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Abstract. In this paper a new mathematical model for COVID-19, in-
cluding improved people who are susceptible to get infected again, is

given. And it is used to investigate the transmission dynamics of the

corona virus disease (COVID-19). Our developed model consists of five
compartments, namely the susceptible class, S(t), the exposed class, E(t),

the infected class, I(t), the quarantine class, Q(t) and the recover class,

R(t). The basic reproduction number is computed and the stability con-
ditions of the model at the disease free equilibrium point are obtained.

Finally, We present numerical simulations based on the available real data

for Kerman province in Iran.
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1. Introduction

Corona virus disease (COVID-19) is an infectious disease caused by a newly
discovered Corona virus. Corona viruses are a large family of zoonotic viruses,
i.e, they are transmitted from animals to human [7]. Most people infected by
COVID-19 virus will experience mild to moderate respiratory illness and re-
cover without requiring special treatment. Older people and those with under-
lying medical problems like diabetes, cardiovascular disease, cancer and chronic
respiratory disease are more likely to develop serious illness.
On average it takes 5- 6 days from when some one is infected with the virus
for the symptoms to show, however it can takes up to 14. In mild cases, it can
take people one to two weeks to recover, while serious cases can take six weeks
or more. Most common symptoms are:
fever, dry cough, tiredness.
less common symptoms are:
aches and pain, sore throat, diarrhoea, conjunctivitis, headache, lose of taste
and smell, a rash on skin or discoloration of fingers or toes.
Serious symptoms:
difficulty breathing or shortness of breath, chest pain or pressure, loss of speech.
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One of the best methods to investigate the condition of epidemic in pop-
ulation is mathematical modeling. Mathematical model is a powerful tool
that effectively helps in investigation of real world phenomenon and processes
[3, 4, 8, 9, 12, 20]. Since the beginenning of the pandemic, many mathematical
models have been introduced and numerical results have been tested in some
population. Researchers suggested mathematical models to analyze the dy-
namical behavior and spread of the novel virus which can help to predict the
future of pandemic [15]. Many mathematical models provide more insight on
how to control the disease spread [16, 17]. Fanelli and Piazza [10] studied a
novel compartmental model describing the transmission patterns of COVID-
19 in three highly infected countries. In [23], Zhang et al., using SIR model
investigated how crowding of infected individuals effects the susceptibles or
population. This effect is addressed by a nonlinear incidence rate. In [13]
and [25], an SIR model with random perturbation for COVID-19 is formu-
lated and some basic properties like unique positive solution and exponential
stability is investigated. Sitthiwirattham et al. introduced an SEIR discrete
model [18]. Nazir et al. divided population into five compartments includ-
ing, susceptibles, exposed people, E, symptomatic people, I, asymptomatic
infected people Ap and removed people, R in [19]. In addition, they considered
the rate of changes of reservoir of virus in the model. Bushnaq et.al. con-
cidered an SEIR model to control the spread of COVID-19. authors used two
control variables in the form of media campaigns, social distancing and face
mask use [6]. In [22] an SEIR model is considered. Authors used the method
of Sobol to compute the sensitivity indices. Zhang et al. introduced an SEIQR
model in [24]. Their model is described by a system of fractional-order dif-
ferential equations model. Dynamical behaviour and numerical approximation
are studied by this model. They applied the adaptive predictor–corrector algo-
rithm and fourth-order Runge–Kutta method to simulate the proposed mode.
In [21] Zeb et al. introduced a mathematical model by incorporating isolation.
They used the nonstandard finite difference (NSFD) scheme and Runge-Kutta
fourth order method to calculate numerical solutions. In the analysis of math-
ematical models of corona virus, the reproductive number has a significant role
in describing the nonlinear dynamics of the model. One of the most popular
methods to calculate the basic reproduction number is Watmough method [5]
which is used in [1] and [2].
In all of previous models the researchers have considered various compartments
but, they did not consider the possibility of getting infected again shortly after
recovery. This seems that it is an important factor. The introduced model in
this paper contains, re-infection parameter.
The paper is organized as follows. In section 2, the mathematical model is
introduced. The basic reproduction number is obtained in section 3. In section
4, disease free equilibrium point stability conditions are investigated and at the
last section, using numerical simulation, we analyze the model in the endemic
equilibrium point.
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2. Mathematical model

