
0.05 0.65 0.7127 0.15 0.75 0.6545 0.30 0.30 0.7347 0.40 0.90 0.4970
0.05 0.70 0.6998 0.15 0.80 0.6392 0.30 0.35 0.7220 0.40 0.95 0.4745
0.05 0.75 0.6865 0.15 0.85 0.6233 0.30 0.40 0.7089 0.40 1.00 0.4512
0.05 0.80 0.6728 0.15 0.90 0.6069 0.30 0.45 0.6952 0.45 0.45 0.6493
0.05 0.85 0.6586 0.15 0.95 0.5900 0.30 0.50 0.6809 0.45 0.50 0.6326
0.05 0.90 0.6439 0.15 1.00 0.5726 0.30 0.55 0.6660 0.45 0.55 0.6152
0.05 0.95 0.6288 0.20 0.20 0.7797 0.30 0.60 0.6506 0.45 0.60 0.5971
0.05 1.00 0.6133 0.20 0.25 0.7693 0.30 0.65 0.6345 0.45 0.65 0.5782
0.10 0.10 0.8172 0.20 0.30 0.7583 0.30 0.70 0.6177 0.45 0.70 0.5585
0.10 0.15 0.8085 0.20 0.35 0.7469 0.30 0.75 0.6003 0.45 0.75 0.5381
0.10 0.20 0.7994 0.20 0.40 0.7350 0.30 0.80 0.5823 0.45 0.80 0.5168
0.10 0.25 0.7899 0.20 0.45 0.7226 0.30 0.85 0.5636 0.45 0.85 0.4946
0.10 0.30 0.7800 0.20 0.50 0.7098 0.30 0.90 0.5442 0.45 0.90 0.4716
0.10 0.35 0.7697 0.20 0.55 0.6963 0.30 0.95 0.5242 0.45 0.95 0.4478
0.10 0.40 0.7589 0.20 0.60 0.6824 0.30 1.00 0.5034 0.45 1.00 0.4231
0.10 0.45 0.7478 0.20 0.65 0.6679 0.35 0.35 0.7088 0.50 0.50 0.6150
0.10 0.50 0.7361 0.20 0.70 0.6529 0.35 0.40 0.6950 0.50 0.55 0.5967
0.10 0.55 0.7240 0.20 0.75 0.6373 0.35 0.45 0.6805 0.50 0.60 0.5776
0.10 0.60 0.7115 0.20 0.80 0.6211 0.35 0.50 0.6655 0.50 0.65 0.5577
0.10 0.65 0.6984 0.20 0.85 0.6044 0.35 0.55 0.6498 0.50 0.70 0.5369

Table 10. Values of CL1
and CL2

along with the correspond-
ing probability of NC products

CL1
CL2

PL CL1
CL2

PL CL1
CL2

PL CL1
CL2

PL

0.50 0.75 0.5153 0.60 0.60 0.5360 0.65 1.00 0.2953 0.80 0.90 0.2553
0.50 0.80 0.4928 0.60 0.65 0.5138 0.70 0.70 0.4401 0.80 0.95 0.2191
0.50 0.85 0.4694 0.60 0.70 0.4907 0.70 0.75 0.4131 0.80 1.00 0.1813
0.50 0.90 0.4450 0.60 0.75 0.4665 0.70 0.80 0.3849 0.85 0.85 0.2549
0.50 0.95 0.4197 0.60 0.80 0.4413 0.70 0.85 0.3555 0.85 0.90 0.2181
0.50 1.00 0.3935 0.60 0.85 0.4151 0.70 0.90 0.3247 0.85 0.95 0.1796
0.55 0.55 0.5774 0.60 0.90 0.3878 0.70 0.95 0.2926 0.85 1.00 0.1393
0.55 0.60 0.5573 0.60 0.95 0.3593 0.70 1.00 0.2592 0.90 0.90 0.1790
0.55 0.65 0.5362 0.60 1.00 0.3297 0.75 0.75 0.3846 0.90 0.95 0.1381
0.55 0.70 0.5143 0.65 0.65 0.4904 0.75 0.80 0.3547 0.90 1.00 0.0952
0.55 0.75 0.4915 0.65 0.70 0.4660 0.75 0.85 0.3235 0.95 0.95 0.0945
0.55 0.80 0.4677 0.65 0.75 0.4404 0.75 0.90 0.2909 0.95 1.00 0.0488
0.55 0.85 0.4429 0.65 0.80 0.4138 0.75 0.95 0.2568 1.00 1.00 0.0000
0.55 0.90 0.4171 0.65 0.85 0.3860 0.75 1.00 0.2212
0.55 0.95 0.3903 0.65 0.90 0.3570 0.80 0.80 0.3231
0.55 1.00 0.3624 0.65 0.95 0.3268 0.80 0.85 0.2900
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