In this paper we introduce a model, based on Kermack and McKendrick
model [14]. In this model, the population is divided in 5 compartments.
S(t) is the number of Susceptibles at the time t. E is exposed compartment.
Infection in people of this class is hidden. A fraction ε of these individuals
become symptomatic at time t. And a fraction k of them left the exposed
class and recovered without any symptoms at time t. People in this class can
transmit the infection to healthy individuals with transmission rate β1.
I(t) is the number of infectives at time t. Q(t) is the number of infective people
who are in critical conditions and hospitalized at time t.
The last class is recovered, R(t). Members of this class recover with temporary
immunity.
We assume that the birth and natural mortality rate in the population are
equal. Thus, the size of population is constant, K. According to the above de-
scription, we denote the transmission rate (per capite) by β2. γ is the recovery
rate. The mortality rate because of disease is considered µ1 and µ2 in classes
I and Q, respectively. η is fraction of infective members who are hospitalized.
a fraction θ of recovered individuals become susceptible again. The mathemat-
ical model SEIQRS is as follows:

dS

dt
= −S(β1E + β2I + β3Q) + θR,

dE

dt
= S(β1E + β2I + β3Q)− (γ + ε)E,

dI

dt
= εE − (γ + µ1 + η)I,

dQ

dt
= ηI − (γ + µ2)Q,

dR

dt
= γ(E + I +Q)− θR,

In this model the transmission rate in infective class is more than exposed and
quarantine classes, hence consider β1 = 1

4β2 and β3 = 1
10β2.

With the above assumptions K = S(t) + E(t) + I(t) +Q(t) +R(t).
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Hence, the differential equation system is reduced to:

dS

dt
= −S(β1E + β2I + β3Q) + θK − θ(S + I +Q+ E),

dE

dt
= S(β1E + β2I + β3Q)− (γ + ε)E,

dI

dt
= εE − (γ + µ1 + η)I,

dQ

dt
= ηI − (γ + µ2)Q,

3. Basic reproduction number

In this section we would like to calculate the basic reproduction number
R0. For this purpose, we use the method of P. Van Den Driessche and James
Watmough [5].
We sperate the dynamic into two parts. The first matrix which we denote it
by F is the matrix of transition rate and the second matrix which is denoted
by T is a matrix of infection rates. Hence

F =


−(β1E0 + β2I0 + β3Q0) 0 0 0

0 β1S0 β2S0 β3S0

0 0 0 0
0 0 0 0

 ,

and

T =


−θ 0 0 0
0 −(γ + ε) 0 0
0 0 −(γ + µ1 + η) 0
0 0 η −(γ + µ2)

 ,

Where, S0 is the inatial value of susceptible people at the beginning of endemic
and E0 = I0 = Q0 = 0.
Thus

FT−1 =


A 0 0 0
0 B C D
0 0 0 0
0 0 0 0

 ,

where,

A = β1E0+β2I0+β3Q0

θ ,

B = −β1S0

γ+ε −
β2S0ε

(γ+ε)(γ+µ1+η)
− β3S0εη

(γ+ε)(γ+µ1+η)(γ+µ2)
,

C = β2S0

γ+µ1+η
− β3S0

(γ+µ1+η)(γ+µ2)
,

D = β3S0

γ+µ2
.
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FT−1 is called next generation matrix for the model. R0 is the maximum
eigenvalue of FT−1 [5].

R0 =
S0

γ + ε
(β1 +

β2ε

γ + µ1 + η
+

β3εη

(γ + µ1 + η)(γ + µ2)
).

.

4. Dynamic of model analysis

From the biological consideration , the phase space of the model is
T0 = {(S,E, I,Q,R) : 0 < S + E + I +Q+R ≤ K}
The model has a disease free equilibrium point, p0 = (K, 0, 0, 0). Also if
θ(K −S∗−Q∗−E∗) > S∗(β1E

∗ + β3Q
∗), then the endemic equilibrium point

p1 = (S∗, E∗, I∗, Q∗) exists, where:

S∗ = (γ+ε)(γ+µ1+η)(γ+µ2)
β1(γ+µ2)(γ+µ1+η)+β2ηε

,

E∗ = (γ+µ1+η)
ε I∗,

Q∗ = ηI∗

γ+µ2

and
I∗ = −S∗(β1E

∗+β3Q
∗)+θK−θ(S∗+Q∗+E∗)
β2S∗+θ .

Theorem. If R0 < 1 and γ − ε > β1K then the disease free equilibrium point
p0 is asymptotically stable.
Proof: Linearizing of the model in p0 is given the following characteristic equa-
tion

λ3 + a1λ
2 + a2λ+ a3 = 0,

where:
a1 = −β1K + (3γ + ε+ η + µ1 + µ2),
a2 = −(−β1K − (γ + ε))(2γ + µ1 + µ2 + η) + (γ + µ2)(γ + µ1 + η)− εβ2K,
a3 = (−β1K + (γ + ε))(γ + µ1 + η)(γ + µ2)− ηεβ3K − β2Kε(γ + µ2).
Since R0 < 1, a1 > 0 and a2 > 0.
Also, β1 − γ + ε < 0 so
a3 > (γ + ε− β1k)(γ + µ1 + η)(γ + µ2)− ηε(γ + µ2)− ε(γ + µ2)(γ + µ1 + η) =
(γ + ε− β1k)(γ + µ1 + η)(γ + µ2)− ε(γ + µ2)(γ + µ1 + 2η) > 0.
We can check easily that a1a2 > a3. Hence, using Routh-Hutwitz theorem [11],
the disease free equilibration point p0 is asymptotically stable.

Remark 4.1. At the beginning of outbreak, if R0 < 1, the epidemic dose not
happen.

5. Numerical stability analysis and simulations

It is difficult to analyse the stability of endemic equilibrium point analytically.
Hence, one has to resort to numerical calculations.
According to statistics provided by Kerman university of medical sciences from
20 April 2020 to 3 June 2020, the parameters γ, η, θ, ε, µ1 and µ2 can be
estimated. But, it is not easy to estimate parameter β2. Using the equations
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in the model and the data, the mean value of 5.97 × 10−8 with a standard
deviation of 1.61× 10−8 can be obtained. The results can be seen in table 1.

Table 1. Parameter description

Parameter Value Definition

γ 0/071 recovery rate
β 5.97× 10−8 infection rate
η 0/02 transmission rate for I to Q
θ 0/1 transmission rate from R to S
ε 0/06 transmission rate from E to I
µ1 0/001 mortality rate because of disease in I class
µ2 0/1 mortality rate because of disease in Q class

The population of Kerman province is considered 3,165,000. According to
data, the initial values are S0 = 3163759, E0 = 718, I0 = 513 and Q0 = 10.
Basic reproduction number is R0 = 1.3142. As you see R0 > 1. We can easily
check that p∗ is asymptotically stable. Therefore, epidemic occurs and the
population tends to reach endemic equilibrium point. It also stays near that.

5.1. solution curves. In this part, according to the above information, the
solution curves are described. Here we use RK4 method to perform the nu-
merical simulations. Most of individuals were found susceptible, in the first
days in a locality. Over time, healthy people become infected through contact
with patients. Hence, the number of people in classes E, I and as a result, the
population of hospitalized people is increased. Therefore, susceptibility is de-
creasing and as a result healthy population also declines, as shown in figure ??.
Hence the exposed, the infected and the quarantined classes are growing up,
see figures ??, ?? and ?? respectively. As you see, the number of individuals in
exposed class is growing up rapidly. Many people in the population present in
this compartment. Therefore, a large number of people in the infected commu-
nity are asymptomatic. The number of infected individuals is increasing. The
number of symptomatic infected people reaches 3000. Similarly, the number of
people hospitalized increases to 180.
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Figure 1. Dynamical behavior of the susceptible class (pop-
ulation).

Figure 2. Dynamical behavior of the exposed class.

Figure 3. Dynamical behavior of the infected class.

5.2. parameter study. In the above assumptions, infection period is consid-
ered 14 days. While for different people it can be variable. In this section, it is
assumed that the length of this period will be shorter or longer with different
strategies such as vaccines or drugs, etc. Accordingly, the rate of transmission
disease and basic reproduction number are changed. In the following diagrams,
the relationship between the length of infection period with β2 and R0 has been
shown in figures ?? and ??, respectively.
First figure shows the relationship between the length of infection period, T ,
and β2.Indeed, As T increases, the amount of β2 also increases. The minimum
value of β2 is happened in T = 6 which γ = 0.16. In this case, as shown in
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Figure 4. Dynamical behavior of the quarantine class.

figure 2, R0 is near 1 and Epidemic do not occur. Also the endemic equilibrium
point is unstable. The endemic equilibrium point is unstable until the length
of infection is 12 days and then this equilibrium point is asymptotically stable.
Hence, at T = 12 a bifurcation occur. Therefore, if the duration of the infection
can be reduced by different methods, the epidemic will be eliminated.

Figure 5. The relationship between the length of infection
and β.

6. Conclusion

We established a new model by considering re-infection after recovery for the
transmission dynamics of COVID-19. Disease free equilibrium point stability
conditions were investigated. Also, according to the statistics of infections from
20 April to 3 June 2020 in Kerman province and using numerical simulations,
we analyzed the solution of the dynamical model.
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